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Abstract: In this study, the main aim is to evaluate the mixing ratio of co-digestion of buffalo ma-
nure (BM) and excess sludge (ES) influenced for methane yield and digestate dewaterability. Five
batch experiments with different BM and ES mixing ratios were carried out under thermophilic and
mesophilic conditions. The methane yield of co-digestion of BM and ES increased by 10.1–73.5%
under thermophilic conditions and 87.9–153.3% under mesophilic conditions, compared with the
mono-anaerobic digestion of ES under the same conditions. Shannon and Chao1 indices showed that
the bacterial species of the mesophilic digesters were more abundant than that of the thermophilic
digesters. With the increase in the BM proportion in the substrate, the normalized capillary suction
time (NCST) and total solids (TS) of sediment (centrifugal dewatering) increased. The NCST at
thermophilic temperature (8.98–12.54 s·g−1-TS) was greater than that at the mesophilic temperatures
(5.45–12.32 s·g−1-TS). However, the TS of sediment was not directly related to the digestion tem-
perature. This study has shown that anaerobic co-digestion of BM and ES at the appropriate ratio
(BM/ES = 1:1.5) has a significant meaning in a high methane yield.

Keywords: methane yield; bacterial communities; digestate; normalized capillary suction time;
TS of sediment

1. Introduction

With the continuous increase in industrial structure adjustment in Chinese agricultural
industry, the proportion of intensive and large-scale breeding has increased rapidly. China
has an estimated 23.5 million buffalo, and the annual production of buffalo manure (BM)
is 172.1 million tons (9.3 tons per water buffalo per year) [1,2]. At present, the storage
and treatment capacity of manure in most of the farms in our country is insufficient [3]. It
is estimated that only 30% of the livestock and poultry waste in the intensive farms has
been preliminarily treated and used, and the remaining 70% is directly discharged to the
environment. In addition, the extensive use of antibiotics in the livestock industry leads
to a variety of antibiotic residues in the feces of livestock and poultry [4]. Therefore, the
direct discharge of a large number of livestock manure seriously pollutes water sources
and the rural ecological environment, posing a serious threat to soil, water, air, and the
safety of people and animals [1]. At present, the processing methods of BM mainly include
composting and production of bedding materials [5]. Anaerobic digestion is the most
common treatment for BM in China [5].

The annual production of municipal excess sludge (ES) in China is 39 million tons
(80% water content) [6]. Due to the use of antibiotics, harmful substances, such as heavy
metals, resistance genes, and pathogens, can also accumulate in ES [7]. Therefore, improper
handling of ES will cause harmful gases, resistance genes, heavy metals, and other pol-
lutants to return to the environment and may spread pathogens [8]. Currently, the main
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methods to treat sludge are landfilling, composting, natural drying, and incineration, and
considering waste characteristics, energy recovery and land use. Anaerobic digestion is
considered as a sustainable option to treat ES [9].

The mono-digestion of ES usually results in a lower hydrolysis rate and methane yield
due to its low volatile solids (VS), total solids (TS), carbon/nitrogen (C/N), and nutrient
imbalance [10]. The mono-digestion of BM is difficult to hydrolyze and has a poor digestion
rate due to its high VS, TS, C/N, and cellulose [11]. Moreover, the accumulation of organic
acids and ammonia due to the higher VS and TS in BM can inhibit the methane yield,
and the digestate of BM has a poor fertility capacity. In general, the digestion of a single
substrate reduces the economic viability of its digested products [12]. The co-digestion
helps to improve digestion performance [13]. Sewage treatment plants and buffalo farms
situated in suburbs offer the possibility of synergistic treatment between the two substrates.
ES as a product of sewage treatment plants and BM as a by-product of buffalo farms are
complementary in some characteristics, for example, BM has a higher C/N ratio while ES
has a lower C/N ratio; microbial communities were more abundant in ES and less in BM;
and ES has a higher water content, while BM has a lower water content [14]. In addition,
correspondingly, the nitrogen content of digestate produced by co-digestion is high, which
can also be used for fertilization. Therefore, the appropriate proportion of BM and ES
co-digestion has the suitable water content, pH, C/N, and high volumetric loading rate,
which also dilutes toxic compounds, balances microbial nutrients, and increases microbial
diversity [15]. Co-digestion of BM and ES significantly increased the methane yield at
35 ± 1 ◦C compared with the mono-digestion of ES (50.64% improvement) or BM (79.48%
improvement) [16].

The operating temperature and substrate of anaerobic digestion are the main determi-
nants of digestion performance and digestate dewaterability [17]. Anaerobic temperature
is generally kept within the range of thermophilic temperature (50~57 ◦C) or mesophilic
temperature (30~38 ◦C) [18]. During the anaerobic co-digestion process of pig manure
and sludge, the reduction rate of volatile solids (VS) decreased with increasing TS, and
the maximum cumulative methane yield was 342 mL g−1-volatile suspended solids added
(VSSadded) when TS was 6% [12]. Thermophilic conditions can promote the solubility of
organic matter, the biochemical reaction rate, the degradation rate of organic matter, and the
methane yield, as well as the reduction in the residence time and destruction of pathogens
more effectively [19]. Finally, the temperature also has an effect on the characteristics of
digestate [20]. Anaerobic co-digestion of cow manure with cabbage waste revealed maxi-
mum methane yields of 184.4 and 321.7 mL g−1 VSSadded at thermophilic and mesophilic
temperatures, respectively [15]. The optimal mixing ratio of pig manure and sludge for
anaerobic co-digestion under thermophilic conditions was 2:1, and the cumulative methane
production was 315.8 mL g−1, which was 82.4% higher than that of sludge-only diges-
tion [14]. However, little information is available on anaerobic co-digestion of BM and ES at
thermophilic temperatures. Different substrate mixing ratios also lead to different physical
and chemical properties, as well as microbial communities, which can affect the effective-
ness of anaerobic digestion and dewatering performance [17]. The optimal condition for
increasing methane production from anaerobic co-digestion of sewage sludge and cattle
manure was a VS ratio of 3/7 [16]. The difference in anaerobic co-digestion between BM
and ES at varied mixing ratios under thermophilic or mesophilic conditions is not clear. As
well, the temperature and mixing ratio for the dewatering performance of digestate are not
known. The digestate produced by the anaerobic digestion process needs to be dewatered
for further disposal or use. In addition to the faster digestion rate and higher methane
production, an adequate dewatering capacity of digestate is essential for the sustainable
anaerobic digestion processes [21]. The results of anaerobic co-digestion of pig manure
with sludge showed that the minimum NCST was 2.91 and 8.01 s·g−1-TS at mesophilic and
thermophilic temperatures, respectively [17].

In this study, the effects of the BM and ES mixtures ratio on anaerobic co-digestion
performance, microbial communities, and digestate dewatering performance were investi-
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gated. The main research objective of this study is to obtain better dewatering performance
under the premise of higher methane production and faster digestion rate.

2. Materials and Methods
2.1. Materials

Both ES and BM were from Jiujiang City, China. The ES was collected from the
concentration tank of a sewage treatment plant, and the treatment process was CAST on
a scale of 100,000 tons per day. BM was obtained from a cattle breeding farm near the
wastewater treatment plant. The scale of the livestock farm was about 100 buffalos, and
the yield of buffalo manure was about 500 kg per day. ES was concentrated by gravity
precipitation overnight and then stored with the collected BM at 4 ◦C before the experiment.
The main characteristics of different substrates are shown in Table 1.

Table 1. Characteristics of different substrates.

BM ES

TS (%) 20.27 ± 0.16 6.78 ± 0.03
VS (%) 16.62 ± 0.28 2.36 ± 0.08

VS/TS (%) 81.99 34.80
C (%) 43.04 ± 0.78 16.74 ± 0.20
N (%) 1.34 ± 0.21 2.57 ± 0.88
H (%) 5.27 ± 0.16 2.87 ± 0.01
S (%) 0.20 ± 0.02 0.46 ± 0.01
pH 7.44 7.04

C/N 32.01 6.51
Total Solids, TS. Volatile Solids, VS. Total Solids/Total Solids, VS/TS. Carbon, C. Hydrogen, H. Sulphur, S.
Carbon/Nitrogen, C/N.

2.2. Experimental Setup

Five different ratios of BM and ES were used in the experiments, which included ES
only, BM/ES = 1:3, BM/ES = 1:1.5, BM/ES = 1.5:1, and BM/ES = 3:1, respectively (Shown
in Table 2). Additionally, the total mass of the sample within each digester was 1.6 kg.
According to the references of similar studies, the ratio of BM to ES set in the experiment
can regulate the C/N ratio, microbial community structure, and other properties [15,22].
The five different mixing ratios are denoted by M1, M2, M3, M4, and M5 under mesophilic
conditions and by T1, T2, T3, T4, and T5 under thermophilic conditions. The C/N ratios of
substrates from T1 to T5 (from M1 to M5) were 6.51, 8.28, 9.81, 12.90, and 16.73, respectively.
The TS of co-substrates from T1 to T5 (from M1 to M5) were (6.78 ± 0.03)%, (7.39 ± 0.04)%,
(7.94 ± 0.04)%, (9.15 ± 0.05)%, and (10.81 ± 0.07)%, respectively. High TS of BM led to
sampling difficulty, so the experiment was not set up for mono-digestion of BM. For further
practical use, no additional water was added to the digester to regulate the TS. The mixed
preparation of BM and ES was configured according to weight without inoculum.

Table 2. Experience setup.

BM/ES (Based on VS) ES Only 1:3 1:1.5 1.5:1 3:1

thermophilic conditions T1 T2 T3 T4 T5
mesophilic conditions M1 M2 M3 M4 M5

Co-substrate in different proportions were placed in anaerobic digesters, which have a
2 L working volume and were sealed with a rubber plug with two 4 mm inner diameter
holes. One hole was used to gain the digestate by a peristaltic pump, while the other was
connected to the airbag via a rubber hose to collect gas samples. To ensure an anaerobic
environment for the experiment, each digestion digester was inflated with nitrogen for two
minutes, replacing the digester’s air. Additionally, the prepared digesters were placed in a
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water bath at 55 ± 1 ◦C or 37 ± 1 ◦C, and then the digesters were shaken by hand once a
day (1 min). All experiments were repeated 3 times.

2.3. Analytical Methods

The soluble extracellular polymers (EPS) in the digestate were extracted by using
heat-centrifugation extraction [23]. The sample mixture was centrifuged at 2000× g for
5 min, and the supernate was used as a liquid sample through a 0.45 µm polyethersulfone
superfine fiber filter. The specific operating steps are the same as that of the previous
study [17].

TS, VS, and pH of the original substrate were determined using standard techniques
for water and wastewater detection [24]. An elemental analyzer (Vario ELcube, Elementar,
Frankfurt, Germany) was used to detect the percentage of elements in air-dried materials.
The dissolved organic carbon (DOC) in the liquid samples was analyzed using a total carbon
analyzer (TOC-V, Shimadzu, Kyoto, Japan). Based on standard methods, the determination
of total ammonia nitrogen (TAN) in liquid samples were completed [24]. Free ammonia
nitrogen (FAN) in liquid samples was calculated using the formula described in previous
studies [25]. The polysaccharide content and protein content of EPS was determined in
each part according to the anthrone method [26] and the modified Lowry method [27].

Capillary suction time (CST) and TS of the thickened digestate were the main pa-
rameters used to evaluate the dewaterability of anaerobic digestion digestate. TS of the
thickened digestate was obtained by centrifugation of an anaerobic digestion solution at
2000× g for 10 min. Measurement of capillary suction time (CST) with a dedicated timer
(304 M, Triton Electronics, Essex, UK) were completed. NCST was corrected from CST to
eliminate the effect of different solid particles, that is, the ratio of CST to TS of the digestate.
Gas chromatography (6890 N, Agilent, Palo Alto, CA, USA) was used to measure the
methane concentration in each gas sample. Gas chromatography is equipped with a flame
ionization detector and J&W 123–1730 column (320-µm internal diameter, 30-m length, and
0.50-µm film). Biogas volume was measured using a wet gas flowmeter (LML-2, Alpha,
Changchun, China). The analysis was repeated three times for each sample.

In order to clarify the relationship between microbial communities and different
mixing ratios of co-substrates, high-throughput sequencing technology was used to analyze
microbial communities and extract DNA at the end of the co-digestion process. The Illumina
MiSeq platform (TruSeqTM DNA Sample Prep kit, Illumina, CA, USA) and soil DNA kit
(E.Z.N.A.® Soil DNA kit, Omega Bio-tek, Winooski, VT, USA) were used to extract microbial
DNA from the solid phase of anaerobic digestion samples for amplicon sequencing. The
V3–V4 hypervariable region of the bacterial 16S rRNA gene was amplified by Primers 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) and 338F (5′-ACTCCTACGGGAGGCAGCAG-3′).
Finally, the species information classification and the integration of the original data were
completed by referring to relevant websites, and the OTU (operational taxonomic unit)
table was completed. Data preprocessing methods and detailed experimental procedures
are shown in reference [17].

2.4. Statistical Analysis

SPSS 22.0 software was used for correlation analysis. The smaller the p value, the more
reasonable it is to assume that there was a difference between the things compared, and
it is generally believed that p < 0.05 is considered to be statistically significant. Two-way
ANOVA (significance level α = 0.05) was adopted to analyze whether different temperatures
and different mixing ratios had significant effects on pH, DOC, FA, TAN, and methane
yield and other indicators (Please see the Supplementary Material) [28]. In addition, further
methane yield analysis using the modified Gompertz model was required to fit the methane
yield. Additionally, the modified Gompertz equation in the hydrogen production kinetic
model used in this study is as follows (P: ultimate methane yield, mL; Pmax: maximum
hydrogen production potential, mL; Rmax: maximum hydrogen production rate, mL H2/h;
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e: the base of the natural logarithm, taking the value 2.718; λ: lag phase of hydrogen
production; t: hydrogen production time, h):

P = Pmax exp
{
− exp

[
Rmaxe

Pmax(λ− t)
+ 1

]}
3. Results
3.1. Digestion Performance

The pH of each digester ranged from 6.5 to 8.5 throughout the anaerobic digestion
process (Figure 1), which is a suitable pH range for anaerobic bacteria metabolic repro-
duction [29]. The pH of the thermophilic digester increased more quickly than that of
the mesophilic digester. This is because a high concentration of TAN in the thermophilic
digester will result in a rise in pH and alkalinity [30].

DOC levels declined substantially during the initial stage of anaerobic digestion under
thermophilic and mesophilic conditions and then gradually tended to be stable (Figure 1).
The accumulation of soluble organic compounds and insoluble organic compounds hy-
drolyzed to soluble organic compounds and small molecule organic acids in raw materials
is the main source of DOC [12]. As a result, the high DOC level during the initial stage
could be explained by rapid hydrolysis and acidification of the co-substrate [31].
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TAN increased with the evolution of the digestion process (Figure 2). The TAN level
of thermophilic digesters was higher than that of mesophilic digesters. The variation trend
of FAN concentration is basically consistent with that of TAN, and the FAN level was much
higher in the thermophilic digesters than in the mesophilic digesters.

The results of the cumulative methane yield were fitted using a modified Gompertz
model (Figure 3 and Table 3). The experimental results are in good agreement with the
fitting results (R2 ≥ 0.9258). The ultimate methane yield (UMY) of T1–T5 was 77.4, 123.4,
134.3, 88.2, and 85.3 mL g−1-VSSadded, respectively. The UMY of M1–M5 was 53.1, 112.9,
134.6, 99.9, and 99.9 mL g−1-VSSadded, respectively. When the ratio of BM to ES was lower
than 1:1.5, UMY increased with the increase in the proportion of BM. Until the ratio of
BM to ES reached 1:1.5 (T3 and M3), the UMY of thermophilic and mesophilic reached its
highest point (Figure 3). This finding suggests that co-digestion of ES and BM under T3
and M3 conditions had a beneficial synergistic impact, which provided adequate TS, C/N,
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nutrient balance, and microbial community [32]. When the ratio of BM to ES exceeded 1:1.5,
UMY decreased with the increase in BM. High proportion of BM had an adverse effect on
mass transfer, microbial species richness, and microbial activity, which reduced microbial
consumption of the substrate [33].

The results for the volumetric methane yield (Table 4) are consistent with those for the
cumulative methane yield just at the beginning and in the middle. After statistical analysis
of the data, the overall change trend of the volumetric methane yield was firstly increased,
then decreased, and finally increased again.
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Table 3. Parameters of modified Gompertz model.

Ultimate Methane
Yield, UMY

(mL g−1 VSSadded)

Maximum Methane
Production Rate,

Rm (mL g−1 VSSadded d−1)

Lag Phase,
λ (d) R2

T1 77.4113 8.2826 8.3674 0.9995
T2 123.4127 7.6679 4.1721 0.9975
T3 134.3303 9.5828 4.6437 0.9994
T4 88.1772 5.1276 2.6361 0.9967
T5 85.2538 3.9214 1.8739 0.9899
M1 53.1468 1.4273 11.4014 0.9258
M2 112.8605 5.1341 1.2674 0.9898
M3 134.6415 6.1726 8.4226 0.9955
M4 99.8927 2.5425 1.7529 0.9579
M5 99.8772 3.5892 6.0988 0.9980

Table 4. Results of volumetric methane yield.

Mixing Ratio Volumetric Methane Yield (L L−1)

T1 1.83
T2 3.71
T3 5.00
T4 4.29
T5 5.64
M1 1.25
M2 3.39
M3 5.01
M4 4.86
M5 6.61

3.2. Bacterial Communities

There were differences in the Chao1, Shannon, and Simpson indices of samples at
different temperatures and BM/ES ratios (Table 5). The results showed that both the
temperature and BM/ES ratio influenced the microbial diversity during anaerobic digestion.
Alpha diversity of the bacteria index showed that the diversity of the microbial community
was more abundant in ES than in BM, which is in accordance with the previous research [34].

Table 5. Alpha diversity of bacteria.

OTUs Chao1 Shannon Simpson

ES 618 619.0 7.92 0.9908
BM 544 545.6 7.18 0.9749
M1 543 546.0 6.91 0.9652
M2 662 662.1 7.49 0.9777
M3 655 655.3 7.74 0.9871
M4 702 702.1 7.83 0.9875
M5 618 618.2 7.26 0.9771
T1 457 457.0 6.08 0.9180
T2 534 534.0 7.03 0.9716
T3 454 454.1 6.39 0.9401
T4 549 549.0 7.35 0.9812
T5 420 420.0 6.41 0.9534

Under thermophilic conditions, the bacterial community (Figure 4) was mainly com-
posed of Firmicutes, Chloroflexi, Actinobacteria, Proteobacteria, and Thermotogae. Under
mesophilic conditions, the bacterial community (Figure 4) was mainly composed of Firmi-
cutes, Chloroflexi, Actinobacteria, Proteobacteria, Bacteroidetes, and Armatimonadetes.
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Under thermophilic and mesophilic conditions (Figure 4), the relative abundance
(RA) of Firmicutes first increased with the increasing proportion of BM in the substrate
(T1–T3 and M1–M3), reached a minimum at T3 and M3, and then increased again with the
increasing proportion of BM (T3–T5 and M3–M5).

Proteobacteria are bacteria responsible for hydrolysis and acidification, which produce
acetic acid and metabolize fermentation [35,36]. Under thermophilic conditions, the RA
of Proteobacteria at T2 decreased due to the addition of BM compared with T1, and the
RA of Proteobacteria at T3 increased with the addition of BM compared with T2. The RA
of Proteobacteria decreased with increasing proportion of BM (T3–T5) (Figure 4). The RA
of Proteobacteria decreased under mesophilic conditions as the proportion of BM in the
co-substrate increased, and the RA of Proteobacteria was lowest at M4. However, compared
with M4, the RA of Proteobacteria at M5 increased with the increase in BM proportion.

The RA of Chloroflexi was the highest at T3 and M3. Under thermophilic and
mesophilic conditions, when the BM/ES ratio is less than the BM/ES = 1:1.5, the RA
of Chloroflexi increased with the increasing BM proportion. On the contrary, when the
BM/ES ratio was greater than the BM/ES = 1:1.5, the RA of Chloroflexi decreased with the
increasing BM proportion (Figure 4). High organic loading rates, accumulation of VFAs, or
low pH can lead to a reduction in the RA of Chloroflexi [37].

The RA of Bacteroidetes decreased as the proportion of BM increased, which reached
the lowest at M3. The RA of Bacteroidetes increased with the increase in the BM proportion
when the BM/ES ratio is greater than the BM/ES = 1:1.5 (Figure 4).

Armatimonadetes, Acidobacteria, Thermotogae, and Spirochaetes also appeared in
thermophilic or mesophilic digesters. The RA of Armatimonadetes in thermophilic di-
gesters was lower than that in mesophilic digesters (Figure 4). Armatimonadetes could
increase the cellulolytic rates [38]. The RA of Acidobacteria in mesophilic digesters de-
creased with the addition of BM, and the RA of all Acidobacteria in mesophilic digesters
was lower than that of Acidobacteria in ES. This may be the effect of the pH in each di-
gester on the RA of Acidobacteria [39]. Thermotogae was present in all of the thermophilic
digesters, which consist of thermophilic bacteria typical of carbohydrate degradation
and may play a necessary role in the thermophilic process [40]. The RA of Spirochaetes
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was high at M5 and extremely low in other experimental groups. Spirochaetes may rely
primarily on monosaccharides but also involve in the degradation of disaccharides or
polysaccharides [41].

3.3. Dewaterability of Digestate

EPS is usually composed of microorganisms and their metabolites, which are mainly
organic substances, such as proteins and polysaccharides [42]. During the whole process of
anaerobic digestion, polysaccharides and proteins extracted from the slime layer were differ-
ent at different times under either thermophilic or thermophilic conditions (Figures S1–S4
in Supplementary Material). This may be caused by the different solubility of organic
matter at different times in the anaerobic digester [22]. Polysaccharides and proteins in
loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) were less abundant than
those in mucus at thermophilic and mesophilic temperatures. The protein concentration
was higher than the polysaccharides concentration under all conditions. These findings are
similar to those of previous studies [17,22].

NCST is an indispensable parameter for evaluating the dewatering performance of
digestate after digestion. NCST is modified from capillary suction time (CST), and dewater-
ing performance is inversely proportional to the NCST value [43]. The CST index measures
the filterability of sludge and reflects the characteristics of the dewatering process [44]. At
the end of thermophilic anaerobic digestion, NCST values (Figure 5) of T1–T5 were 8.98,
9.73, 12.24, 10.10, and 12.54 s·g−1-TS, respectively. At the end of mesophilic anaerobic
digestion, NCST values (Figure 5) of M1–M5 were 5.45, 6.09, 5.84, 7.97, and 12.32 s·g−1-TS,
respectively. The fluctuation of NCST under mesophilic conditions was lower than that
under thermophilic conditions.
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Centrifugal dewatering is also a method to evaluate the dewatering performance of
the digestate [45]. Centrifugal dewatering, which is different from the CST determination
technique, makes use of a powerful driving force (2000× g). The adhesion between water
and digested particles is virtually completely destroyed by centrifugal dewatering. Under
mesophilic or thermophilic conditions, the TS of the sediment of the digestate increased first
and then decreased with the evolution of the digestion process (Figure 5). Correspondingly,
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centrifugal dewatering efficiency of T1–T5 was 62.1%, 61.2%, 54.4%, 51.8%, and 45.3%,
respectively. The centrifugal dewatering efficiency of M1–M5 was 61.0%, 59.7%, 57.9%,
53.8%, and 45.1%. Regardless of the thermophilic condition or the mesophilic condition,
the TS of the sediment increased with the increase in the initial TS of the substrate, and the
centrifugal dewatering efficiency of the digestate decreased.

4. Discussion
4.1. Digestion Performance

The decrease in the pH value of the digesters is related to the decomposition of organic
matter, and during anaerobic digestion, the pH value gradually decreases and remains
above 6.5, indicating the stability of the digestive system [46]. In this study, the pH value
first increased and then decreased, but all digesters remained above 6.5, indicating that
the stability of the anaerobic digestion system in this study was good. The decreasing
trend of the pH value occurred earlier in the thermophilic digesters than in the mesophilic
digesters, which may be due to the thermophilic temperature favoring the decomposition
of organic matter [46]. The pH variation in this experiment was similar to previous studies,
but the minimum pH value (7.1) was greater than that of this experiment (6.5) [46]. This
may be caused by the different properties of the substrate and digestion temperature [17].
Additionally, high VS/TS in this study may have resulted in the formation of organic acids,
thus reducing the pH value [47].

The DOC level of thermophilic digesters was higher than that of the mesophilic di-
gesters, which could be explained by the fact that the increment of temperature increases
the hydrolysis rate and solubility of organic matter [19]. By comparing different experi-
ments at the same temperature, DOC levels were found to increase with the proportion of
BM in the co-substrate, as the proportion of BM increased in the co-substrate, which was
similar to the previous studies [17,22]. In the hydrolysis phase, the main components of
COD were volatile fatty acids [21]. With the evolution of the digestion process, the DOC
level gradually decreased, which is to enter the stage of acetic acid methanation, because
DOC was converted into inorganic matter and biogas by methanogenic bacteria [48]. The
temperature had a significant effect on both pH value and DOC, while mixing ratios had a
significant effect only on DOC.

Thermophilic conditions increase the degradation of nitrogen-rich substances and
solubility of organic matter in co-substrates, so TAN levels increased under thermophilic
conditions [19,49,50]. However, under the mesophilic condition, the TAN concentration
in all reactors increased gradually with the increase in TS. This suggested that it was
difficult for manure to release ammonia under strong alkaline conditions [46]. When TAN
concentration is greater than 1500 mg L−1, ammonia could impede methanogen growth [48].
The concentration of TAN in all digesters was less than 1500 mg L−1, so the inhibitory
effect by TAN in anaerobic digesters could be ignored in this study. Notice that the TAN
of the digestate is meaningful for the utilization and development of the digestate as a
fertilizer [51].

FAN can permeate cell membranes and reduce methanogen activity, which signif-
icantly decreases the methane yield at a specific concentration [52]. The high FAN con-
centration was due to the accumulation of VFA, and the high FAN concentration will
increase pH and total alkalinity, which will subsequently lead to changes in the hydrolytic
bacterial community [46]. FAN proportion in TAN is determined by temperature and
pH [53]. Therefore, the FAN level of mesophilic digesters was significantly lower than that
of thermophilic digesters (Figure 2). Under thermophilic conditions, the concentration of
FAN after the fifth day was more than 90 mg L−1. FAN has a substantial inhibitory effect
on methanogens at concentrations more than 90 mg L−1 [21,50]. FAN and TAN levels
in this study were relatively low compared to the related mesophilic anaerobic digestion
study [21], especially FAN concentrations, which may be due to the nitrogen content of the
substrate. In addition, according to the data analysis, both temperature and mixing ratios
had significant effects on TAN and FAN.
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The maximum UMY was lower than the cumulative methane yield described in the
previous study (around 187.21 mL g−1-VSSadded) [16]. This may be related to the low pH
(<7.5) of the substrate in this study, with higher pH (around 9.0) being able to consume
more organic matter to increase methane yield [16]. Despite this, the UMY of the ES
and BM co-digestion was higher than that of ES mono-digestion. This is attributed to
the co-digestion having suitable water content, pH, C/N, nutrient balance, and volume
loading rate, which can dilute toxic compounds and improve the buffer capacity [17]. The
trend of the UMY for the M3 treatment group changed after day 25, which may be due to
the suitable C/N of M3. The low yield in the early stage may be due to a less microbial
community, and the better degradation effect of lignocellulosic substances in the later
stage leads to the increase in UMY. There were no significant differences in UMY between
thermophilic and mesophilic anaerobic digestion. Under mesophilic conditions, it may
be the restriction of the hydrolysis steps that caused the lower methane yield [22]. Under
thermophilic conditions, FAN (higher than 90 mg L−1) had a substantial inhibitory effect
on methanogens resulting in a limited biomethane generation [21,50].

In addition, both temperature and mixing ratios had significant effects on the cumula-
tive methane yield. Additionally, inocula were not used during the anaerobic digestion
process in this study, resulting in a long lag phase of methane production. Overall, the
higher ultimate methane yield (UMY) under thermophilic conditions (T1–T5) than under
mesophilic conditions (M1–M5) in this study may be due to the fact that easily digestible or-
ganic matter in the substrate was produced through hydrolysis processes in a thermophilic
environment, thus enhancing the methanation process [54].

Compared with similar studies, the overall methane yield in this experiment is low,
which may be related to the properties of the ES, and the TS of ES is low, which may be due
to the high content of inhibitors in the ES, which inhibits the methanogenesis. The abrupt
change in volumetric methane yield in the later stage may be due to the large proportion of
BM, which had a dilution effect on the harmful substances in ES, so that the concentration
of the inhibitor was reduced, and the volumetric methane yield of T5 (M5) was increased.

4.2. Bacterial Communities

Alpha diversity of bacteria showed that under thermophilic conditions, the microbial
diversity of samples with different BM/ES mixing ratios was lower than that in sludge.
This phenomenon indicates that adding BM under thermophilic conditions may lead to
the reduction in substance abundance and diversity, thus affecting the stability of the
anaerobic digestion process. Chao1 and Shannon indices under mesophilic conditions
were larger than those under thermophilic conditions. This indicates that the diversity
and abundance of bacteria under mesophilic conditions were greater than that under
thermophilic conditions. This may be due to the inactivation of some bacterial communities
that are not adapted to the thermophilic environment. A similar analysis was conducted,
which found the microbial community of mesophilic anaerobic digestion shows greater
diversity than that of thermophilic anaerobic digestion [17].

Firmicutes are thought to play an important role in the production of extracellular
enzymes and the improvement of cellulose and protein hydrolysis [55]. Firmicutes have
the potential to transfer electrons during anaerobic digestion, especially under alkaline
conditions, showing a higher RA [56,57]. Therefore, the pH of thermophilic digesters
was higher than that of mesophilic digesters, which results in a high RA of Firmicutes in
thermophilic digesters.

The RA of Proteobacteria under thermophilic conditions was lower than that under
mesophilic conditions (Figure 4), which can be interpreted as the effect of different reaction
rates at different temperatures [58]. The RA of Proteobacteria with different BM/ES ratios
may be related to the pH value in the reaction [31].

Chloroflexi is a common hydrolytic fermentation bacterium in the anaerobic digestion
of organic solid waste, which can degrade complex organic compounds [59]. High organic
loading rates, accumulation of VFAs or low pH can lead to a reduction in the RA of
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Chloroflexi [37]. The RA of Chloroflexi and UMY were the highest in T3 and M3, which
could be interpreted as the synergistic work of Chloroflexi and acetic acid methanogens to
degrade organic matter [60].

Bacteroidetes play an important role in the hydrolysis and acidification of anaerobic
digestion [61]. The substrate hydrolysis rate positively correlated with the RA of Bac-
teroidetes [62]. However, the RA of Bacteroidetes in thermophilic digesters was very low,
which might be because Bacteroidetes are not heat-resistant bacteria [62].

4.3. Dewaterability of Digestate

Under mesophilic conditions, NCST increased obviously with the increase in TS. These
phenomena are similar to those found in previous studies [17,22]. The NCST level of the
thermophilic digestate was greater than that of the mesophilic digestate, which means
that the mesophilic digestate has better dewaterability. The higher RA of Firmicutes and
Actinobacteria resulted in higher hydrolysis of carbohydrates, proteins, and lipids during
anaerobic digestion, which led to the dewaterability of digestate deterioration [63]. In
addition, Proteobacteria with certain RA may improve the dewaterability of the digestate [63].
It may be due to the combined action of higher RA of Firmicutes and Actinobacteria under
thermophilic conditions and higher RA of Proteobacteria under mesophilic conditions; the
dewaterability of the mesophilic digestate was better than the thermophilic digestate [22].
The values of NCST in this study were higher than those in other studies of co-digestion [17],
which may be related to the TS of the substrate. The TS of pig manure was higher than
that of BM, resulting in a higher NCST of the digestate, which led to poor dewatering
performance. In addition, through data analysis, it is known that both temperature and
mixing ratio had significant effects on NCST.

The TS of sediment was used to characterize the centrifugal dewatering performance
of the digestate. The variation trend of the centrifugal dewatering efficiency caused by
different TS in this experiment is consistent with previous studies. [17,23]. The TS of
sediment increased with the increase in TS [63]. There was a significant negative correlation
between the average centrifugal dewatering efficiency and the average NCST (−0.975 **)
during the whole mesophilic anaerobic digestion process. This phenomenon is similar
to previous studies [17]. However, under thermophilic conditions, the NCST showed a
poor correlation with centrifugal dewatering efficiency than that described by previous
research [17]. It is possible that the different digestion substrates lead to a small range of
NCST (8.98–12.54 s·g−1-TS) in the experiment under thermophilic conditions, so small
deviations may reduce the correlation between NCST and centrifugal dewatering efficiency.
Data analysis showed that only the mixture ratios had a significant effect on centrifugal
dewatering efficiency.

Without the BM control group, it cannot be well seen that the harmful substances in
ES can inhibit the anaerobic digestion process. Moreover, ES obtained in this study has a
low content of organic matter, and a large number of inorganic substances in ES will cause
a high concentration of inhibitors, thus affecting the stability of digestion. According to
the chart of data analysis results, in terms of cumulative methane yield and volumetric
methane yield, T3 (M3) has the largest yield; in terms of the dewatering performance of
digestate, the NCST of T3 (M3) and the TS of sediment are above the medium level, which
can reduce the subsequent cost of digestate disposal; in terms of the DOC change trend,
T3 (M3) degrades organic matter more thoroughly, so a mesophilic anaerobic co-digestion
reactor with an BM/ES = 1:1.5 has better prospects for an engineering application.

5. Conclusions

The difference in the ultimate methane yield between thermophilic and mesophilic
conditions was not significant due to the special property of the co-substrate. However, the
ultimate methane yield was significantly affected by mixing ratios, and the overall trend of
ultimate methane yield was first increased and then decreased. Neither temperature nor
mixing ratios had a significant effect on the digestion rate. As well, both temperature and
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mixing ratios had significant effects on the dewatering performance of the digestate. The
mesophilic conditions provided better digestate dewaterability and less energy demand.
Therefore, a mesophilic anaerobic co-digestion reactor with an BM/ES = 1:1.5 has better
prospects for an engineering application.
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Results of Two-way ANOVA for DOC; Table S2: Results of Two-way ANOVA for pH; Table S3:
Results of Two-way ANOVA for TAN; Table S4: Results of Two-way ANOVA for FAN; Table S5:
Results of Two-way ANOVA for cumulative methane yield; Table S6: Results of Two-way ANOVA
for cumulative methane yield; Table S7: Results of Two-way ANOVA for TS of sediment; Table S8:
Results of Two-way ANOVA for ultimate methane yield; Table S9: Results of Two-way ANOVA for
maximum methane production rate; Table S10: Results of Two-way ANOVA for lag phase.
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