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Abstract: As the investigation indexes of low-temperature viscoelastic properties of polymer-modified
asphalt (PMA) are unclear at present, in this paper, the creep stiffness (S), creep rate (m), low-
temperature continuous classification temperature (TC), ∆TC, m/S, relaxation time (λ), and dissipation
energy ratio (Wd(t)/Ws(t)) were taken as a comparison sequence. The maximum flexural tensile
strain (εB) of porous asphalt mixture (PAM) in a low-temperature bending test was selected as a
reference sequence. Gray relational analysis was used to investigate the PMA’s low-temperature
viscoelastic properties based on a bending beam rheometer (BBR). The results show certain con-
tradictions in investigating the low-temperature properties of PMA when only considering the
low-temperature deformation capacity or the stress relaxation capacity. The modulus and relaxation
capacity should be considered when selecting the investigation indexes of the low-temperature
viscoelastic properties of PMA. When rheological method is used to evaluate the low-temperature of
polymer modified asphalt, TC and m/S are preferred. When only S or m is contradictory, m should be
preferred. ∆TC can determine whether the low-temperature performance of PMA is dominated by S
or m. The result can better guide the construction of asphalt pavement in areas with low temperatures.
Asphalt can be selected quickly and accurately to avoid the waste of resources.

Keywords: road engineering; polymer-modified asphalt; gray relational analysis; low temperature;
viscoelastic characteristics; evaluation index

1. Introduction

Porous asphalt pavement has been widely concerned because of its excellent properties
such as permeability, noise-reduction and skid-resistance [1–3]. Polymer-modified asphalt
significantly improves porous asphalt pavement performance and meets the demand
for high-quality asphalt [4–6]. It is used to make asphalt binders by adding polymer
modifiers, such as rubber, polymer, and other admixtures, into the matrix asphalt [7,8].
Under low-temperature conditions, the main deteriorations of polymer-modified asphalt
pavement are low-temperature cracking, loose, and pit. Low-temperature cracking (LTC) is
a particularly common disease in asphalt pavement [9–11]. It is mostly due to the low winter
temperature and the road surface temperature decrease. After that, the stiffness modulus
of the asphalt material becomes high, and the shrinkage phenomenon occurs [12–14]. It
could affect the integrity, continuity, and driving comfort of pavement [15]. Moreover, it
can lead to the softening of the subgrade, the decline of pavement bearing capacity, and the
acceleration of the destruction of asphalt pavement [16,17]. Studies have shown that LTC
in asphalt pavement is highly associated with the performance of asphalt binders at low
temperature [18,19]. Ma et al. [20] studied LTC in northeast China, and the results showed
that increasing the fine aggregate content could extend the anti-cracking performance of
asphalt pavement at low temperatures. Li et al. [21] established the asphalt pavement’s
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mechanical model to analyze the causes of pavement cracking. They combined with a
ductility test, asphalt composition analysis test, and bending beam rheometer (BBR) to
investigate the behavior of LTC under thermal and light conditions. The experimental
results indicated that the anti-cracking ability of asphalt at low temperature degrades
under the influence of heat and light. The composition of the asphalt has a critical effect
on its performance at low temperature [10]. SBS modifier can help control the LTC of
asphalt [22]. In order to effectively improve the pavement service function, it is necessary to
study the low-temperature performance of asphalt binders and determine the effective low-
temperature performance evaluation index. Researchers have put forward many evaluation
indexes, mainly low-temperature elongation, low-temperature penetration, creep stiffness,
creep rate, performance grade (PG) grading, dissipated energy ratio, relaxation time, and
m/S [23–29]. Zhang et al. [30] investigated the cold behavior of TB rubber, SBS-modified
asphalt, and its mixture by trabecular BBR and a semicircular bending stretch test (SCB).
The findings revealed that the PG grading of TB rubber-modified asphalt could well reflect
the asphalt performance in the low-temperature range. In contrast, the low-temperature
performance of asphalt mixture incorporating TB rubber with SBS-modified asphalt cannot
be as well evaluated by a single PG grading, so it needs to be assessed together with other
indexes. Zhou et al. [31] discussed the cold behavior of SBS and CR-modified asphalt
based on the BBR test at three different temperatures. From the perspective of energy, the
energy dissipation ratio and damping coefficient of asphalt were calculated to evaluate the
ability of asphalt in low-temperature environments. The analysis showed that adding CR
to SBS-modified asphalt was beneficial to reducing the LTC and improving the two factors
above, before, and after the aging process. As far as the present research is concerned, it is
better to use a simple fractional-order viscoelastic model for creep analysis of asphalt at
low temperature. In order to study the effects of asphalt relaxation characteristics at low
temperature, Zheng et al. [32] carried out beam bending relaxation tests at low temperature
by using the dynamic thermomechanical analyzer. Relaxation rate and relaxation time are
two indexes that can best indicate the relaxation characteristics of asphalt at present. The
results show that these two indexes can effectively characterize the performance of asphalt
at low temperature. Bai et al. [24] studied the low-temperature properties of a SBS-modified
asphalt binder. The results show the statistical linear correlation between the different
low-temperature indices. However, penetration below 0 ◦C may not be a valid index to
evaluate the low-temperature performance of asphalt binders. Wang et al. [33] used a
curved-beam rheometer to measure the creep stiffness modulus of six types of ordinary
asphalt and six types of modified asphalt under different temperatures and loading times
based on the time-temperature equivalence principle. The results show that the stiffness
index has a clear physical meaning and can better reflect the low-temperature performance
of asphalt compared with the conventional index.

In addition, Sun et al. [34] compared the evaluation indexes of the rubber asphalt
performance at low temperatures and demonstrated that the m/S was preferred in engi-
neering. The evaluation index S, which comprehensively considered the modulus and
relaxation capacity of asphalt, was selected in scientific research. Dong et al. [35], found
that the creep rate greatly affected the low-temperature performance and used the m/S to
evaluate the low-temperature performance of SBS-modified asphalt. Wei et al. [36] studied
the polyphosphoric acid-modified asphalt performance at low temperatures and found
that integrated flexibility was the optimal evaluation index for PPA-modified asphalt at
low-temperature. Wu et al. [37] used the creep stiffness and creep rate as the indexes
to compare PE, SBS, and SBR-modified asphalts by BBR test. Yan et al. [38] studied the
conventional properties and low-temperature rheological properties of four types of PMA
and found that the glassy transition temperature had the highest correlation, which could
better reflect the low-temperature properties of PMA, followed by the low-temperature
rheological indexes and viscosity indexes. Gu et al. [39] studied the evaluation indexes
of the low-temperature performance of foamed warm mixed crumb rubber-modified as-
phalt and indicated that the low-temperature ductility index is not suitable. At the same
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time, the glass transition temperature is feasible as the evaluation index for evaluating
the low-temperature performance of rubber-modified asphalt. Huang et al. [40] studied
the evaluation indexes of the low-temperature performance of SBS-modified asphalt. The
results showed that low-temperature elongation was not suitable for evaluating the low-
temperature performance of SBS-modified asphalt. Xu et al. [41] studied the evaluation
indexes of the low-temperature performance of the warm-mix-modified asphalt. The results
showed that the low continuous grading temperature could more accurately evaluate the
low-temperature performance of the warm-mix-modified asphalt. Geng et al. [42] studied
the evaluation indexes of low-temperature properties of high-modulus asphalt. The results
showed that the creep stiffness could not accurately evaluate the low-temperature proper-
ties, so it was suggested to use the fracture energy of the single-notch curved-beam test as
the evaluation index of high modulus asphalt. Gao et al. [43] conducted research on low
temperature damage by analyzing cooling conditions and long-term aging. The cooling
rate and creep rate decay index are proposed to predict the service life of actual pavement
at low temperature. In summary, the evaluation index of low-temperature viscoelastic
properties obtained from the bending creep stiffness test can accurately reflect the cold
behavior of asphalt binder. Still, there is no consistent conclusion on which evaluation
index to use. The reliability of the evaluation index of asphalt binders must be judged com-
prehensively based on the properties of the asphalt mixture. This study aimed to explore
the evaluation index of low-temperature viscoelastic properties of PMA. First, we selected
the PMA (SBS, rubber, and high-viscosity-modified asphalt) and seven evaluation indexes
of low-temperature viscoelastic properties, which include S (creep stiffness), m (creep rate),
TC (low-temperature continuous classification temperature), ∆TC, m/S, λ (relaxation time)
as well as Wd(t)/Ws(t) (dissipated energy ratio). Then, we tested the maximum flexural
tensile strain (εB) of PAM in a low-temperature bending test. After that, we used gray
relational analysis to clarify the evaluation indexes of the viscoelastic properties of PMA at
low temperatures. Finally, we recommended the evaluation index of PMA’s viscoelastic
properties.

2. Material and Methods
2.1. Materials

Several common and popular asphalts were selected in this study. Styrene-butadiene-
styrene-modified asphalt (SBS) and crumb rubber-modified asphalt (CRMA) is all finished
modified asphalt. High-viscosity-modified asphalt (HVMA-I, HVMA-II) was prepared
using SK-90 matrix asphalt and two high-viscosity modifiers (named Type I and Type II
in this paper). The content of the high-viscosity modifier was 12% of the mass of matrix
asphalt. The process of HVMA-I and HVMA-II is as follows: The asphalt high-speed
shear was first conducted at 2000 r/min for 10 min and then at 5000 r/min for 30 min
under 170–180 ◦C. It was kept for 10 min at 175 ◦C after the shear was completed. The
fundamental properties of the bitumen mentioned above are shown in Table 1.

Table 1. Technical properties of asphalt.

Type
Penetration
(25 ◦C, 5 s,

100 g)/(0.1 mm)

Softening
Point/◦C

Ductility
(5 ◦C)/cm

Dynamic
Viscosity

(60 ◦C)/(Pa·s)

Perfomance
Grade

SK-90 97.1 47.4 9.7 140.3 /
HVMA-I 51.1 84.3 64.3 38,696.9 PG64-22
HVMA-II 54.6 85.9 59.9 20,425.1 PG64-22
SBS 64.0 94.2 45.7 14,169.2 PG58-22
CRMA 51.1 63.2 13.3 3177.7 PG52-22

The gradation of PAC-13 (the nominal maximum particle size of porous asphalt
concrete is 13 mm) is shown in Table 2. The coarse aggregate, fine aggregate, and mineral
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powder used diabase, limestone, and limestone mineral powder, respectively. The fiber
was lignin fiber (the dosage is 3‰ of aggregate mass).

Table 2. Gradation of PAC-13.

Sieve Size/mm 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075

Passing Ratio (by pass)/% 100.0 92.3 70.4 18.9 15.9 13.0 11.1 8.2 6.7 4.6

2.2. Test Methods

The bending beam rheometer (BBR) test of PMA was made according to JTG E20-2011,
as shown in Figure 1a,b. The sizes of specimens are 127 mm long, 6.35 mm thick, and
12.70 mm wide. The load of BBR is 980 mN and the loading time is 240 s. This study’s
selected test temperature was −12 ◦C, −18 ◦C, and −24 ◦C.
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Figure 1. BBR and PMA’s specimens. (a) BBR, (b) Specimens of PMA.

The low-temperature bending test was designed to evaluate the cold behavior of PAM.
The test temperature was −10 ◦C, the loading rate was 50 mm/min, the trabecular size
was 250 mm in length, 30 mm in width, and 35 mm in height, and the span was 200 mm.
The electronic universal testing machine of Mester Industrial System (China) Co., Ltd.
(Zhongshan, China) was used. The test machine and specimens are as shown in Figure 2a,b.
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2.3. Flowchart

In this study, five kinds of polymer-modified asphalt were selected, and the S, m, TC,
∆TC, m/S, λ as well as Wd(t)/Ws(t) were obtained and calculated by BBR test, and the εB
were obtained by low-temperature bending test. Finally, the best indexes for evaluating the
low-temperature performance of asphalt mixture were selected by gray relational analysis.
The flowchart is shown in Figure 3.

Sustainability 2023, 15, x FOR PEER REVIEW 5 of 15 
 

  
(a) (b) 

Figure 2. (a) Universal testing machine, (b) Specimens of low-temperature bending test. 

2.3. Flowchart 

In this study, five kinds of polymer-modified asphalt were selected, and the S, m, TC, 

ΔTC, 𝑚/𝑆, λ as well as Wd(t)/Ws(t) were obtained and calculated by BBR test, and the 

𝜀𝐵 were obtained by low-temperature bending test. Finally, the best indexes for evaluat-

ing the low-temperature performance of asphalt mixture were selected by gray relational 

analysis. The flowchart is shown in Figure 3. 

 

Figure 3. Flowchart of the research. 

  

Figure 3. Flowchart of the research.

3. Results and Discussions
3.1. Creep Stiffness and Creep Rate

Generally speaking, the lower the creep stiffness (S), the higher the creep rate (m),
indicating the better the performance of asphalt at low temperature [44,45]. The S and
m values of the four PMAs are shown in Figures 4 and 5. As temperature drops, the S
of asphalt increases, the m decreases, and the resistance to LTC is poor. S and m of PMA
have no obvious rules under different low-temperature conditions. Moreover, S and m are
not synchronized in evaluating modified asphalt under the same temperature conditions.
SHRP (Strategic Highway Research Program) prescribed S ≤ 300 MPa of BBR test for
60 s, and m ≥ 0.30 were used to identify the cold behavior of asphalt materials. As can
be observed in Figures 4 and 5, when the test temperature was −24 ◦C, the S and m of
PMA exceeded SHRP program requirements. However, the S and m of four PMAs met
the recommended values of the specification at −18 ◦C. Thus, the evaluation index of BBR
at −18 ◦C was chosen to investigate the low-temperature performance of PMA. It can be
seen that the S value of SBS was the highest at −24 ◦C, followed by CRMA, HVMA-I, and
HVMA-II. The S value of the four PMA at −18 ◦C was in the order of HVMA-I, CRMA,
SBS, and HVMA-II. HVMA-II had a better cracking resistance at low temperature than
HVMA-I, CRMA, and SBS at −18 ◦C for S. The trend of S at −12 ◦C was similar to that
at −18 ◦C, but the value of CRMA decreased to a greater extent than that of the other
three PMAs. In the four PMAs, the m values were CRMA, SBS, HVMA-II, and HVMA-I in
descending order, and the trend was the same at the three temperatures. That is, CRMA
has better low-temperature performance than HVMA-I, HVMA-II, and SBS. Using S and m
to evaluate PMA for low-temperature performance is contradictory.
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3.2. Low-Temperature Continuous Classification Temperature

SHRP proposed using performance grade (PG) to evaluate asphalt performance, which
has been widely used because of its practicability and effectiveness. However, some studies
have shown some limitations in using PG to evaluate asphalt low-temperature performance.
That is, PG can only distinguish the asphalt low-temperature performance under different
classification temperatures but cannot effectively assess the asphalt performance at low
temperature at the same classification temperature [46]. Thus, ASTM D 7643-10 interpolates
with S = 300 Mpa and m = 0.30 to calculate the fractional temperature difference between
S and m, and ultimately uses the greater of the two as the low-temperature continuous
fractional temperature (TC) [47]. The calculation method of TC is shown in Formulas (1) and
(2). The TC of the four PMAs is shown in Figure 6. It can be noted that the TC from large to
small are HVMA-I, HVMA-II, SBS, and CRMA. The calculated values of SBS and CRMA
showed little difference, while HVMA-Iand HVMA-II were slightly larger than those of
the above two PMAs, indicating that CRMA has the lowest low-temperature continuous
classification temperature and good low-temperature performance.

TC = T1 +

(
log10(PS)− log10(P1)

log10(P2)− log10(P1)

)
(T2 − T1) (1)

where TC is the low-temperature continuous classification temperature, ◦C; T1 and T2 are
the calculated temperature, ◦C, and T2 is 6 ◦C higher than T1; PS = 300; P1 and P2 are the
m corresponding to T1 and T2.

TC = T1 +

(
PS − P1

P2 − P1

)
(T2 − T1) (2)
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3.3. ∆TC

∆TC represents the balance degree between the stiffness and the stress relief capacity of
asphalt under low-temperature conditions [48]. The positive values of ∆TC indicate that the
asphalt performance at low temperature is mainly controlled by S, and the negative values
of ∆TC indicate that the asphalt low-temperature performance is primarily controlled
by m. The absolute value of ∆TC suggests the degree of asphalt controlled by S or m.
S = 300 Mpa and m = 0.30 are used to calculate ∆TC by the interpolation method, and it
is similar to the low-temperature continuous classification temperature. The calculation
principle is illustrated in Figure 7, and the specific calculation method is given in Formulas
(3)–(5). It can be found in Figure 8 that the low-temperature performance of CRMA is
mainly controlled by S. The low-temperature performance of HVMA-I, HVMA-II, and
SBS is primarily influenced by m. In addition, the stress release ability of HVMA-II at low
temperatures is weaker than that of HVMA-I and SBS.

Tc,S = T1 +

(
(T1 − T2) ∗ (Log 300− Log S1)

Log S1 − Log S2

)
− 10 (3)

Tc,m = T1 +

(
(T1 − T2) ∗ (0.300−m1)

m1 −m2

)
− 10 (4)

where S1 is the creep stiffness at time t1, Mpa; S2 is the creep stiffness at t2, MPa; m1 is the
creep rate at time T1; m2 is the creep rate at T2; T1 and T2 are the calculated temperatures
respectively, ◦C, and T2 is higher than T1.

∆TC = Tc,S − Tc,m (5)
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3.4. m/S

Relevant studies show that the ratio of m to S can also be used to characterize asphalt
performance at low temperature [49]. The higher the m/S, the asphalt materials exhibit
better low-temperature performance. Figure 9 shows the m/S of the four PAMs at different
low temperatures. The m/S of the PMA were arranged from largest to smallest is CRMA,
SBS, HVMA-II, and HVMA-I, respectively. It indicates that CRMA performs well at
low-temperature performance, and the ranking of the m/S is consistent with that of low-
temperature continuous grading and m. The increasing rate of the m/S of the four asphalts
in the temperature range from−24 ◦C to−18 ◦C is less than that from−18 ◦C to−12 ◦C. It is
because as the temperature rises, the energy of the molecular movement within the asphalt
increases, and the movement of the molecular chain segments in the asphalt becomes more
active. Thus, it can lead to the activity of the molecular structure of the asphalt.
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3.5. Burgers Model

PMA is a typical viscoelastic material, and its properties can be effectively described
using the Burgers model, a four-element viscoelastic constitutive model. As shown in
Figure 10, the Burgers model was obtained by combining the Kelvin model and the Maxwell
model. Its mathematical formula is as follows [50]:

ε(t) = σ0

[
1

E1
+

1
η1

t +
1

E2

(
1− e−

E2
η2

t
)]

(6)

where ε is strain; σ0 is the stress applied, MPa; E1 is instantaneous elastic modulus; η1 is
instantaneous viscosity coefficient; E2 is the slow deformation that occurs after the stress
is applied; η2 is the viscosity index that the deformation does not disappear immediately
after removing the applied stress.
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Based on the Burgers model, the BBR data of the four PMAs were nonlinearly fitted
by 1stOpt-First Optimization software. The fitting parameters E1, E2, η1, η2 were used to
calculate the relaxation time λ and dissipated energy ratio (Wd(t)/Ws(t)), calculated by the
following formula [16]:

λ = η1/E1 (7)

Wd(t)/WS(t) =
[

t
η1

+
1

2E2
(1− e−

2E2
η2

t
)

]
/
[

1
E1

+
1

2E2
(1− 2e−

E2
η2

t
+ e−

2E2
η2

t
)

]
(8)

where t is the stress action time, s.
Relaxation time reflects the measurement of the stress variation of the asphalt binder

with time. The longer the relaxation time, the more adverse it is to the rapid dissipation
of the stress of the asphalt binder [51]. Formula (7) is used to calculate the relaxation
time of the asphalt, as shown in Figure 11. It indicates the relaxation time of four types
of asphalt from large to small: HVMA-I, HVMA-II, SBS, and CRMA in the temperature
change process. CRMA exhibits the shortest relaxation time and performs best at low
temperature. The relaxation time of the asphalt will increase with the decrease in the
temperature, because the elasticity of the asphalt increases, and the viscosity decreases as
the temperature drops. Further, the energy consumption rate slows while the stress change
takes longer. Finally, the relaxation time becomes longer.
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The dissipated energy ratio is a parameter reflecting the relaxation capacity of the
asphalt binder. The greater the dissipated energy ratio, the greater the LTC resistance of the
asphalt binder [17]. Formula (8) was used to calculate the dissipative energy ratio. It can be
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viewed from Figure 12 that the dissipative energy ratio of the four PMAs is in the order of
CRMA, SBS, HVMA-II, and HVMA-I in the process of temperature change. It indicates that
CRMA has the best performance at low temperature, in accordance with the evaluation
result of the relaxation time. The dissipation energy ratio of the asphalt decreases with the
lower temperature, indicating that the dissipation energy in the asphalt decreases with the
decrease in temperature. Moreover, it increased the storage energy and poor resistance
to LTC. The dissipated energy ratio of the four bitumen drops rapidly in the temperature
range from −18 ◦C to −12 ◦C. The dissipated energy ratio of the four asphalts declines
slightly when the temperature range is −24 ◦C to −18 ◦C. It is indicated that the elastic
ratio of the bitumen increases obviously with the decrease in the temperature, and the
bitumen is close to an elastic body when the temperature drops to a certain degree.
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3.6. Low-Temperature Bending Test of PAM

In this study, the trabecular specimens of porous asphalt mixture made from four
kinds of polymer-modified asphalt were used to test the low-temperature performance of
the mixture. The εB is the maximum flexural tensile strain of a rectangular beam, which is
applied to illustrate the PAM performance at low temperature during the specimen failure
of the low-temperature bending test. εB represents the ultimate deformation resistance of
the asphalt mixture at low temperature. Its mathematical formula is shown in Formula (9).

εB =
6× h× d

L2 (9)

where L is the trabecular span, mm; h is the trabecular height, mm; d is the deflection of
trabeculae during failure, mm.

As shown in Table 3, the LTC resistance increases as the εB value rises. Further, the
LTC resistance of the PAM formed by the four kinds of PMAs is in the order of CRMA, SBS,
HVMA-II, and HVMA-I. That is, CRMA has the best LTC resistance, and HVMA-I has the
worst LTC resistance.

Table 3. Results of PAC-13’s low-temperature bending beam test.

Type HVMA-I HVMA-II SBS CRMA

εB/µε 3281.5 3498.8 3547.9 3956.1
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3.7. Gray Relational Analysis

Gray relational analysis is mainly based on the geometric shape of the sequence curve
to judge the similarity between two sequences. Usually, the linear interpolation method is
adopted to convert the observation data of discrete behavior of the observation system into
piecewise continuous lines, and then the corresponding model is constructed according to
the geometric characteristics of the lines. Then, the corresponding model is used to judge
the similarity between the sequences [52]. Gray relational analysis can analyze engineering
systems under “small samples and poor information” and determine the primary and
secondary system influencers [53,54]. The basic step is to calculate the gray correlation
coefficient (Formula (10)) and then calculate the gray correlation entropy (Formula (11))
and gray entropy correlation (Formula (12)). The higher the gray relational analysis of
the comparison column, the stronger the correlation between the comparison and the
reference column. The connection between the comparison column and the reference
column can be reflected by its gray correlation degree. A higher correlation degree indicates
a higher correlation.

ξi[x0(k), xi(k)] =

∣∣∣∣∣∣
min
i=1,m

min
k=1,n

∆i(k) + ρ max
i=1,m

max
k=1,n

∆i(k)

∆i(k) + ρ max
i=1,m

max
k=1,n

∆i(k)

∣∣∣∣∣∣ (10)

where ρ is the resolution coefficient and is 0.5; x0[x0(1), · · · , x0(n)] is a reference sequence;
xi[xi(1), · · · , xi(n)] (i = 1, 2, . . . , m) is the comparison sequence.

H(Ri) , −∑n
k=1 Ph ln Pk (11)

where Ri = {ξ[x0(k), xi(k)]k = 1, · · · , n}; Ph ,
ξ[x0(h),xi(h)]

∑n
k=1 ξ[x0(h),xi(h)]

, Ph ∈Pi(h = 1, · · · , n).

E (xi), H(Ri)/Hmax (12)

where Hmax = lnn, which represents the maximum value of n. Based on the previous
analysis, this study selected evaluation indexes of S, m, TC, ∆TC, m/S, λ, and Wd(t)/Ws(t)
for PMAs at −18 ◦C as a comparison sequence and of the low-temperature bending test as
a reference sequence to conduct gray entropy analysis. Table 4 shows the results. It can
be concluded that the gray entropy correlation degree of each evaluation index of the low-
temperature viscoelastic properties from large to small are TC > m/S > m > S > Wd(t)/Ws(t)
> λ > ∆TC. Therefore, when using rheological methods to evaluate the PMA performance
in the low-temperature range, it is recommended that the low-temperature continuous
grading temperature TC and m/S be preferred, because both TC and m/S take into account
the modulus and relaxation capacity of PMA. Where there is a contradiction between using
single S or m to evaluate PMA’s low-temperature performance, m should be preferred. The
dissipated energy ratio and relaxation time calculated by the Burgers model can reflect the
PMA’s cold behavior. Compared to the relaxation time, the dissipated energy ratio is more
relevant to evaluate the low-temperature performance of PMA. The smallest correlation
degree of gray entropy is between ∆TC and the εB in the low-temperature bending test. It is
shown that although ∆TC is not adequate to evaluate the low-temperature properties of
PMA, it can indicate whether the PMA is S or m controlled.

Table 4. Gray entropy correlation.

E(S) E(m) E(TC) E(∆TC) E(m/S) E(λ) E(Wd(t)/Ws(t))

0.9957 0.9982 0.9997 0.9329 0.9996 0.9592 0.9838
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4. Conclusions

This study selected PMA (SBS-modified asphalt, rubber-modified asphalt, and high-
viscosity-modified asphalt) and seven evaluation indexes of low-temperature viscoelastic
properties. It used gray relational analysis to clarify the key indexes for evaluating the
viscoelastic properties of PMA at low temperatures.

(1) The study used S, m, TC, ∆TC, m/S, λ as well as Wd(t)/Ws(t) as to evaluate PMA’s
viscoelastic properties at low temperature. Rubber-modified asphalt exhibits better vis-
coelastic properties at low temperature and high-viscosity-modified asphalt than SBS-
modified asphalt. In addition, PAM formed from rubber-modified asphalt has better
cracking resistance at low temperature, which can confirm that rubber asphalt has a better
application prospect at low temperature.

(2) The maximum bending strain of the PAM low-temperature bending experiment
was selected as the reference sequence, and the S, m, TC, ∆TC, m/S, λ and Wd(t)/Ws(t) were
taken as the comparison sequence following the gray relational analysis. The order of the
gray entropy correlation degree from large to small was TC > m/S > m > S > Wd(t)/Ws(t)
> λ > ∆TC. It is suggested that TC and m/S should be preferred when applying the rheo-
logical low-temperature performance evaluation method of PMA. When only S or m as
the evaluation index is contradictory, m should be selected. Choosing the right evaluation
index can make road construction more scientific and standard.

(3) ∆TC is not recommended for evaluating the polymer-modified asphalt’s viscoelas-
tic properties. Still, it determines whether the PMA’s low-temperature performance is
dominated by S or m, which should be paid attention to in future research.

(4) This study will have positive guiding significance for the better application of polymer-
modified asphalt pavement in the future, especially when paving in low-temperature areas.

(5) This study about the low-temperature property of polymer-modified asphalt was
limited to laboratory tests. In the further step, we will start from the engineering practice
and combine the research results of laboratory tests with the asphalt selection and the
actual situation of low-temperature cracking in cold areas.
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