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Abstract: In recent years, heavy metals and organic pollutants have become two major obstacles
to maintaining the ecological environment. Thus, choosing efficient and environmentally friendly
methods and materials to remediate heavy metals and organic pollution has become a hot research
topic. Porous metal–organic frameworks (MOFs) and their composites or derivatives can be used as
ideal adsorbents and catalytic materials because of their unique structures and functions. This work
reviews the research progress on MOF-based materials in the remediation of the water environment
in the past decade. The MOF-based materials discussed here mainly include MOF composites
obtained by fabrication and MOF derivatives obtained by pyrolysis. Both MOF composites and MOF
derivatives are optimized materials that exhibit adsorption or catalytic performance superior to the
pristine MOFs. Additionally, the interactions and mechanisms between the MOF-based materials
and different heavy metals or organic pollutants are discussed in detail. Finally, some problems or
defects of the MOF-based materials are also proposed considering the materials’ economic efficiency,
stability and safety. There is still a long way forward for the real application of MOF-based materials.
Further efforts are also needed to explore and expand the environmental remediation scope of
MOF-based materials.
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1. Introduction

With the continuous development of the economy and growth of the world population,
more and more pollutants are produced because of human activities. They can be detected
in various environmental media, seriously threatening the ecological environment and
human health. In particular, heavy metals (HMs) and organic pollutants (OPs) are common
pollutants in the water environment (including groundwater and surface water). Heavy
metals are mainly from mining, smelting, electroplating, and tanning industries, and
the pollution as a result of HMs is particularly severe in developing countries [1]. Lead
(Pb), chromium (Cr), cadmium (Cd), arsenic (As), and mercury (Hg) are common HMs in
the environment. Their characteristics of high toxicity, potential accumulation and non-
biodegradability in the environment will potentially cause harm to animals, plants and
humans [1,2]. Organic pollutants have the characteristics of inertness and persistence in the
environment. Since the 20th century, millions of organic chemicals have been discovered
and manufactured with the rapid development of industry and the chemical industry [3].
Typical aqueous OPs in water can be classified as conventional industrial organics, organic
dyes, pesticides, pharmaceuticals and personal care products (PPCPs), etc. Some typical
HMs and OPs can be found in drinking water, and the US EPA has set strict limitation for
them (Table 1).
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Table 1. USA drinking water quality criteria standards for HMs and OPs [4].

HMs MCLG 1 (mg/L) MCL 2(mg/L)

Mercury (inorganic) 0.002 0.002
Lead zero 0.015

Cadmium 0.005 0.005
Copper 1.3 1.3
Arsenic zero 0.05

Antimony 0.006 0.006
Chromium (total) 0.1 0.1

OPs MCLG (mg/L) MCL (mg/L)

Chlorobenzene 0.1 0.1
Dichloromethane zero 0.005

Ethylbenzene 0.7 0.7
Four Vinyl Chloride zero 0.005

Atrazine 0.003 0.003
Diquat 0.02 0.02

Lindane 0.0002 0.0002
Gebutox 0.007 0.007

Glyphosate 0.7 0.7
Polychlorinated biphenyls zero 0.0005

Xylenes 10 10
1 MCLG: maximum contaminant level goal. A non-enforceable health goal that is set at a level at which no
known or anticipated adverse effect on the health of persons occurs and that allows an adequate margin of safety.
2 MCL: maximum contaminant level. The highest level of a contaminant that is allowed in drinking water. MCLs
are set as close to the MCLG as feasible using the best available analytical and treatment technologies and taking
cost into consideration. MCLs are enforceable standards.

Over the past decades, researchers have been committed to researching porous ma-
terials with adsorption and catalytic properties. As a new type of porous material, metal–
organic frameworks (MOFs) have attracted more and more attention because of their high
porosity, large surface areas, and structural diversity [5–7]. Metal–organic frameworks are
composed of metal ions or clusters and organic ligands, and they are organic–inorganic
hybrid materials with intramolecular pores connected by medium-strength coordination
bonds [8]. The organic ligand is usually a multidentate organic ligand containing oxygen
and nitrogen, including polycarboxylic acid aromatic ligands (e.g., terephthalic acid (BDC)
and trimesic acid (BTC)) and nitrogen-containing heterocyclic ligands (e.g., imidazoles,
tetrazoles, pyrimidines, pyridines, purines, etc.) [9,10]. The inorganic metal cluster is
generally composed of transition metal ions, including common 3d type divalent metal
ions (Ni2+, Zn2+, etc.), trivalent metal ions (Fe3+, Co3+, Cr3+, Sc3+, V3+, etc.), p-type triva-
lent metal ions (Al3+, In3+, etc.), and some rare-earth metal ions. MOFs, first synthesized
and named by Yaghi et al. in 1995 [11], have been developed to possess a greater family
including MIL (Materials of Institut Lavoisier) [12], UIO (University of Oslo) [13], and ZIF
(Zeolitic imidazolate framework) [2], etc. At present, MOFs have high application prospects
in gas storage [13,14], separation [15,16], metal ion detection [17], drug delivery [18], catal-
ysis [19], chemical sensing [20], adsorption [21], etc. MOFs are particularly common in the
remediation of HMs and OPs in water [10,21–24].

As adsorbents, MOFs generally have better adsorption capacity than many traditional
adsorbents such as zeolite, bio-charcoal, and activated carbon [22,24]. Moreover, MOFs can
act as catalysts for the degradation of OPs in the environment due to the catalytic effect
of their central metal ions. Although MOFs have achieved good results in remediating
HMs and OPs, the pristine MOFs (unmodified or untreated) still have certain defects. A
few can be listed as follows: (1) the pristine MOFs in the nano-size form are difficult to
separate in water treatment and easily cause secondary pollution; (2) the pristine MOFs are
generally small in size and easy to agglomerate; and (3) some MOFs have poor stability
and recyclability in water. The above-mentioned defects would thus hinder the exposure
of active sites and limit the efficiency of HM and OP treatment. Consequently, numerous
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efforts have been applied to improve the performance of MOFs, for example, adjusting the
structure or surface properties of the materials and synthesizing MOF-based composites
or derivatives.

To date, a large number of articles with regard to MOF-based materials have been
published, indicating that they are worthy of attention. This review focuses on the types
of MOF-based materials, their removal efficiency, and associated mechanisms for the
remediation of HMs and OPs in aqueous environments.

2. What Are MOF-Based Materials?

MOFs have been widely studied and applied in water treatment since they were
invented [25,26]. However, as mentioned above, the defects of some pristine MOFs limited
their application in the water environment. In recent years, many efforts have been made to
improve the stability and performance of MOFs. In particular, many research results have
suggested that MOF-based materials are ideal adsorbents or catalysts for removing aqueous
pollutants because of their high adsorption capacity, water stability, and reusability [27–30].
Here, MOF-based materials are divided into MOF composites and MOF derivatives. Specif-
ically, the MOF composites mainly include MOF-based core–shell composites and macro-
MOF hybrids (further divided into hydro(aero)gel and macro-MOF-coated composites),
and the MOF derivatives are further divided into MOF-derived nanoporous carbon (NPC),
metal@carbon (metal@C), and metal oxide@carbon (metal oxide@C) (Figure 1).
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2.1. MOF Composites

MOF composites are a class of materials that combine MOFs with one or more sub-
stances with high stability, high surface area, or multifunctional groups (such as hydroxyl
groups, amine groups, etc.). Various kinds of MOF composites have been prepared by
combining MOFs with inorganic metal nanoparticles (NPs) [29,31,32], graphene oxide
(GO) [33,34], reduced graphene oxide (rGO) [30,35], nanofibers [36,37], carbon nanotubes
(CNTs) [38], organic polymers [39–41], etc. According to the differences between these
functional materials and synthetic methods, MOF composites can be divided into core–shell
MOF composites and macro-MOFs [8].

Core–shell MOF composites are the most representative type of multifunctional MOF
composite materials. The MOFs can be assembled with other materials (such as a second
MOF [42,43], inorganic compounds [32,44], organic polymers [45–47], etc.) to form the
core–shell structure. Composite components are usually embedded inside or coated on
the surface of the MOFs, so the MOFs can be used as both core and shell. The primary
synthetic strategy of the core–shell composites is to make MOFs or another composite com-
ponent grow in situ by layer-by-layer self-assembly [31,48]. Under reasonable controlling
conditions, MOFs, as the shell, can be coated outside of the non-porous materials (such as
metal oxide NPs) to form ordered and uniform porous core–shell composites [31,49,50].
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Macro-MOFs are a group of emerging MOF composites. They are a type of material
combining MOFs with special components with good mechanical properties (such as aerogel
and hydrogel [30,51–53]) or depositing MOFs onto supporting materials (such as nanofiber
materials [37,54–56], carbon materials [33–35], and composite membranes [33,57,58]). The
former are called MOF composite aerogels or hydrogels, and the latter are called macro-
MOF-coated composites. The supporting materials can be directly bound to the MOFs
or surface-modified to obtain appropriate functional groups, which promote strong adhe-
sion of the MOF particles through electrostatic interaction or covalent bonding [53,57,59].
Generally, the methods of synthesizing macro-MOFs are direct mixing or in situ growth.
Macro-MOFs can tackle many problems encountered in water treatment processes, such as
secondary pollution and low separation efficiency [35,52].

2.2. MOF Derivatives

Inorganic NPs and porous carbon are both MOF derivatives that show unique ad-
vantages in environmental applications. They can be prepared by direct pyrolysis of the
virgin MOFs and MOF composites under appropriate conditions. The process does not
require any additional carbon source due to the high carbon content of the organic ligands
in MOFs [60,61]. For example, the pyrolysis of MOFs at high temperature and inert atmo-
sphere (nitrogen or argon) will generate porous and uniform metal@C materials. If the
MOFs are directly heated in an oxygen atmosphere or at low temperature, porous metal
oxide@C with high specific surface area and regular morphology can be obtained [62]. For
MOFs containing metals with high boiling points, a pickling treatment is needed to etch
away the remaining metal substances to obtain a porous carbon material with large pore
volume and high specific surface area [63]. Compared with the porous inorganic NPs pre-
pared by traditional methods, the MOF-derived nanostructures have a uniform structure
and excellent performance, and they are widely used in catalysis [64], gas storage [65], and
removal of pollutants in water [66].

3. Remediation of HMs Using MOF-Based Materials
3.1. Typical Cationic HMs

Hg(II), Pb(II), Cd(II), Ni(II), and Cu(II) are common cationic HMs in the environ-
ment [31,67]. Exposure to even a small amount of these HMs can be hazardous to human
health due to their non-biodegradability and bioaccumulation [68]. The US Environmental
Protection Agency (EPA) hence imposed strict regulations on the limit concentrations of
the HMs in water environments, which underlines the importance of removing them from
water. Various MOF-based materials that have been widely proven effective and feasible
for removal of typical cationic HMs are summarized in Table 2, and some of them show
better adsorption properties than many traditional adsorbents.

Table 2. Summary of MOF-based materials as adsorbents for typical cationic HMs.

MOF-Based Materials HMs Qe (mg/g) or
Removal Rate (%) Selectivity Reusability Mechanism Ref.

Core–shell
composites Fe-BTC/PDA Hg(II)

Pb(II)
1643
394

Ca2+, Mg2+,
Na+, K+, Sr2+,

B2+
Reusable

Electrostatic
interaction

Coordination,
Diffusion

[47]

Fe3O4@Cu3(btc)2-
SH

Hg(II)
Pb(II)

348.43
215.05

Ni2+, Na+,
Mg2+, Ca2+,
Zn2+, Cd2+

Reusable
Electrostatic
interaction

Coordination
[69]

Fe3O4@TMU-
32

Hg(II)
Pb(II)

909
1607 Cr3+, Cu2+ Reusable

Electrostatic
interaction

Coordination
[31]
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Table 2. Cont.

MOF-Based Materials HMs Qe (mg/g) or
Removal Rate (%) Selectivity Reusability Mechanism Ref.

PFe3O4@NH2-
MIL-125

(Ti)
Pb(II) 561.7

Ag+, Be2+,
Cd2+,

Zn2+, Ni2+,
Mn2+, Mg2+,
As3+, Cr3+

Reusable

Chemical
bonding (C-N-

Pb(II)-O-Fe)
Coordination

[70]

ZIF-8@CA Pb(II) 1321.21

NO3−, SO4
2−,

Cl−

Cd2+, Cu2+,
Zn2+

Reusable
Electrostatic
interaction

Ion exchange
[39]

melamine-
MOFs Pb(II) 205 Not mentioned Reusable Coordination [41]

MCNC@Zn-
BTC Pb(II) 558.66 Cu2+, Cd2+,

Zn2+ Reusable Coordination [48]

Fe3O4@SiO2@UiO-
66

Fe3O4@SiO2@UiO-
66-NH2

Fe3O4@SiO2@UiO-
66-Urea

Pb(II)
MB
MO

102
128
219

Not mentioned Reusable
Electrostatic
interaction

Coordination
[71]

NH2-MIL-
101(Al)@ZIF-8 Cu(II) 526.74

Li+, Na+, K+,
Ca2+, Mg2+,
Mn2+, Co2+,
Ni2+, Hg2+,
Pb2+, Cd2+

Not mentioned Coordination
Diffusion [42]

Macro-MOF
composites

PA 300
nanofibers

PA 808
nanofibers

Hg(II)
Pb(II)
Hg(II)
Pb(II)

265.45
150.95
254.4
119.9

Not mentioned Reusable
Electrostatic
interaction

Ion exchange
[55]

PVA/Sb-TBC
nanofibers

PVA/Sr-TBC
nanofibers

PVA/La-TBC
nanofibers

Pb(II)
91

124
194

Ca2+, Mg2+ Not mentioned
Electrostatic
interaction

Ion exchange
[54]

UiO-66-
NH2@CA
aerogels

UiO-66@CA
aerogels

Pb(II)
Cu(II)
Pb(II)
Cu(II)

89.40
39.33
81.30
31.23

Not mentioned Reusable
Electrostatic
interaction

Coordination
[52]

ZIF-8/rGA
aerogels

Pb(II)
Cd(II)

281.5
101.1 Not mentioned Reusable

Ion exchange
Electrostatic
interaction

[30]

BC@ZIF-8
aerogels

Pb(II)
Cd(II)

390
220 Pb2+, Co2+ Reusable Coordination

Diffusion [51]

ZIF-
67/BC/CH

aerogels

Cu(II)
Cr(VI)

200.6
152.1 Not mentioned Not mentioned

Coordination
Ion exchange
Electrostatic
interaction

[53]

PDA/MOF-
TFN

membrane

Pb(II)
Cd(II)
Ni(II)

94–99.2% Not mentioned Not mentioned

Electrostatic
interaction

Ion exchange
Coordination
Size exclusion

[57]

IRMOF-3/GO-
1

PSF@PDA@IRMOF-
3/GO-1

membrane

Cu(II) 254.14
89.3%

Na+, K+, Ca2+,
Mg2+

Pb2+, Ni2+,
Co2+, Fe3+

Not mentioned

Coordination
Electrostatic
interaction

Size exclusion

[33]
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Table 2. Cont.

MOF-Based Materials HMs Qe (mg/g) or
Removal Rate (%) Selectivity Reusability Mechanism Ref.

f-ZIF-8@GO
membrane Cu(II) 1872.24 Pb2+, Co2+ Reusable

Electrostatic
interaction

Coordination
[34]

PAN/MOF-
808

membrane

Cd(II)
Zn(II)

225.05
287.06 Not mentioned Reusable

Electrostatic
interaction

Ion exchange
Size exclusion

[36]

UiO-66-
(COOH)2/prGO

membrane

Cu(II)
Cd(II)

96.5–83.1%
92.6–80.4% Not mentioned Not mentioned

Electrostatic
interaction

Size exclusion
[35]

PAA/ZIF-
8/PVDF

membrane
Ni(II) 219.09 Na+ Reusable

Hydrogen
bonding

Ion exchange
Coordination

[58]

MOF
derivatives ZnO/ZnFe2O4/C Pb(II) 344.83 Not mentioned Reusable Ion exchange [66]

Ni@C
Pb(II)
Cu(II)
Cd(II)

92.5
63.4
41.4

Not mentioned Reusable
van der Waals

forces
Diffusion

[72]

3.1.1. Adsorption Behavior of MOF Composites

Recent studies suggested that the core–shell structure and functional design of MOF
composites can significantly improve the efficiency of HM adsorption and the material’s
water stability [31,32,48,69–71]. In particular, magnetic NPs and multifunctional group-
rich substances (e.g., amino, thiol, and carboxyl) were combined with MOFs and showed
excellent results. For example, Ke et al. [69] reported the successful removal of Pb(II) and
Hg(II) ions from aqueous samples by using a post-synthetic-modification (PSM) thiol core–
shell Fe3O4@Cu3(btc)2 (Figure 2a). According to the study, the MOF composites exhibited
excellent regeneration capability and adsorption performance toward Pb(II) and Hg(II) in
a wide pH range (2–10) (Figure 2b). Notably, their selective adsorption affinity for Pb(II)
(Kd = 1.23 × 104 mL/g) and Hg(II) (Kd = 5.98 × 104 mL/g) was remarkable, while they
had weak binding affinity for other metals such as Ca2+, Na+, Ni2+, Zn2+, Mg2+, and Cd2+

(Kd = 19.03–77.06 mL/g) (Figure 2c). Another study also reported a thiol-functionalized
CeO2@UiO-66-(SH)2 and a magnetically functionalized CeO2/Fe3O4@UiO-66-(SH)2. The
former could simultaneously capture Pb(II) (99%), Hg(II) (98%), Cr (III and VI) (93%), Cd(II)
(87%), and As (III and V) (56%) at an aqueous concentration of 100 µg/L. Notably, the latter
showed adsorption capacity comparable to that of the former, and they could be easily
separated from water by a magnet in less than 5 min [32]. Additionally, a magnetic MOF
composite Fe3O4@TMU-32 showed a high adsorption capacity for Pb(II) (1600 mg/g) and
Hg(II) (905 mg/g), respectively [31]. The TMU-32 precursor itself had carbonyl, amine,
and urea functional groups that could interact with the metal ions, and Fe3O4 magnetic
NPs could modulate the material’s surface charge (Figure 2d,e). In a word, different
types of core–shell MOF composites can be formed via layer-by-layer self-assembly to
improve their removal efficiency, stability, and recovery of materials. Furthermore, highly
effective adsorption sites (thiol, amino, carboxyl functional groups, etc.) can be purposefully
introduced into the MOFs or composites through PSM or pre-designing methods to improve
the densities of chelating functional groups [73].
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core–shell magnetic microspheres and their use for selective heavy metal ion removal. (b) Effects
of pH on the Pb(II) and Hg(II) removal efficiency of sample B (Fe3O4@Cu3(btc)2-DTG-1.13) in the
mixture solution (0.5 mM). (c) Adsorption kinetics of sample B (Fe3O4@Cu3(btc)2-DTG-1.13) for heavy
metal ions in the mixture solution (0.5 mM). Reprinted with permission from Ref. [69]. Copyright
2017, Elsevier. (d) Structural representation of TMU-32. (e) Proposed mechanism for Pb(II) and Hg(II)
removal by Fe3O4@TMU-32. Reprinted with permission from Ref. [31]. Copyright 2018, Elsevier.

The practical application of nano MOFs encounters difficulties because of their poor
recycling and secondary water pollution. In 2016, Shooto et al. [54] first proposed an
effective strategy to tackle these issues by electrospinning MOFs with nanofibers. They
prepared PVA/Sr-TBC, PVA/La-TBC, and PVA/Sb-TBC composite nanofibers, aiming to
improve the HM removal efficiency and adjust the mechanical properties of the materials,
but the results were not satisfactory. Recently, Ma et al. [51] and Li et al. [53] developed a
way to attach ZIF-8 or ZIF-67 to bacterial cellulose (BC) aerogels that can be easily separated
from water (Figure 3a). The as-formed macro-MOFs inherited the structural characteristics
of ZIF-8 or ZIF-67 and BC (e.g., high porosity, mechanical flexibility, and large surface area).
The BC@ZIF-8 composite aerogel exhibited superior adsorption performance for Pb(II)
(390 mg/g) and Cd(II) (220 mg/g), while the ZIF-67/BC/CH aerogels removed sufficient
amounts of Cu(II) and Cr(VI) (200.6 mg/g and 152.1 mg/g, respectively). The MOF was
uniformly distributed in the composite aerogel and did not release during the processing
of pollutants. Moreover, the composite aerogel could also return to its original shape
immediately after being artificially compressed and dehydrated (Figure 3b). More recently,
a novel polydopamine (PDA) decorated MOF thin-film nanocomposite (PDA/MOF-TFN)
was synthesized by Wang’s group in 2020 [57]. The macro-MOF synthesized using the
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in situ deposition method was capable of rejecting Pb(II), Cd(II), Ni(II) and salts from
water. According to the study, the PDA/MOF-TFN membrane showed high rejection rates
(>94%) for HMs, in the order of Pb(II) > Ni(II) > Cd(II), as a result of its size exclusion
and adsorption properties. These new macro MOFs effectively overcome the problems
of aggregation and secondary pollution, while improving the mechanical properties and
selectivity of the materials toward HMs.
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Figure 3. (a) The fabrication process for BC@MOFs composite aerogels. (b) A wet composite aero-
gel (55 wt% BC@ZIF-8) can be compressed fully (left), and the compressed aerogel recovers its
original shape completely when placed in solution again (right). Reprinted with permission from
Ref. [51]. Copyright 2018, Elsevier. (c) Schematic of the self-assembly mechanism of the rGO and
ZIF-8 nanoparticles for the formation of ZIF-8/rGO composite hydrogels. Reprinted with permission
from Ref. [30]. Copyright 2017, The Royal Society of Chemistry. (d) Schematic illustration of the fabri-
cation process for PSF@PDA@IRMOF-3/GO-1. (e) Zeta potentials of PSF@PDA, PSF@PDA@IRMOF-
3/GO-1(25), PSF@PDA@IRMOF-3/GO-1(50) and PSF@PDA@IRMOF-3/GO-1(75) membrane sur-
faces. (f) Salt rejections and pure water fluxes of PSF@PDA and PSF@PDA@IRMOF-3/GO-1(50).
(g) Rejections of PSF@PDA and PSF@PDA@IRMOF-3/GO-1 (25, 50 and 75) examined with the feeds
containing different heavy metal ions. Reprinted with permission from Ref. [33]. Copyright 2016,
American Chemical Society.

Furthermore, the macro-MOFs prepared from GO and MOF also showed excellent
performance in metal removal. Due to their different component mass ratios and synergistic
effects among components, composites tend to have more-advanced properties than single
materials. In 2017, Mao et al. [30] reported a ZIF-8/rGO aerogel, which was synthesized
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by a one-pot method via self-assembling rGO aerogel and NPs under the synergy of the
chemical reduction process and metal ion crosslinking (Figure 3c). The ZIF-8/rGO aerogel,
rapidly transforming into a hydrogel in wastewater, reached equilibrium for Pb(II) and
Cd(II) within 4 min, and the maximum adsorption capacity was 101.1 and 281.5 mg/g,
respectively. There are two reasons for the easy removal of HMs by the ZIF-8/rGO aerogel:
firstly, the uniformly decorated ZIF-8 provided additional active sites for HM ions due to
its high specific surface area, and secondly, the rGO aerogel was negatively charged due
to the residual hydroxyl groups (-OH). Rao et al. [33] prepared a new adsorbent called
IRMOF-3/GO with high adsorption capacity for Cu(II) (254.14 mg/g), and the adsorption
was attributed to the coordination between the amine group (-NH2) on IRMOF-3/GO and
Cu(II). Then, they further fabricated a nanofiltration (NF) membrane (PSF@PDA@IRMOF-
3/GO) via surface decorating the IRMOF-3/GO onto a PDA-coated polysulfone (PSF)
substrate (Figure 3d). Surprisingly, the incorporation of IRMOF-3/GO onto PSF@PDA
membrane could increase the zeta potentials and active sites of the pristine membrane
surface, which enhanced the rejections between the composite membrane surface and
salt solutions or HMs (e.g., Cu2+, Pb2+, Ni2+, Co2+ and Fe3+) (Figure 3e–g). Additionally,
the composite displayed higher rejections against HMs than common salt ions due to
electrostatic repulsion and adsorption, while the metal salt ions were only rejected by
electrostatic effects. A similar study has been reported for the rejection of Cu(II) by an
amine-modified MOF@GO composite called f-ZIF-8@GO, which removed an exceptionally
high amount of Cu(II) (1872.24 mg/g) [34]. Meanwhile, Zhang et al. [35] successfully
combined UiO-66-(COOH)2 and a partially reduced graphene oxide (prGO) to form a
composite named UiO-66-(COOH)2/prGO NF. The material also showed excellent rejection
of Cu(II) (96.5–83.1%) and Cd(II) (92.6–80.4%).

3.1.2. Adsorption Behavior of MOF Derivatives

Limited studies have used MOF derivatives to remove cations from aqueous solutions.
Song et al. [72] discovered a novel magnetically separable 3D hierarchical carbon-coated
nickel nanocomposite (Ni@C), which was fabricated by calcinating the Ni-based MOF
(Ni3(OH)2(C8H4O4)2(H2O)4). Results showed that the nanocomposite had excellent adsorp-
tion capacity for Pb(II) (92.5 mg/g), Cu(II) (63.4 mg/g), and Cd(II) (41.4 mg/g), respectively.
The adsorbent can be easily separated from the solution by using an ordinary common
magnet without external energy. Additionally, Chen et al. [66] synthesized a nanoporous
adsorbent ZnO/ZnFe2O4/C by using Fe(III)-modified MOF-5 as both the precursor and
the self-sacrificing template. The ZnO/ZnFe2O4/C presented better Pb(II) adsorption
capacity (344.83 mg/g) than the ZnO@SiO2@Fe3O4/C NPs (54.6 mg/g). They proposed
that a part of Zn(II) on the adsorbent surface was dissolved out of the ZnO crystal, and thus
the residual oxygen group on the surface of ZnO could be combined with Pb(II) through
the ion exchange process.

3.2. Typical Anionic HMs

Although there are fewer types of anionic HMs in aqueous solutions, they show
similarities to cationic metals in that they are also present in low concentrations in the
environment and are accumulative. The common anionic HMs in the environment are
arsenic (As) and chromium (Cr), whose speciation is heavily dependent on the environmen-
tal pH. Arsenic (mainly As(V) and As(III)) exists in the form of oxygen-containing anions
(e.g., H2AsO3

−, HAsO3
2−, H2AsO4

−, and HAsO4
2−). Generally, the toxicity of As(III) is

higher than that of As(V), and the removal of As(III) requires a complex oxidation process
to transfer it to As(V) [74]. Chromium in aqueous solution mainly exists as the higher
oxidation state Cr(VI) (including CrO4

2−, Cr2O7
− and HCrO4

−). Only under the reductive
condition can the Cr(VI) be converted to Cr(III). In contrast to As, Cr(VI) toxicity is higher
than that of Cr(III). Past work on MOF-based materials employed to remove anionic HMs
is summarized in Table 3.
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Table 3. Summary of adsorptive capability of MOF-based materials for Cr (Cr(III) or Cr(VI)) and As
(As(III) or As(V)) in water.

MOF-Based
Materials Target HMs Qe (mg/g) or Removal

Rate (%) Reusability Mechanism Ref.

Core–shell
composites Fe3O4@ZIF-8 As(III) 100 Reusable

Ligand exchange
Chemical bonding

(Zn-O-As)
[74]

β-MnO2@ZIF-8 As(III) 140.27 Reusable

Electrostatic attraction
Oxidation-adsorption

Chemical bonding
(As-O)

[44]

MOF-NZVI As(III) 360.6 Reusable
Oxidation-adsorption

Chemical bonding
(As-O)

[29]

Fe3O4@UiO-66 As(V) 73.2 Reusable
Ion exchange

Chemical bonding
(As-O)

[75]

Fe3O4@MIL-101 As(III)
As(V)

121.5
80.0 Reusable

Oxidation/reduction-
adsorption

Chemical bonding
(As-O)

[76]

CoFe2O4@MIL-
100(Fe)

As(III)
As(V)

143.6
114.8 Not mentioned

Ion exchange
Chemical bonding

(As-O)
Hydrogen bonding

[77]

MIL-100(Fe) based
filters

As(III)
As(V)

90%
100% Reusable Oxidation-adsorption

Fenton-like reaction [78]

MOF derivatives

NiOx/Ni@C
300
400
500
600

Ni-MOF

As(V)

210.40
454.94
290.89
342.77
133.93

Reusable

Electrostatic
interaction

Chemical bonding
(As-O)

[79]

Core–shell
composites MOR-1-HA Cr(VI) 259 Reusable

Electrostatic
interaction

Ion exchange
Coordination

[45]

MP@ZIF-8 Cr(VI) 136.56 Reusable

Electrostatic
interaction

Adsorption-reduction
Coordination

[46]

CeO2@UiO-66-(SH)2
CeO2/Fe3O4@UiO-66-

(SH)2

As
Cd(II)

Cr
Cu(II)
Pb(II)
Hg(II)

56%
87%
93%
99%
99%
98%

Reusable

Electrostatic
interaction

Coordination
Chemical bonding

(Zr-O-As)

[32]

BUC-21/TNTs Cr(VI) 100%
(20 min) Reusable

Ion exchange
Electrostatic
interaction

Photocatalysis-
reduction

Adsorption-reduction

[80]

ZnO@ZIF-8 Cr(VI)
MB

88%
(240 min) Not mentioned

Electrostatic
interaction

Photocatalysis-
reduction
Diffusion

Adsorption-reduction

[50]

MWCNT/NH2-MIL-
68 Cr(VI) 100%

(120 min) Reusable

Photocatalysis-
reduction
Diffusion

Adsorption-reduction

[38]

M@MIL-100(Fe) Cr(VI) 100%
(8 min) Reusable

Photocatalysis-
reduction

Adsorption-reduction
[81]

Fe3O4@UiO-66@UiO-
67/CTAB Cr(VI) 932.1 Reusable

Electrostatic
interaction

Hydrogen bonding
van der Waals forces

[43]

MOF derivatives PANI@NC Cr(VI) 198.04 Reusable
Adsorption

Coordination-
reduction

[63]
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Table 3. Cont.

MOF-Based
Materials Target HMs Qe (mg/g) or Removal

Rate (%) Reusability Mechanism Ref.

Ni@N-CNTs/NG Cr(VI) 72.325 Reusable

Electrostatic
interaction
Diffusion

Adsorption-reduction
(HCOOH)

[82]

P-Fe2O3

Cr(VI)
Pb(II)
Cu(II)
Co(II)

175.5
97.8
66.2
60.4

Not mentioned

Electrostatic
interaction

Ion exchange
Coordination

[62]

Fe0.72
(0) Fe2.28

(II)C Cr(VI) 354.6 Reusable Adsorption-reduction [83]

NZVI@ZD Cr(VI) 226.5 Not mentioned

Electrostatic
interaction
Diffusion

Adsorption-reduction

[84]

3.2.1. Capture of As(III) and As(V)

In the past few years, MOF-based materials have shown excellent performance in
removing aqueous As. Pristine MOFs such as MIL-100(Fe) [77,85], ZIF-8 [44,56,74], and
UiO-66 [29,75] are commonly used as adsorbents; however, they have almost no oxidation
performance for the removal of As(III). Before MOF composites were studied, the removal
of As only depended on the interaction between the central metal ions of the MOFs and
As(III or V) as well as the high surface area of MOFs.

Due to the more toxic nature of As(III), more efforts were devoted to fabricating MOF-
based materials with exceptional absorption and oxidation ability. The oxidative adsorption
of As(III) and the simultaneous removal of As(III) and As(V) by MOF composites gradually
have become more important [76,77]. An example of MOF composites for simultaneous
rapid oxidation and adsorption of As(III) was reported by Jian and Wang [44]. They
deposited ZIF-8 nanocrystals on β-MnO2 nanowires and synthesized a one-dimensional
β-MnO2@ZIF-8 composite material. Compared with the pristine ZIF-8, the adsorption
capacity of β-MnO2@ZIF-8 for As(III) was significantly increased by 1.6 times (to 140 mg/g),
which could be attributed to the high surface area (883 m2/g) of ZIF-8 and high oxidizing
capacity of β-MnO2 (Figure 4a,b). Importantly, the composite could be easily separated
from the water after 30 min of settling, whereas the ZIF-8 was still suspended in the
water (Figure 4c). Another material, named Fe3O4-ZIF-8, exhibited superior removal
efficiency for As(III) (up to 100 mg/g at pH = 8) within a broad pH range (5–11) [74]. The
authors elucidated that the adsorption between Fe3O4@ZIF-8 and As(III) resulted from
the hydrolysis of ZIF-8, which produced a large number of external active sites (Zn-OH),
and As(III) formed mononuclear or binuclear complexes with the Zn-OH through ligand
exchange. Moreover, an iron (Fe) mesh-based MOF filter for removing As(III) and As(V)
in groundwater was demonstrated by Wang’s group [78]. In their study, 90% of As(III)
and all As(V) were removed by the Fe-based MIL-100(Fe) filter after 6 h of filtration. In
comparison, only 17% of As(V) and 10% of As(III) were removed by the original Fe mesh.
Notably, the Fenton-like reactions were initiated by Fe2+/Fe3+ sites within the MIL-100(Fe)
framework to oxidize As(III) to As(V). Recently, the highest adsorption capacity for As(III)
was reported by Liu’s group [29] using a MOF-nanoscale zero-valent iron (NZVI) composite
(360.6 mg/g at pH = 7). Their study also showed a consistently high removal capacity for
As(III) (>98.2%) between pH 3.0 and 12.0. In the presence of coexisting ions (e.g., Ca2+,
Mg2+, Cu2+, PO4

3−, and SO4
2−), this material still showed good selectivity for As(III) in

this pH range.
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Figure 4. (a) Schematic illustration of the As(III) removal process on MnO2@ZIF-8 NWs. (b) Fit-
ted adsorption isotherms of As(III) on (1) MnO2@ZIF-8 NWs, (2) ZIF-8, and (3) β-MnO2NWs.
(c) Photographs of two vials containing MnO2@ZIF-8 NWs and ZIF-8 nanoparticles after gravity
settling for 0.5 h in aqueous solution, respectively. Reprinted with permission from Ref. [44]. Copy-
right 2016, The Royal Society of Chemistry. (d) Schematic illustration of the synthesis of Ni-MOFs
and NiOx/Ni@C. (e,f) Adsorption isotherms and comparison of adsorption capacities of Ni-MOFs,
NiO@C300, NiO/Ni@C400, Ni@C500, and Ni@C600 for As(V) removal. Reprinted with permission
from Ref. [79]. Copyright 2019, Elsevier.
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MOFs are also used as a self-sacrificed template to prepare various metal nanoparti-
cles@carbon (MNP@C) for removal of As(V). The adsorption capacity of these MOF-derived
nanomaterials seems to be superior to that of their pristine counterparts. For instance, Ni-
MOF was pyrolyzed to form a series of magnetic chestnut shell-shaped hollow sphere struc-
tured composites (NiOx/Ni@C) at different temperatures for As(V) removal [79] (Figure 4d).
Results showed that the number of oxygen-containing functional groups on the surface of
the material gradually decreased with increasing temperature, and the NiOx gradually con-
verted into Ni. Furthermore, NiOx/Ni@C400 had the highest As(V) removal performance
(454.94 mg/g) in the pH range of 1–10, compared to Ni@C600 (342.77 mg/g), Ni@C500
(290.89 mg/g), NiO@C300 (210.40 mg/g), and Ni-MOF (133.93 mg/g) (Figure 5e,f). How-
ever, there was also an exception of improved As removal by the MOF-derived material
shown in the study of Liu et al. [85], where the α-Fe2O3 derived by calcining MIL-100(Fe)
at different temperatures only removed 70–95 mg/g As(V), lower than that removed by the
pristine MIL-100(Fe) (110 mg/g).
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Figure 5. (a) Photocatalytic Cr(VI) reduction efficiencies and (b) total Cr removal efficiencies in control
experiments and in the presence of different photocatalysts by BT-X. (c) Reduction of Cr(VI) under
UV light irradiation at different pH by BT-X. Reprinted with permission from Ref. [80]. Copyright
2019, Elsevier. (d) Performance comparison of different adsorbents on Cr(VI) removal; inset shows
the removal rate of Cr(VI) by UiO-66, NC-600, and PANI@NC-600 at 480 min. (e,f) Effects of different
cations and anions on the removal efficiency of PANI@NC-600. Reprinted with permission from
Ref. [63]. Copyright 2019, Elsevier. (g) The reduction of Cr(VI) in different systems. (h) Typical
time-dependent UV-vis absorption spectra of Cr(VI) solution in Ni@N-CNTs/N-G-800/HCOOH
system. (i) The catalytic stability of 3D Ni@N-CNTs/N-G-800. Reprinted with permission from
Ref. [82]. Copyright 2019, Elsevier.
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3.2.2. Capture of Cr (Cr(III) and Cr(VI))

In recent years, many studies pertaining to the removal of Cr(VI) have focused not
only on non-catalytic adsorption but also on photocatalytic reduction-adsorption. It has
been proved that the MOF-based materials can efficiently remove Cr substances from
aqueous solution with a maximum adsorption capacity ranging from 72.35 mg/g to
932.1 mg/g [5,43,46,62,63,82,84].

The photocatalytic performance of MOFs for removal of Cr(VI) could be effectively im-
proved by adding multi-wall carbon nanotubes (MWCNT) [38], graphene oxide (GO) [86],
ZnO [50], noble metal [81], and titanate nanotubes (TNTs) [80], etc. The photocatalytic
reactivity of MOFs is attributed to their large surface area and rich metal nodes as catalytic
active sites [87]. For instance, Wang et al. [80] used two-dimensional BUC-21 and TNTs to
prepare a series of MOF (BUC-21)/TNT composites (BT-X, X representing the mass ratio of
BUC-21 and TNTs) with good photocatalytic performance. Experimental results revealed
that the Cr(VI) concentration could be significantly affected by light, catalyst types (e.g.,
BUC-21 and BT-X), and pH value. In particular, BT-X displayed 100% photocatalytic Cr(VI)
reduction performance within 20–100 min and excellent stability over a wide pH range (2–9)
(Figure 5a–c). This was due to the synergistic effect of BUC-21 and TNTs, which promoted
the removal of Cr(VI) through photocatalytic reduction and adsorption reactions. Moreover,
Pi et al. [38] synthesized an MWCNT/NH2-MIL-68-(In) composite (named PL-1). They
found that the addition of MWCNT increased the mesoporous diffusion and visible light
absorption of Cr(VI) by MOFs without changing the conduction band position. Thus, the
photocatalytic kinetic constant of PL-1 was nearly three times that of the NH2-MIL-68-(In).
It was reported that M@MIL-100(Fe) (M = Au, Pd, or Pt) also had achieved similarly high
photocatalytic reduction of methyl orange (MO) and Cr(VI) [81]. Especially, the Pt@MIL-
100(Fe) could completely reduce the Cr(VI) within 8 min and degrade MO within 40 min,
whereas only 69% of Cr(VI) and approximately 5% of MO (without H2O2) were reduced by
MIL-100(Fe). The photocatalytic performance of MOFs has been widely discovered and
applied to the photocatalytic reduction of Cr(VI), which provides a new field of vision for
the reduction and adsorption of Cr(VI) polluted wastewater.

A large number of MOF derivatives were also used to remove Cr from water, such as
NPC [63], metal@C [82,83], and metal oxide@C [62,84]. These materials inherit the high
specific surface area and functionality of the MOFs, and they also have multiple advantages
(e.g., high porosity and multiple active sites) of the carbon-based materials and metal
NPs after high-temperature pyrolysis. Lai et al. [63] synthesized N-doped carbon (NC)
materials (PANI@NC) by etching and in situ polymerization of polyaniline (PANI) on the
carbonized UiO-66 (Figure 5d). They found that the removal rate of Cr(VI) exceeded 99%
with the PANI@NC-600, and the maximum adsorption capacity reached 198.04 mg/g at
pH = 1. They also reported that the competition effect of various cations (such as Na+,
K+, Ca2+, Cu2+, and Mg2+) and anions (such as Cl−, CO3

2−, SO4
2−, and NO3

−) on Cr(VI)
was small at high concentrations (Figure 5e,f). In the study of Fang et al. [84], NZVI@ZD
was synthesized by the carbonization of a core–shell structured NZVI@ZIF-67. Owing
to its high specific surface area and large pore size, favorable for Cr(VI) adsorption and
diffusion, the maximum adsorption capacity of NZVI@ZD for Cr(VI) was surprisingly as
high as 226.5 mg/g, surpassing that of the pristine ZIF-67 (29.35 mg/g) and NZVI@ZIF-
67 (36.53 mg/g). Additionally, the Ni-MOF-derived N-doped graphene-CNT framework
(Ni@N-CNTs/N-G) could catalyze the reduction of Cr(VI) to Cr(III) in the presence of formic
acid (HCOOH) and removed both within 50 min [82] (Figure 5g,h). It could also maintain a
removal efficiency of about 82.7% after 10 cycles (Figure 5i). The authors proposed that in
the presence of the electron-donating acid (HCOOH), the dehydrogenation of HCOOH into
atomic hydrogen and the reducing nitrogen/oxygen groups on the surface of the derivative
played an important role in the reduction of Cr(VI). In general, porous carbon materials
derived from MOFs possess high specific surface area and high activity, which facilitate
Cr(VI) adsorption and transformation.
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3.3. Possible Mechanisms of HM Removal

The synergistic effect between the composite elements and MOFs provides multiple
mechanisms for the removal of HMs. For core–shell MOF composites and MOF derivatives,
high adsorption efficiency is derived from the functional groups, central metal ions, and
high specific surface area of the materials. These reactions are based on physical adsorption
(including diffusion, electrostatic interaction, van der Waals forces, etc.) and chemical
adsorption (including coordination interaction, Lewis acid–base interaction, ion exchange,
and combined adsorption-oxidation/reduction, etc.) [84]. For the macro-MOFs, HMs are
either adsorbed on the material or rejected directly during filtration because of the hydrogel
or membrane technology. Like the previous two materials, the macro-MOFs also rely on
the high specific surface area and active groups to trap HM ions. Additionally, the size
repulsion effect of the macro-MOFs (especially MOF composite membrane) based on the
material’s pore diameter and the radius of the HM ions also endows the materials with
high metal selectivity.

4. Remediation of OPs using MOF-Based Materials
4.1. Conventional Industrial Organics

Since the emergence of various manufacturing industries, conventional industrial OPs
have troubled us as ubiquitous and persistent environmental pollutants. There are many
types of conventional industrial organic chemicals, which are roughly divided into phenols,
polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), aromatic
compounds, etc. Conventional industrial organic chemicals are mostly highly toxic and
persistent in the environment. They exist in water bodies at lower concentrations, but
they are difficult to biodegrade and can be continuously enriched through the food chain.
Long-term exposure can damage the body’s immune system and cause various chronic
diseases. Thus, researchers have developed various MOF-based materials to remediate
industrial wastewater through adsorption and catalysis reactions.

In recent years, a large number of studies have shown that magnetic materials coupled
with MOFs to form core–shell structured composites have been widely used in the removal
of industrial organic pollutants. For nitroresorcinol (NRC) adsorption, Yang et al. [88] syn-
thesized a new durian-shaped magnetic porous Fe3O4@SiO2@UiO-66 composite (MSU(Zr)),
which assembled UIO-66 onto Fe3O4 particles by the solvothermal method (Figure 6a). The
results showed that the MSU(Zr) had excellent adsorption capacity (more than 200 mg/g)
for NRC as a result of the high porosity of UIO-66 and the Lewis base nature of the
Zr6O4(OH)4 clusters. Notably, better adsorption performance was found in acidic condi-
tions. Niu et al. [89] successfully synthesized a core–shell Pd@Fe3O4@MOF for degradation
of chlorophenol and phenol. As shown in Figure 6b, the Fe3O4 NPs were first immobilized
on the Pd NPs, forming a core–shell Pd@Fe3O4 hybrid material. Then, a hollow Fe-MOF
was used to wrap the Pd@Fe3O4, obtaining a yolk/shell structure of Pd@Fe3O4@MOF. The
Fe3O4 NPs and Pd@Fe3O4 hybrid particles in the shell were the active centers for catalyzing
H2O2 Fenton reactions. The degradation rates of 2-chlorophenol and 2,4,6-trichlorophenol
in the Pd@Fe3O4@MOF catalyst were 100% and 75%, respectively. Additionally, the 4-
chlorophenol, 2,4-dicholophenol, and phenol were completely removed within 10 min
(Figure 6c). After repeated use five times, the Pd@Fe3O4@MOF catalyst could still com-
pletely degrade the 2,4,6-trichlorophenol within 3 h. Possible mechanisms of the TCP
catalytic degradation by the Pd@Fe3O4@MOF are shown in Figure 6d. The catalyst’s core–
shell cavity ensured rapid diffusion of the reactants, and the electron transfer of Pd to
Fe3O4 accelerated the generation of ·OH radicals inside the Pd@Fe3O4 hybrid material. In
addition, the catalyst was easy to recycle due to its magnetic properties and reusability.
The strategy of combining MOFs and magnetic particles provides a new direction for the
remediation of industrial OPs in the future.
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Many MOF derivatives are being studied to remediate organic-polluted industrial
wastewater. The porous carbon materials derived from MOFs can be used as excellent
adsorbents in wastewater because of their large specific surface area, good stability, and low
cost. Teng et al. [90] used MOF-5 as a template to synthesize layered porous carbon (LPC)
by pyrolysis (950 ◦C) for the adsorption of aromatic pollutants. After high-temperature
pyrolysis (950 ◦C), the MOF-5 became a layered porous carbon material (LPC) with higher
porosity and better graphite structure (Figure 6e). The graphitized layer had a high affinity
for the π electrons on the aromatic ring, exhibiting a large adsorption capacity for aro-
matic compounds (even double that of the activated carbon). The adsorption of aromatic
compounds by LPC was a spontaneous, endothermic physical adsorption reaction.

MOF derivatives can also be used as catalysts to generate corresponding free radicals
to degrade industrial OPs in wastewater. For instance, He et al. [91] successfully prepared
a core/shell Fe-Pd@C nanocomposite to strengthen the Fenton degradation of phenol by
Fe-MOF using a mechanochemical method. Scanning electron microscope (SEM) results
showed that the resultant Fe-MOF had a morphology similar to that produced by the
traditional solvothermal methods (Figure 6f,g). Transmission electron microscopy (TEM)
results clearly showed that the hollow Fe-Pd@C particles were embedded in the large
carbon shell (Figure 6h), which not only improved the stability of the metal NPs but
also retained the catalytic ability. Graphitized carbon, Fe0, and Fe3C were effectively
detected through the X-ray powder diffraction (XRD) analysis of the Fe@C and Fe-Pd@C
(Figure 6i). The Fe-Pd@C nanocomposite could continuously and permanently act as an
Fe source for oxidizing phenol by Fenton reaction, in which H2O2 was decomposed into
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hydroxyl radicals (·OH) due to the internal micro-electrolysis between the Fe0 and carbon
components. More importantly, the core/shell structure of Fe-Pd@C ensured the effective
transfer of electrons from Fe to the carbon electrode and avoided the termination of micro-
electrolysis inside the Fe-C, which improved the catalytic performance and service life
compared to the traditional Fe/C materials. Similarly, Ahsan et al. [92] also found a highly
active, recyclable and magnetic C@Co nano-catalyst to degrade MO and 4-Nitrophenol.
This synthesis strategy successfully fixed magnetic Co NPs uniformly on the porous carbon
matrix, retaining the catalytic activity of the Co NPs to a large extent.

In all, MOF composites and MOF derivatives have good application prospects for
remediating conventional industrial OPs. How to design stable, highly active, and reusable
MOF-based materials is a key point for future research.

4.2. Organic Dyes

Organic dyes are a serious pollutant in water bodies, mainly from the textile, paper,
leather, plastics, rubber, medicine, printing, and dye manufacturing industries [93]. Organic
dyes are synthetic aromatic compounds that can be simply divided into cationic and anionic
dyes [94]. Organic dyes remaining in water can cause severe damage to the human brain,
central nervous system, liver, kidneys, and reproductive system. Some toxic and even
carcinogenic organic dyes can exist in the environment for a long time due to their chemical
stability, adversely affecting the survival and reproduction of microorganisms and animals
living in water [94,95]. Thus, various MOF composites and MOF derivatives have been
studied and applied to the remediation of organic dyes in water.

4.2.1. Adsorption Behavior of MOF-Based Materials

In the actual application process, the nano-sized adsorption materials are difficult to
separate and reuse. The combination of MOFs and magnetic metal NPs can render the
MOFs magnetized for facile collection [96]. For example, Liu et al. [97] combined magnetic
Fe3O4 NPs and NH2-MIL-101(Al) to adsorb different kinds of anionic and cationic dyes.
The results showed that the large adsorption capacities of the magnetic NH2-MIL-101 (Al)
for malachite green (MG) and indigo carmine (IC) were 274.4 and 135 mg/g, respectively.
Huang et al. [71] successfully synthesized an amino-modified Zr-based magnetic MOF
composite (Zr-MFC) by the in situ growth method. According to the study, the Zr-MFC had
high adsorption capacity for methylene blue (MB) (128 mg/g) and MO (219 mg/g) in an
aqueous solution. The material was easy to recycle, and the adsorption capacity remained
unchanged after six cycles, indicating great application potential. Yang et al. [98] proposed
to grow ZIF-67 shells on the surface of Fe3O4 NPs by introducing polystyrenesulfonate
(PSS), and the as-formed novel type of Fe3O4@MOF (MZIF-67) was used for removing MO
from an MO/MB mixture solution (Figure 7a). It could be seen that the ZIF-67 crystals
were covered on the surface of Fe3O4 NPs (Figure 7b,c), and the petal-like MZIF-67 had a
size between 50 and 100 nm. The characteristic peaks of MZIF-67 were highly consistent
with those in Fe3O4 and ZIF-67 crystals, further verifying the integrity of the composite
structure (Figure 7d). Study results also showed that the MZIF-67 had a stronger adsorption
capacity for MO (up to 738 mg/g) than many other MOF adsorbents. Since the solution
pH may change the form of MO and the surface charge density of MZIF-67, too high
or too low pH was not conducive to MO adsorption (Figure 7e). Combining the zeta
potential of MZIF-67 and the influence of pH on adsorption (Figure 7e–g), the possible
mechanism of selective adsorption was proposed. The selective adsorption of MO was
mainly attributed to the electrostatic interaction between the positively charged MZIF-67
and anionic MO. Meanwhile, the cationic MB stayed away from the MZIF-67 because of
electrostatic repulsion. Shi et al. [99] also reported the adsorption of MG on an Fe3O4
NP-doped magnetic MOF composite named Cu-MOF/Fe3O (113.67 mg/g). In short, the
magnetic MOF composites formed by the combination of magnetic NPs and MOFs are
convenient for recycling and have good application prospects for the adsorption of organic
dyes in wastewater.
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To expand the specific surface area and porosity for fast and efficient adsorption,
MOFs can also be converted into corresponding derivatives through calcination and py-
rolysis. Generally speaking, the pyrolysis of MOFs in inert gas can produce metal/carbon
hybrid materials and carbon materials, and direct calcination of MOFs in air can produce
nano-metal oxide. For example, Xu et al. [100] used ZIF-8 as a template to synthesize
three N-doped porous carbon adsorbents (i.e., Carbon-Z, Carbon-ZS, and Carbon-ZD)
for the treatment of MB in wastewater. The preparation of N-doped porous carbon was
divided into two steps (Figure 7j): firstly, the ZIF-8 was added to a methanol solution
containing sucrose and dicyandiamide to obtain the ZIF/sucrose and ZIF/dicyandiamide
composites; Secondly, the ZIF-8, ZIF/sucrose and ZIF/dicyandiamide composites were
pyrolyzed under 950 ◦C argon atmospheres to form Carbon-Z, Carbon-ZS, and Carbon-ZD,
respectively. Compared with the original ZIF-8 (Figure 7h,i), the Carbon-ZD sample after
high-temperature pyrolysis retained its original diamond-shaped dodecahedron structure,
but the carbonization significantly increased the material’s specific surface area (Carbon-
ZD 1796.5 m2/g vs. ZIF-8 1451.8 m2/g). Results also showed that the Carbon-ZD was
a promising MB adsorbent with a saturated adsorption capacity of up to 1148.2 mg/g
and good reusability (Figure 7k). More importantly, the removal rate of MB was still
close to 100% when MO and MB coexisted in the wastewater, indicating the strong anti-
interference ability of the Carbon-ZD. Song et al. [72] studied an effective absorbent Ni@C
nanocomposite, which was obtained by pyrolyzing the sheet-like porous MOF precursor
Ni3(OH)2(C8H4O4)2(H2O)4. The synthesized Ni@C had a large specific surface area of
120.38 m2/g and evenly dispersed Ni on its 3D-layered lamellar porous structure. The
Ni@C was not easy to agglomerate and had good adsorption of rhodamine B (RhB) within
10 min (99%). In all, MOF composites and MOF derivatives usually have stronger ad-
sorption capacity and higher stability than the original MOF (Table 4). Using a MOF as
a template to prepare various MOF derivatives by calcination and pyrolysis can produce
excellent adsorbents for the removal of organic dyes in wastewater.
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Table 4. Brief summary of MOF-based materials for organic dye removal.

MOF-Based
Materials MOF Precursors Removal

Type
Organic

Dyes Performance Reusability Mechanism Ref.

MOF composites

GO/MOFs Ni-MOF Adsorption MB 274 mg/g for MB
It could be used at least
five times after washing

with ethanol.

Electrostatic interaction
and acid–base

interaction
[101]

Ni-MOF/GO Ni-MOF Adsorption CR 2489 mg/g for CR Not mentioned
Electrostatic
interaction,

acid–base interaction
[102]

MFC-N
UiO-66 Adsorption

MB 128 mg/g for MB There was no obvious
loss of MFC adsorption
capacity after 6 cycles.

Electrostatic attraction
interaction

[71]
MFC-O MO 219 mg/g for MO

Magnetic
NH2-MIL-101(Al) MIL-101(Al) Adsorption MG IC 274.4 mg/g for MG

135 mg/g for IC

The removal rate of MG
and IC decreased slightly

after 5 cycles.

Electrostatic
interaction, π–π

stacking interaction
and hydrogen bonding

[97]

POM@MOF Cu3(BTC)2 Adsorption MB 77.22 mg/g for MB Not mentioned Electrostatic attraction [103]

Cu-MOFs/Fe3O4 Cu-MOFs Adsorption MG 113.67 mg/g for MG
MG removal rate could
still reach 90% after 5

cycles.
Physical adsorption [99]

MZIF-67 ZIF-67 Adsorption MO 738 mg/g for MO Not mentioned Electrostatic interaction [98]

Fe3O4@MIL-100(Fe) MIL-100(Fe) Adsorption MB 73.8 mg/g for MO
Adsorption did not

decrease significantly
after 5 cycles.

Not mentioned [104]

Fe3O4@MIL-100(Fe) MIL-100(Fe) Photocatalytic
degradation MB

99.77%
photodegradation for
MB within 200 min

The photocatalytic
activity had no obvious
loss after repeated use.

Photogenerated holes
(h+), photoelectron

transfer, ·OH
[105]

Fe3O4@MIL-101(Fe) MIL-101(Fe) PMS degradation AO7 Degraded completely
within 60 min

The removal rate of AO7
ranged from 98.1% to

95.0% in 3 cycles.
SO• −

4 , ·OH, ·O2
− [106]
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Table 4. Cont.

MOF-Based
Materials MOF Precursors Removal

Type
Organic

Dyes Performance Reusability Mechanism Ref.

UiO-66/g-C3N4 UiO-66 Photocatalytic
degradation MB

100%
photodegradation for
MB within 240 min

Not mentioned ·O2
− [107]

ZIF-67/PAN ZIF-67 PMS degradation AY 95.1% degradation
rate within 10 min

The catalytic effect
remained stable (above

98%) after 5 cycles.
SO• −

4 [108]

ZIF@R ZIF-67 PMS degradation RhB Removed completely
within 20 min

No loss of catalytic
activity of ZIF@R after

5 cycles.
SO• −

4 and ·OH [109]

ZIF-9@GEL ZIF-9
PMS degradation RhB

99% degradation rate
within 10 min

The degradation
performance did not
decrease significantly

(about 90%) after 3 cycles.

SO• −
4 and ·OH [110]

ZIF-12@GEL ZIF-12

MOF derivatives

Ni@C Ni-MOF Adsorption RhB
Almost 99%

adsorption for RhB
within 10 min

Not mentioned van der Waals forces,
hydrogen bonding [72]

Ni/PC-CNT Ni/Zn-MOF Adsorption MG
CR

898 mg/g for MG
818 mg/g for CR

The adsorption rate of
Ni/PC-CNT for MG and
CR remained above 85%.

π–π interaction and
electrostatic interaction [111]

MWCNTs Co-MOF Adsorption CR 1639 mg/g for CR Not mentioned

Hydrogen-bonding
interactions, π–π

stacking interactions
and the effect of

mesopores

[112]

Carbon-ZD

ZIF-8 Adsorption MB

1148.2 mg/g for MB The adsorption efficiency
of the Carbon-ZD for MB
was still very high after

5 cycles.

Nitrogen doping and
electrostatic interaction

[100]Carbon-ZS 791.3 mg/g for MB

Carbon-Z 505.3 mg/g for MB



Sustainability 2023, 15, 6686 21 of 45

Table 4. Cont.

MOF-Based
Materials MOF Precursors Removal

Type
Organic

Dyes Performance Reusability Mechanism Ref.

Co-BiFeO3 PABs Photocatalytic
degradation MO

Nearly 89.8%
degradation rate in

120 min

The degradation rates in
4 cycles were 89.8%,

86.3%, 83.5% and
81.4%, respectively.

A larger range of
light response and

more oxygen vacancies
[80]

NPCs

ZIF-8

PMS degradation MO
RhB

100% MO and 90%
RhB were removed

by NPC/PMS within
60 min.

Not mentioned
Excellent electron
transfer ability of
graphite nitrogen

[113]NH2-MIL-53

IRMOF-3

NPC-800 ZIF-8 PMS degradation RhB The degradation rate
of RhB was 85.0%.

The removal rate of RhB
decreased slightly from

85.0% to 68.8% after
3 cycles.

SO• −
4 and ·OH [114]

PNC-800 Zn-Co PBAS PMS degradation
MB
RhB
OII

The degradation rate
was 100%, 92.8 and
93.2%, respectively.

PNC-800 has good
catalytic stability after

3 cycles.
Non-radical process [115]

MCCI Co/Fe-MOF PMS degradation RhB 80% degradation rate
within 30 min

The catalytic effect
remained good after

6 cycles.
SO• −

4 [116]

Fe3O4@C/Cu HKUST-1 Photocatalytic
degradation MB Completely removed

within 150 min

The photocatalytic
activity had no obvious

loss after 5 cycles

Photoelectron transfer
and ·OH [117]

MCG ZIF-67 PMS degradation AY
Completely

decolorized within
30 min

The removal rate
remained 97.6% after

50 cycles.
SO• −

4 and ·OH [118]
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4.2.2. Catalytic Behavior of MOF-Based Materials

Due to their central catalytic metal ions and unique porous structure, MOFs can be
used as excellent templates/precursors to prepare various catalysts (e.g., NPC, metal@C
materials, and metal oxide@C materials).

MOFs exhibit semiconductor properties under visible light and can be used as a new
type of environmental purification cationic photocatalyst [119]. In recent years, MOF com-
posites have made significant progress as a kind of photocatalyst for the degradation of
organic dyes. For example, Qiu et al. [105] developed a novel multifunctional magnetic
Fe3O4@MIL-100(Fe) core–shell composite to decolorize MB. They successfully packaged
Fe3O4 NPs into the MIL-100(Fe) in a controlled manner through a layer-by-layer strategy.
In the yolk-shell structure of Fe3O4@MIL-100(Fe) (Figure 8a,b), the Fe3O4 acted as the core,
and the MIL-100(Fe) was the shell. The photodegradation rate of Fe3O4@MIL-100(Fe) for
MB could reach 99.77% within 200 min under visible light (Figure 8c). Under the same
conditions, the activity was equivalent to that of the traditional photocatalyst TiO2 but far
better than C3N4 (10.45%). Cycle experiments (Figure 8d) and XRD analysis (Figure 8e)
proved that the photocatalytic reactivity and structure of Fe3O4@MIL-100(Fe) had almost no
change after five cycles of use, indicating good long-term stability. The possible mechanism
of Fe3O4@MIL-100(Fe) photocatalytic degradation is given in Figure 8f. Under visible light
irradiation, electrons in the valence band (VB) of MIL-100(Fe) were excited and transferred
to the conduction band (CB), consequently generating holes (h+) that could directly oxidize
the adsorbed MB. The photogenerated electrons then activated the H2O2/H2O system to
generate a large number of ·OH radicals, which could also be used to oxidize MB. Never-
theless, they hindered the effective recombination of electrons and holes. The magnetic
properties of Fe3O4@MIL-100(Fe) core–shell microspheres were also studied by vibrating
sample magnetometry (VSM) (Figure 8g). The Fe3O4@MIL100(Fe) showed a magnetic
hysteresis loop with a magnetic susceptibility of 34.70 emu/g. In addition, the sample
dispersed in the water could be quickly attracted to the magnet in 5 sec, which successfully
solved the problem of separation.

MOFs can also be used as ideal precursors for the production of nano-metals and
metal oxides through calcination and pyrolysis. Another study by Qiu’s group successfully
reported Fe3O4@C/Cu and Fe3O4@CuO composite materials [117], produced by pyrolyzing
the magnetic Fe3O4@HKUST-1 in N2 atmosphere and air, respectively. Interestingly, the
Fe3O4@C/Cu pyrolyzed in the N2 atmosphere had a remarkably larger specific surface
area (31.06 m2/g) than the Fe3O4@CuO (0.0233 m2/g). It is well-known that traditional
Fe3O4 and TiO2 semiconductors have low photocatalytic utilization efficiency due to the
high charge-carrier recombination rate [120]. In contrast, metal NPs can absorb visible
light and have a lower Fermi level, thereby acting as suitable electron acceptors. In this
study, carbon, as a sensitizer, could quickly transfer photoexcited electrons from Fe3O4 to
Cu NPs, while photo-generated holes were still located on the Fe3O4 microspheres, which
greatly reduced the probability of electron-hole recombination. Therefore, the Fe3O4@C/Cu
exhibited excellent photocatalytic activity for MB degradation compared with Fe3O4@CuO,
g-C3N4, Fe3O4, and TiO2 powders in the study.

Zeolitic imidazolate framework (ZIF), as a typical MOF of abundant and ordered
N species, represented by ZIF-8 and ZIF-67, has been considered as an ideal precursor
for porous NC due to its thermally stable carbon skeleton and N-containing ligand 2-
methylimidazole [121]. Ma et al. [114] successfully synthesized N-doped porous carbon
(NC-800) by pyrolyzing ZIF-8 under an N2 atmosphere (Figure 8h). As shown in Figure 8i,j,
the NC-800 still retained the rhombic dodecahedron morphology of the ZIF-8 crystal dur-
ing pyrolysis, but its N-doping weight (15.20%) was much higher than that produced by
one-pot synthesis using melamine or urea as the N source [122]. A free radical quenching
experiment (Figure 8k) revealed that the main mechanism during the process of peroxy-
monosulfate (PMS) activation by NC was the large amount of sulfate and ·OH produced
rather than electron transfer. Nevertheless, the NC-800 catalyst had medium reusability, as
shown by the slightly decreased RhB removal rate (about 68.8%) in the second and third
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runs compared to the first run (Figure 8l). The reduced catalytic performance was due
to the decrease in the relative content of N and the large increase in oxygen content in
the NC-800. Interestingly, the catalytic activity of NC-800 could be completely restored
after being heat-treated in the air at 350 ◦C for 1 h. Wang et al. [113] prepared various
NC materials with different N content using three N-rich MOFs (i.e., ZIF-8, NH2-MIL-53,
and IRMOF-3), and the as-formed materials were used to activate PMS for degradation
of phenol, bisphenol A (BPA), MO, and RhB. Due to the presence of N, the NC materials
showed better catalytic performance for PMS than the N-free porous carbon. This was
mainly because the graphite N in the NC could activate adjacent carbon atoms more ef-
fectively, thereby promoting the adsorption and dissociation of PMS. In short, the use of
pyrolysis to produce MOFs as carbon precursors to activate PMS provides a new idea for
future advanced oxidation processes.
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patterns for Fe3O4@MIL-100(Fe) before and after reaction. (f) Schematic illustration of the principle
of MB photodegradation under light irradiation. (g) Room temperature magnetization curves of the
Fe3O4@MIL-100(Fe) microspheres at 300 K. Reprinted with permission from Ref. [105]. Copyright
2013, The Royal Society of Chemistry. (h) Schematic illustration of synthesis (NC). TEM images of
(i) ZIF-8 and (j) NC-800. (k) Radical quenching tests using methanol and TBA as the quenching.
(l) Stability tests of NC-800 for RhB removal. Reprinted with permission from Ref. [114]. Copyright
2017, Springer-Verlag Berlin Heidelberg.
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4.3. Pesticides

As pest and weed control chemicals, pesticides play a vital role in plant growth and
agricultural production [123]. Broadly speaking, pesticides refer to chemical agents used
to prevent, eliminate, or control diseases, insects, grasses, and other organisms that harm
agriculture and forestry and purposefully regulate plant growth [124–126]. According to
their treatment targets, pesticides can be divided into herbicides, insecticides, fungicides,
and growth regulators [124].

With their extensive use in the environment, pesticides have brought severe environ-
mental pollution and ecological risks. Most pesticides (e.g., aldrin, DDT, and chloroben-
zenes) contain persistent organic pollutants (POPs) that accumulate in the environment and
are difficult to degrade [127]. Residual pesticides mainly exist in soil, sediments, surface
water, and groundwater. They can be continuously enriched in animals through the food
chain and eventually enter the human body. According to Kim’s investigation [126], many
diseases, including cancer, leukemia, and asthma, are closely related to pesticide exposure.
Notably, people with low immunity (such as children, pregnant women, or the elderly) are
more susceptible to pesticide-induced harm. Hence, it is important to choose a suitable
remediation method to remove pesticide residues in the environment.

4.3.1. Adsorption Behavior of MOF-Based Materials

MOF-based materials can be extensively used in the adsorption of pesticides in aque-
ous environments. However, the high production cost of MOFs inhibits their wide ap-
plication. In comparison, natural materials are often inexpensive and available from a
wide range of sources. Hence, the combination of natural materials and MOFs to produce
low-cost and efficient adsorption materials is worthy of research. According to Abdel-
hameed’s study [128], they first prepared a Cu-BTC@cotton composite by assembling a
cotton fabric with Cu-BTC MOF and used it for ethion insecticide adsorption. Characteriza-
tion analysis proved that Cu-BTC was successfully combined with the cotton fabric through
the interaction between Cu and cellulose functional groups. The adsorption of ethion
insecticide by the Cu-BTC@cotton conformed to the Langmuir model, and the saturated
adsorption capacity was as high as 182 mg/g. The adsorption of ethyl ions was carried
out by both physical and chemical adsorption, including the coordination of sulfur (on the
ethyl group) with Cu (on the Cu-BTC), and the hydrogen bond formation between oxygen
(on the ethyl group) and cellulose. The Cu-BTC@cotton is an excellent absorbent material
for organochlorine pesticides in water, which will afford new research directions in the use
of MOFs and textiles to mitigate pesticide pollution in water.

MOF composites prepared by combining MOFs with functional carbon materials
and/or metal NPs can also have improved adsorption capacity. Wang et al. [129] suc-
cessfully synthesized a new type of magnetic NP (i.e., Fe3O4@SiO2GO-MOFs) based on a
simple green solvothermal method. In the study, Cu-MOFs and SiO2 coated Fe3O4 NPs
were loaded on a platform of GO nanosheets through chemical bonding. The as-formed
material possessed the large specific surface area of GO, the magnetism of Fe3O4, and the
high porosity and adjustability of a MOF. The study results also showed that the magnetic
Fe3O4@SiO2GO-MOFs could effectively enrich six typical insecticides (i.e., imidacloprid,
carbendazim, metalaxyl, myclobutanil, tebuconazole, and cyfluthrin), suggesting potential
application value for alleviating pesticide pollution in the environment. Similar research
was also reported by Xu’s group [130]. They prepared a new type of magnetic Cu-based
MOF using Fe3O4-GO-β-CD nanocomposite as a magnetic core and carrier. The composite
showed excellent removal performance for neonicotinoid pesticides in water bodies (almost
completely removed within 1 h).

4.3.2. Catalytic Behavior of MOF-Based Materials

Though MOFs exhibit semiconductor behavior, the relatively large bandgap of MOFs
and the high electron-hole recombination severely limit their photocatalytic performance [131].
Based on this, narrow bandgap semiconductors such as Ag/AgCl, Ag/AgIO3, or Ag/AgPO4
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can be fixed on MOFs to improve their light absorption performance and catalytic activ-
ity. For example, Oladipo and co-workers [132] successfully developed a sunlight-driven
AgIO3/MIL-53(Fe) nano-hybrid photocatalyst by combining AgIO3 and MOFs through
an ultrasonic method. The nano-hybrid photocatalyst had high photocatalytic activity
for methyl malathion and chlorpyrifos with degradation rates of 93–97% within 120 min,
which were much higher than that of AgIO3 (45–75%) and MIL-53(Fe) (50–68%). To im-
prove the light absorption capacity of ZIF-8, a visible light active photocatalyst named
Fe3O4-COOH@ZIF-8/Ag/Ag3PO4 was successfully synthesized by either a hydrothermal,
solvothermal, or in situ precipitation method for photocatalytic degradation of diazi-
non [133]. In the study, ZIF-8 was introduced to grow in situ on the surface of carboxylate-
modified Fe3O4 NPs for the first time. Then, the as-synthesized Fe3O4-COOH@ZIF-8
core–shell was combined with Ag3PO4 and Ag NP composite. As a result, the Fe3O4-
COOH@ZIF-8/Ag/Ag3PO4 could remove 99.7% of diazinon and maintain high photocat-
alytic activity and stability after five cycles. Using three masking agents for quenching (i.e.,
ethylenediaminetetraacetate (Na2-EDTA), p-benzoquinone (BZQ), and isopropanol (IPA))
showed that holes (h+) and superoxide radicals (·O2

−) were the main active species in the
photocatalytic degradation process. The electron-hole pairs were effectively separated by
the synergistic effect between the surface plasmon resonance of Ag NPs and the ordered
energy transfer through the Z-scheme mechanism.

Bimetal MOFs use two metals as the center to help adjust the electronic state of the
catalyst [134,135]; thereby, their catalytic activity and stability are improved compared
with single-metal MOFs. Ye et al. [136] selected the transition metals cobalt (Co) and Ni to
synthesize three MOFs (i.e., Co-MOF, Ni-MOF, and Co/Ni-MOF) by a simple hydrothermal
method. The catalytic degradation of atrazine by Co/Ni-MOF (93.3% removal) was far
better than that of the Co-MOF and Ni-MOF in the catalytic ozone oxidation reaction. This
was is because the Co/Ni-MOF catalyst had a multi-metal center, higher coordination
unsaturation, higher electron density, and higher electron transfer efficiency than the Co-
MOF and Ni-MOF. Surprisingly, there was a redistribution of the electron density, migrating
from Co to Ni because the electronegativity of Ni was higher than that of Co. The high
electron density in the metal center contributed to the formation of oxygen-containing
groups (hydroxyl groups) on the surface [136]. The authors speculated that both the surface
hydroxyl groups and unsaturated coordination sites on the MOF contributed to the catalytic
activity of the Co/Ni-MOF.

4.4. Pharmaceuticals and Personal Care Products

Pharmaceuticals and personal care products (PPCPs), as typical emerging contami-
nants, have caused widespread concern, because they are frequently detected in surface
water and groundwater, and sometimes even in drinking water [137,138]. The presence
of PPCPs in the environment was first detected in the 1980s [138,139]. So far, there are
about 12,000 PPCPs for human use in the world [140], which can be roughly divided into
anti-inflammatory medicines, analgesics, antibiotics, beta-blockers, anti-depressants, blood
lipid regulators, disinfectants, and fragrances. Currently, the existing PPCPs in the environ-
ment are mainly broad-spectrum antibacterial agents (such as antibiotics, sulfonamides,
quinolones, etc.), anti-inflammatory drugs and analgesics (carbamazepine, diclofenac,
ibuprofen, etc.), and endocrine disrupting chemicals (steroid estrogen, bisphenols, etc.).
According to a current survey in Australia, many antibiotic drugs, such as tetracycline (TC),
erythromycin and sulfa drugs, were found in wastewater [141]. Méndez-Arriaga et al. [142]
also reported that non-steroidal anti-inflammatory drugs were frequently detected in col-
lected water samples. Although these PPCPs in the environment are mostly at trace
concentrations (ng/L to µg/L), long-term exposure to such chemicals will cause potential
harm to the ecosystem and public health. Most notably, the widespread use and abuse
of broad-spectrum antibacterials have made antibiotic resistance a major issue of public
health concern [140,143]. However, the traditional sewage treatment process (i.e., coag-
ulation, flocculation, and sedimentation) may be unable to effectively remove various
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PPCPs in wastewater. Therefore, highly selective and significant removal of PPCPs from
the environment remains a major challenge.

4.4.1. Adsorption Behavior of MOF-Based Materials

Due to the simple operation and no secondary pollution, adsorption to directly remove
PPCPs in sewage is considered one of the most feasible and effective methods. As porous
materials with high adsorption capacity and stable performance, MOFs are a good choice
for the adsorption of PPCPs. Recently, the approach using MOFs as templates to prepare
MOF composites and derivatives in various ways has been widely applied to remove
PPCPs in wastewater (Table 5).

Table 5. Summary of MOF-based materials as adsorbents for removal of PPCPs.

MOF-Based
Materials

MOF
Precursors Qe (mg/g)

Adsorption
Thermodynam-

ics

Adsorption
Kinetics Reusability Mechanism Ref.

MOF
composites

Fe3O4@MIL-
100(Fe) MIL-100(Fe) CIP 278.39 Langmuir model

Elovich model
and pseudo-
second-order

model

Not mentioned
Chemisorption

and physical
adsorption

[144]

Fe3O4@MOF-
235(Fe) MOF-235(Fe) CIP 187.48 Langmuir model Elovich model Not mentioned Physical

adsorption [144]

MIL-
101/Fe3O4

MIL-101(Cr) CIP 63.28
Langmuir and

Freundlich
models

Pseudo-
second-order

model
Not mentioned

Film diffusion
and

intraparticle
diffusion

[145]

MWCNT/MIL-

53(Fe)
MIL-53(Fe)

TCN 363.37
OTC 325.59
CTC 180.68

Langmuir model
Pseudo-

second-order
model

The adsorption
of TCs did not

change obviously
after 4 cycles.

π–π
interaction,
pore/size-
selective

adsorption and
influence of
metal ions

[146]

UIO-66-
(OH)2/GO UIO-66 TC 37.96 Freundlich

model

Pseudo-
second-order

model
Not mentioned

Electrostatic
interaction,

π–π
interaction,
hydrogen

bonding and
acid–base
interaction

[147]

UIO-66/CA UIO-66 LOFX 86.43 Langmuir model
Pseudo-

second-order
model

The adsorption
efficiency of

LOFX was still
above 70% even

after 5 cycles.

Not mentioned [148]

Al-MOF/SA-
CS Al-MOF BPA 136.9 Freundlich

model

Pseudo-
second-order

model

The adsorption
efficiency of BPA
remained above

96% after
5 cycles.

π–π stacking,
hydrogen

bonding and
cation–π

interaction

[149]

NFe3O4@Zn(GA)/
Starch-

Hydrogel
Zn-MOF FLV 782.05 Langmuir model

Pseudo-
second-order

model

The adsorption
capacity

decreased to
700.09 mg/g
after 5 cycles.

Not mentioned [150]
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Table 5. Cont.

MOF-Based
Materials

MOF
Precursors Qe (mg/g)

Adsorption
Thermodynam-

ics

Adsorption
Kinetics Reusability Mechanism Ref.

Ni/Co-
MOF@CMC

aerogel
Ni/Co-MOF TC 624.87 Langmuir model

Pseudo-
second-order

model
Not mentioned

Surface
hydroxyl

interaction,
complexation
of metal ions
and oxygen

[151]

MOF
derivatives

PCN-222 Zr-MOFs CAP 379 Not mentioned
pseudo-

second-order
model

Not mentioned

H-bond
interaction,
electrostatic

interaction and
the special

pore structure
of PCN-222

[152]

PCN-134 Zr-MOFs DF 604.1 Langmuir model
Pseudo-

second-order
model.

The removal rate
was above 95%
after 7 cycles.

Not mentioned [153]

CDMs MAF-6 IBP 408
DCF 503 Langmuir model

Pseudo-
second-order

model.

The adsorption
decreased

slightly after
1 cycle, but

basically
unchanged from

2 to 5 cycles.

van der Waals
and

hydrophobic
interactions

[78]

BMDCs bio-MOF-1 ATLN 522
CLFA 540 Langmuir model

Pseudo-
second-order

model

The adsorption
of ATLN did not

decrease
appreciably after

4 cycles.

ATLN:
Electrostatic
interactions

CLFA:
H-bonding and

electrostatic
interactions

[154]

CDIL@AlPCP Al-MOF PCMX 338
TCS 326 Langmuir model

Pseudo-
second-order

model

The adsorption
efficiency did not

decrease
seriously with
the increase in

the number
of cycles.

H-bonding [155]

Co3S4 ZIF-67 CIP 471.7 Langmuir model

Pseudo-
second-order

model and
liquid-film
diffusion

model

There was no
obvious loss in

CIP removal
after recycling

five times.

Electrostatic
interaction [156]

NC-800 Zn-ZIF-L TC 347.06 Langmuir model
Pseudo-

second-order
model

The adsorption
of TC could

maintain a high
level after
4 cycles.

Electrostatic
interaction and
hydrogen bond

interaction

[157]

MDC-1000 ZIF-8 SMX 435 Langmuir model
Pseudo-

second-order
model

The adsorption
capacity

decreased
slightly after

1 cycle, but was
unchanged from

2 to 4 cycles.

H-bonding [158]

NPC ZIF-8 CIP 416.7 Freundlich
model

Pseudo-
second-order

model

The adsorption
of CIP had no

obvious loss after
7 cycles.

Electrostatic
interactions,
hydrophobic
interactions

[159]
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It is well known that most MOFs are in nano to micron scale, making them dif-
ficult to separate and recover from aqueous media. Therefore, nano-scale MOFs have
certain limitations for large-scale commercialization and industrial applications. Some
strategies have been studied to overcome these shortcomings [144,148–150]. For example,
Moradi et al. [144] reported Fe3O4@MIL-100(Fe) and Fe3O4@MOF-235(Fe) for ciprofloxacin
(CIP) removal. The synthesis strategy of loading magnetic oxidized metal NPs onto MOFs
not only preserves the adsorption active sites but also endows the materials with mag-
netism for separation. A study by Mohamed’s group [150] successfully manufactured an
NFe3O4@Zn(GA)/starch-hydrogel by wrapping the starch hydrogel matrix on the MOF
and doping it with nano-magnetite. Results showed that the NFe3O4@Zn(GA)/starch-
hydrogel had a maximum adsorption capacity of 782.05 mg/g for FLV statin drug. In
addition to hydrogels, aerogels with porous structures can also combine with MOFs to
facilitate the rapid removal of PPCPs. For example, Li et al. [151] successfully prepared a
Ni/Co-MOF@CMC aerogel for TC removal. Based on the synthesis strategy, a high-porosity
3D sodium carboxymethylcellulose (CMC) aerogel was selected as the carrier for the in
situ growth of Ni/Co-MOF (Figure 9a). The Ni/Co-MOF@CMC aerogel kept the same
3D porous structure as the original CMC aerogel (Figure 9b), but the color of the hybrid
material changed from the original white to light green. It verified that the Ni/Co-MOF had
successfully grown in situ on the CMC aerogel without destroying the original 3D porous
structure. The as-formed Ni/Co-MOF@CMC aerogel had a good adsorption capacity for
TC (up to 624.87 mg/g).
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Figure 9. (a) Schematic diagram of the preparation of Ni/Co-MOF@CMC aerogel. (b) Photographs
and SEM images of the CMC aerogel and Ni/Co-MOF@CMC aerogel. Reprinted with permission
from Ref. [151]. Copyright 2019, Elsevier. (c) Schematic of the fabrication of UiO-66/CA. SEM images
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of (d) UiO-66, (e) UiO-66/CA powder and (f) UiO-66/CA beads. (g) Photographs of UiO-66/CA.
(h) Adsorption selectivity of UiO-66/CA microbeads. (i) The reusability of UiO-66/CA for LOFX
adsorption. (j) The hardness of dry CA and UiO-66/CA microbeads. Reprinted with permission
from Ref. [148]. Copyright 2019 Springer.

More interestingly, Sun et al. [148] successfully prepared UIO-66/calcium alginate
(CA) beads by using a CaCl2 solution solidification method to combine sodium alginate
and UIO-66 for the first time. The entire preparation process and adsorption experiment
are illustrated in Figure 9c. The SEM images in Figure 9d–f showed the difference in the
morphology of UIO-66, UiO-66/CA powder, and UiO-66/CA beads. The original spheri-
cal particles of the UIO-66 formed an agglomerated structure after modification, and the
inter-particle gaps were filled with the alginate. The size of the UiO-66/CA beads was
about 3 mm (Figure 9g). Experimental results (Figure 9h) showed that the UIO-66/CA
could selectively remove the target drug levofloxacin (LOFX). It also had higher adsorption
capacity for LOFX (21.57 ± 1.18 mg/g) than for the other three drugs (i.e., acetaminophen
(APAP) (14.20 ± 1.28 mg/g), diclofenac sodium (DCF) (10.52 ± 1.70 mg/g), and ibuprofen
(IBP) (6.51 ± 0.76 mg/g)). A recycling experiment (Figure 9i) showed that the adsorption
capacity slightly decreased with the increased number of cycles, but the activity and effec-
tiveness were always maintained above 79%. The mechanical strength of UIO-66/CA beads
was far better than that of the original CA beads (Figure 9j). Therefore, the UIO-66/CA
bead was an efficient and reusable LOFX adsorbent. To further enhance the adsorption
performance and make full use of sodium alginate and chitosan, Luo et al. [149] introduced
chitosan during the preparation of MOF beads and successfully prepared Al-MOF/SA-CS
composite beads for BPA adsorption. The introduction of chitosan increased the beads’
porosity and further increased the adsorption capacity from 100.8 mg/g to 136.9 mg/g.
Noteworthily, it was found that methanol could effectively recover and regenerate the
adsorbed composite beads, which had high value for commercial applications.

Using MOFs as a template, NPC materials are also excellent adsorbents for removing
PPCPs. Li et al. [159] used ZIF-8 as a template to produce NPC through a one-step carboniza-
tion method to adsorb CIP in water. The results indicated that the NPC-700 had the best ad-
sorption performance (416.7 mg/g), far better than that of graphene oxide (379 mg/g) [160],
Fe3O4/C (74.68 mg/g) [161], multi-walled carbon nanotubes (150.6–206.0 mg/g) [162], and
surface-modified carbon (60–300 mg/g) [163]. Both Langmuir and Freundlich models could
fit the adsorption data well, but the latter had a higher degree of correlation, implying that
there was multilayer adsorption on the surface of NPC-700. The NPC-700 also good stabil-
ity and recyclability, as evidenced by the negligible change in adsorption efficiency after
seven cycles of use. Adsorption mechanism investigation revealed that the electrostatic
interaction and hydrophobic interaction between the NPC and CIP played a significant
role in the adsorption. Similarly, An et al. [78], Ahmed et al. [158], and Sarker et al. [155]
also reported the use of MOF-derived NPC for the adsorption of PPCPs. Therefore, the
MOF-derived NPC had excellent adsorption performance and stability and could be used
as a potential adsorbent to remediate PPCPs.

4.4.2. Catalytic Behavior of MOF-Based Materials

In recent years, MOF-based materials have been extensively studied for PPCPs in
various catalytic degradation environments due to their unique structure and central metal
ions. In particular, they are mostly used for persulfate (PMS/PS) activation, photocatalysis,
and Fenton-like degradation. A summary of the MOF-based materials used in recent years
for the catalytic degradation of PPCPs is provided in Table 6.
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Table 6. Summary of MOF-based materials as catalysts for removal of PPCPs.

MOF-Based
Materials MOF Precursors Catalytic Type PPCPs Degradation Rate Reusability Mechanism Ref.

MOF composites

Cu-hemin MOFs/BN Cu-MOF Photo-PS
degradation BPA 99% within 30 min

The degradation rate of BPA
dropped to 78% in the

third cycle.
·OH and SO• −

4 [164]

MOF/CCAC Fe/Ni-MOF Photocatalytic
degradation TC 98% within 75 min Photocatalysts were well-reused

in ten on-off cycles. ·O2
− and h+ [165]

ZIF-9@GEL ZIF-9
PMS degradation TC 90% within 1 h

The degradation performance
did not decrease significantly

(about 90%) after 3 cycles.
SO• −

4 and ·OH [110]
ZIF-12@GEL ZIF-12

Pd@MIL- 100(Fe) MIL-100(Fe) Photocatalytic
degradation

TEH
IBP
BPA

99.5% within 150 min
100% within 150 min
70% within 240 min

The photocatalytic activity did
not obviously decrease after

4 cycles.

Photogenerated
electron and ·OH [166]

MIL-100(Fe)/TiO2 MIL-100(Fe) Photocatalytic
degradation TC 92.76% within 10 min Degradation rate of TC was

similar after 5 cycles. ·O2
− and ·OH [167]

Co-MIL- 53(Al) MIL-53(Al) PMS degradation TC 94.0% within 120 min Co-MIL-53(Al) showed good
activity after 4 cycles. SO• −

4 and 1O2 [168]

Co-Fe PBAs@rGO Co-MOF PMS degradation LVF 97.6% after 60 min
Degradation rate exhibited no

significant decrease after
5 cycles.

SO• −
4 [169]

MOF derivatives

YSCCSs ZIF-67 PMS degradation BPA 99.1% within 23 min The degradation rate of BPA
exceeded 90% after 7 cycles. SO• −

4 and ·OH [170]

ZIF-CN/
g-C3N4

ZIF-67 Photo-PMS
degradation BPA 97% after 60 min The degradation rate only

decreased by 8% after 7 cycles.
h+, ·O2−, SO• −

4
and ·OH

[171]

Co@NC-800 ZIF-67 PMS degradation TC 91.2% within 5 min The degradation rate hardly
decreased after 4 cycles. SO• −

4 , ·O2
− and 1O2 [172]
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Table 6. Cont.

MOF-Based
Materials MOF Precursors Catalytic Type PPCPs Degradation Rate Reusability Mechanism Ref.

Fe-N/C ZIF-8 PMS degradation BPF 97.1% within 90 min
The removal rate decreased to

94.9%, 61.3%, and 42.1%
in 3 cycles.

1O2 [173]

FeCu@C [Fe, Cu] -BDC Fenton-like
degradation SMT 100% within 90 min Not mentioned

π−π interaction, ·OH
and surface

hydroxyl groups
[174]

DMOFs MIL-100(Fe) Ionizing radiation
degradation

CEP-C
SM

100% removal
for CEP-C

95% removal
for CEP-C

The removal rate of CEP-C and
SMT decreased to 94% and 76%

after 3 cycles, respectively.
·OH [175]

CoFe2O4 NC Co/Fe
bi-MOFs PMS degradation BPA Over 97% within

90 min

Catalytic capacity dropped
significantly after the first cycle

and could be restored after
400 ◦C calcination for 15 min.

SO• −
4 and ·OH [176]
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The combination of MOFs and other materials can make full use of their respective ad-
vantages, overcome their own defects, and improve the composite’s stability and catalytic
performance. For example, Pi and colleagues [169] successfully synthesized a separable
magnetic Co-Fe PBAs@rGO nanocomposite to activate PMS by a simple two-step hydrother-
mal method. The synthetic strategy of using graphene as a supporter greatly reduced the
agglomeration of the Co-Fe Prussian blue analogue (PBA) NPs. The combination also
retained the active sites of Co and Fe, which was beneficial to the catalytic degradation of
levofloxacin hydrochloride (LVF). Results showed that the Co-Fe PBAs@rGO had a strong
catalytic ability to activate PMS (97.6% LVF removed after 60 min) and good recyclability.
A similar study was also reported by Chen’s group [164]. They successfully deposited
Cu-hemin MOFs on boron nitride (BN) through a one-step hydrothermal method. The
synthesized Cu-hemin MOFs/BN catalyst was used for the Fenton-like degradation of BPA.
Under visible light irradiation, more than 99% of BPA (40 mg/L) was degraded within
30 min. Kinetic experiments also revealed that the degradation rate of Cu-hemin-MOFs/BN
for BPA was 37.5 times and 14.8 times that of BN and Cu-hemin-MOFs, respectively. The
authors concluded that the ·OH and SO•−

4 were the main species in the PS activation. As an
excellent photosensitizer, hemin could also generate photo-generated electrons to initiate
the decomposition of PS so as to produce SO•−

4 [177]. He et al. [167] successfully developed
a novel magnetic composite, taking full advantage of the MIL-101(Fe) and TiO2. In the
process of removing the target pollutant TC, the MIL-101(Fe)/TiO2 showed high catalytic
performance, with 91.24% of TC degraded within 10 min. It was speculated that the TiO2
could receive ultraviolet light under sunlight to generate a large number of ·O2

− and ·OH
groups, and the calcined Fe-MOF could also effectively reduce the recombination of elec-
trons and holes. The synergy of the two ensured the excellent photocatalytic performance
of the composite material.

Aside from the above-mentioned MOF composites, MOF derivatives (e.g., NPC,
metal@C, and metal oxide@C) prepared by using MOFs as a sacrificial template also have
high catalytic activity for degrading PPCPs. For example, Wu et al. [173] selected in situ
Fe-doped ZIF-8 as a sacrificial template and prepared a series of Fe-N co-doped porous
carbon catalysts (Fe-N/C) by pyrolysis. The Fe-N/C doped with an appropriate amount of
Fe had a layered porous structure and abundant defects, which enhanced the N doping and
conductivity. The Fe-N/C mainly activated PMS to produce singlet oxygen (1O2) as the
active species, which had an excellent degradation effect on bisphenol F (BPF). However,
the removal rate of BPF dropped significantly from 94.5% in the first cycle to 42.1% after
three cycles. It was likely because the BPF and intermediate products covered the active
centers on the catalyst. Luckily, the Fe-N/C catalytic activity could be restored (returned to
a 77% removal rate) by simple heat treatment. The gradual loss of catalytic activity of the
MOF-based carbon catalysts remains a major challenge in improving their durability and
reusability. To this end, Yang and his group [171] successfully designed a heterostructure
composite material by combining the ZIF-8 derived NC (ZIF-NC) with g-C3N4 for PMS-
activated degradation of BPA. The integration of ZIF-NC and g-C3N4 effectively improved
both the PMS activation ability and the g-C3N4 photocatalytic activity. The preparation
process for the ZIF-NC/g-C3N4 hybrid composite is depicted in Figure 10a. Experimental
results showed that the ZIF-NC/g-C3N4 exhibited high photocatalytic activity in the
presence of PMS, where 97% of BPA was degraded within 60 min (Figure 10b). Radical
trapping experiments (Figure 10c) suggested that ·O2

− and photogenerated holes were
the main active species, but a small number of ·OH and SO•−

4 were also present in the
photocatalytic reaction. A possible degradation mechanism is proposed in Figure 10d. On
the one hand, photo-generated electrons could directly reach the surface of ZIF-NC and
react with the adsorbed PMS to generate SO•−

4 ; on the other hand, electrons could migrate
to the surface of g-C3N4, reducing O2 for ·O2

− generation. The holes of g-C3N4 could also
directly react with the BPA. The synthesis strategy provides a new idea for improving the
PMS-assisted photocatalysis.
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Figure 10. (a) Illustration of the preparation process for ZIF-NC/g-C3N4 composite. (b) The
photocatalytic activity of different samples on BPA under visible light irradiation. (c) The cor-
responding reaction constants of ZIF-NC/g-C3N4 with PMS active material capture experiment.
(d) Schematic illustration of photocatalytic mechanism of ZIF-NC/g-C3N4. Reprinted with permis-
sion from Ref. [171]. Copyright 2018, Elsevier. (e) FESEM images and (f) HRTEM images of FeCu@C.
(g) Possible reaction mechanism of SMT degradation in the FeCu@C/H2O2 system. Reprinted with
permission from Ref. [174]. Copyright 2019, Elsevier.

Given their rich carbon content and high porosity, MOFs are considered as ideal
precursors for preparing carbon matrix and further producing new metal–carbon hybrid
materials through pyrolysis. The introduction of carbon can significantly improve the
dispersion and stability of catalytic metals and enhance the electronic conductivity of
the material [178–180]. For instance, Tang et al. [174] synthesized a bimetallic carbon
hybrid material (FeCu@C) by pyrolyzing the bimetallic MOF precursor [Fe, Cu]-BDC. The
FeCu@C presented a 3D hierarchical microflower architecture (Figure 10e) within which
some spherical dark spots were observed (Figure 10f), which might be the Fe and Cu NPs.
The FeCu@C catalyst showed excellent catalytic activity for sulfamethizole (SMT) removal
in the H2O2 system (removal within 90 min). The SMT removal process could be divided
into the adsorption and Fenton-like process. On the one hand, the porous flower-like
structure of the FeCu@C facilitated the rapid diffusion of SMT into the carbon matrix. On
the other hand, the possible synergy between the internal bimetallic NPs helped to generate
·OH to promote the degradation of SMT.

Moreover, much effort also has been made to overcome the defects of particle aggre-
gation and leaching of catalytic metal ions. For example, Zhang et al. [170] successfully
synthesized yolk-shell MOF derivative Co3O4/C@SiO2 nanoreactors (YSCCSs) with carbon-
supported Co3O4 as the core and SiO2 as the protective shell (Figure 11a). The prepared
ZIF-67@SiO2, Co3O4@SiO2 nanoreactors (YSCSs), and YSCCSs all retained the rhombic do-
decahedron structure of ZIF-67, and the Co3O4/C core of YSCCSs was slightly smaller than
the Co3O4 core of YSCSs (Figure 11b–d). In the TEM structures of YSCCSs, the 10–20 nm
Co3O4 NPs were dispersed in the MOF-derived carbon, and the core was tightly wrapped
with an approx. 10 nm SiO2 shell (Figure 11e). The catalyst YSCCSs could remove 99.1% of
BPA within 23 min, which was much higher than with Co3O4 (75%) and Co3O4/C (80%)
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under the same conditions (Figure 11f). Free radical capture and quenching experiments
(Figure 11g,h) implied that both ·OH and SO• −

4 were the active species, and the SO• −
4

played a leading role in the PMS system. Because of the protection from the SiO2 shell,
Co leaching of the YSCCSs-PMS system was maintained at a low level (0.066–0.093 mg/L)
(Figure 11i). Possible mechanisms of the BPA degradation process were briefly analyzed as
follows (Figure 11j): (1) BPA and PMS could diffuse into the shell cavity; meanwhile, the
Co3+ in the Co3O4 reacted with HSO5

− to generate a large number of SO• −
4 for oxidative

degradation of BPA; (2) hydrophilic SiO2 prevented the leaching of Co ions and greatly
retained the catalytic activity of Co by coating the active center Co3O4; (3) the presence of
graphitic carbon also accelerated the transfer of electrons from the catalyst to the PMS.
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Figure 11. (a) Scheme diagram of synthesis of ZIF-67@SiO2, YSCSs and YSCCSs. SEM images of (b)
ZIF-67@SiO2, (c) YSCCSs and (d) YSCSs. (e) TEM image of YSCCSs. (f) BPA degradation efficiency in
different reaction systems within 25 min (conditions: [BPA] = 20 mg/L, [PMS] = 0.1 g/L, [catalyst]
= 0.1 g/L and T = 298 K). (g) EPR spectra for the process of BPA degradation in different systems;
(h) effects of radical scavengers on BPA degradation (conditions: [BPA] = 20 mg/L, [PMS] = 0.1 g/L,
[catalyst] = 0.1 g/L, [DMPO] = 0.1 M, pH = 5, and T = 298 K). (i) The leaching of cobalt ions in the
degradation process (conditions: [BPA] = 20 mg/L, [PMS] = 0.1 g/L, [catalyst] = 0.1 g/L, pH = 9.0,
and T = 298 K). (j) Brief illustration of the possible synergistic mechanisms of BPA degradation.
Reprinted with permission from Ref. [170]. Copyright 2018, The Royal Society of Chemistry.
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4.5. Possible Mechanisms of OP Removal

As an excellent adsorbent, MOF-based materials for OP adsorption largely depend on
the porosity and specific surface area of the materials. In short, the adsorption process of
MOF-based materials for OPs involves multiple adsorption mechanisms, including physical
adsorption (van der Waals interaction, electrostatic interaction) and chemical adsorption
(acid–base interaction, hydrogen bonding interaction, π–π interaction, and some other
chemical interactions) [181,182]. In addition to adsorption, catalysis (i.e., Fenton-like
catalysis, photocatalytic, PMS/PS activation) is also another main application of MOF-
based materials to remove OPs. Generally, catalysis and adsorption tend to be simultaneous
and inseparable. During the catalysis process, OPs and oxidants (i.e., H2O2, O3, PMS/PS)
first pass through the ordered porous structure of MOF-based materials, combine with the
active sites of the materials, and then undergo a series of catalytic degradation reactions.

The mechanisms of different types of catalytic degradation reactions are slightly dif-
ferent, which can be shown as follows. In the Fenton-like catalytic process, MOF-based
materials mainly use the valence change of the central transition metal ion to activate H2O2
or O3 to generate ·OH, and maintain the catalytic performance of the material through the
redox cycle process [183]. As for the photocatalytic process, MOFs can be used as semicon-
ductor precursors or combined with traditional semiconductor materials. With ultra-high
porosity and unique channels, MOF-based materials can enhance the light trapping ability
and promote the transfer of carriers, thereby effectively limiting the recombination of
photogenerated electron-hole pairs. The active species in the photocatalytic process are
mainly ·O2

− and ·OH generated by photogenerated electrons, as well as strong oxidation
holes [184]. In the PMS/PS activation system, the reaction mechanism can be roughly
divided into the radical mechanism (SO• −

4 , ·OH, ·O2
−) and non-radical mechanism (1O2,

electron transfer). For metal@C and metal oxide@C, the transition metals of the catalyst
as the active center can activate PMS/PS to generate a large amount of SO• −

4 and ·OH,
which are used to degrade OPs. This kind of reaction is dominated by radical reactions,
part of which is completely degraded into CO2 and water, and part of which forms in-
termediate products. In addition, non-radical pathways are mainly found in NPC and
heteroatom-doped carbon, especially NC. Graphite N doping in the carbon skeleton can
effectively break the chemical inertness of the sp2 hybrid carbon configuration and induce
charge transfer from adjacent carbon atoms to graphitic nitrogen atoms, thereby generating
a positively charged center [115]. The high degree of graphitization and rich nitrogen
doping of carbon materials are the key factors to promote non-free pathways. At present,
research on the non-free radical mechanism is still in the exploratory stage, and many
specific pathways are still unclear.

5. Conclusions and Prospects

This article reviewed the latest research progress in the application of two types of
MOF-based materials (namely MOF composites and MOF derivatives) as adsorbents or
catalysts for remediation of toxic HMs and OPs in water. The MOF-based materials inherit
the advantages of one or more of the combined originals and generate synergistic effects
between the composite components (e.g., advanced mechanical properties, magnetism, and
excellent electron transfer capability). The MOF composite materials and their derivatives
display excellent physicochemical characteristics (adsorption capacity, catalytic capacity,
high selectivity, and reusability) far superior to the pristine MOFs. Therefore, they signifi-
cantly improve the diffusion, adsorption, and degradation of pollutants in water. However,
many problems still exist and need to be solved before these materials are applied in the
real environment:

1. Production cost

Preparation of MOF-based materials requires higher input of raw materials (metal
ions and organic linkers), energy, equipment, and labor than traditional adsorbents such
as biochar. From the perspective of social and economic benefits, the transformation of
MOF-based materials from laboratory scale to commercialization is still a problem to be
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overcome. For hybridization of MOFs, the auxiliary component with excellent performance
and an affordable price can significantly reduce the production cost of MOFs. Additionally,
the selection of organic linkers and solvents requires further optimization. It is important to
select ligands with abundant active sites and solvents that are inexpensive and non-toxic.

2. Material stability

As an adsorbent or catalyst, good water stability is a crucial parameter to measure the
performance of a material. Good water stability is the prerequisite to ensure a material’s
adsorption or catalytic performance and reusability. Most of the MOF-based materials
reported in the research have outstanding performance in the range of pH 2 to 10. However,
nanoscale MOFs are almost impossible to be easily separated from the mixture solution,
with the exception of magnetic MOF-based materials, and there are still some reports
skirting discussion of their recyclability. Generally speaking, the water stability of pristine
MOFs is poor, but it could be much improved by hybridizing them with substances of
good physicochemical stability and ensuring the strong combination degree of MOFs and
the combined elements. Further, MOF derivatives have highly graphitized structures,
which can guarantee high water stability. Ensuring the release of nano-metal particles or
nano-metal oxides of the derivatives in small amounts during the reaction is a key factor
for the water stability of MOF derivatives.

3. Material safety

Given their outstanding characteristics, the trend towards continuous technological
improvement and cost reduction is expected to increase the number of applications and
production volumes of MOF-based materials. It also implies that the MOF-based materials
will be interacted with various environmental endpoints with unprecedent frequency and
quantity; however, the risks they may pose are still unknown. At present, most of the
MOF-based materials under research are still of nano-scale. Nanoparticles may undergo
a variety of migrations and transformations (aggregation dissolution, redox reactions,
reactions with aquatic organisms, etc.) in environmental and biological systems, which will
affect the fate, transport, and toxicity of MOF-based materials [185]. Ruyra et al. [186] and
Fan et al. [187] found that different MOFs would produce certain toxic and environmental
effects on human cells and organisms in the environment. Therefore, it is of paramount
importance to include life-cycle assessment in the manufacture and use of MOF-based
materials. A life-cycle database should be constructed and made available for any end-users
when applying such materials in environmental or health-related domains.

4. Material recyclability

Numerous research studies have indicated that MOF-based materials as adsorbents
have excellent adsorption and regeneration properties for a wide variety of HMs and OPs.
For MOFs used for the removal of HMs, the routine procedure was to use acid or alkali
solutions for desorption. The process was carried out for four to five cycles, and most of
the MOF composites were still able to achieve more than 80% HM adsorption performance.
Similarly, their removal efficiency for conventional industrial OPs and pesticides decreased
slightly after five cycles; their adsorption capacity for organic dyes had no obvious loss
after five to six cycles, and the adsorption efficiency for PPCPs decreased slightly after
four to seven cycles. To achieve greater recyclability for > 10 rounds of use, more attention
should be paid to the development of methods and technologies for material regeneration
because very few studies have so far addressed its significance.

5. Extension from water to other fields

Up to now, the MOF-based materials have been used mainly for remediating HMs and
OPs in the water environment (especially wastewater). For that reason, there has not been
any attempt to apply the materials in other environmental systems (such as groundwater,
soils, sediments, etc.). Therefore, there is an extensive research space for investigating the
feasibility of using such materials in other fields. Whether we can combine the MOF-based
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materials with some existing treatment technologies for the remediation of HMs or OPs in
other fields is worthy of further exploration.

In short, MOF-based materials are invented in compliance with demand and the
development of technology, and they will continue to be developed when new challenges
arise. MOF-based materials have provided us many new opportunities for the removal
of HMs and OPs in water, but their potential is far away from reaching a limit. Future
research should start with simplifying the synthesis process, reducing costs, and improving
its environmental stability and commercial practicability, so that MOF-based materials
can achieve large-scale environmental applicability. With the continuous efforts made to
tackle the difficulties and challenges, MOF-based materials will inevitably continue to be
developed in the future and help promote environmental sustainability.
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BDC: terephthalic acid; BN: boron nitride; BPA: bisphenol A; BPF: bisphenol F; BTC: trimesic acid;
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NPC: nanoporous carbon; ·OH: hydroxyl radical; ·O2

−: superoxide radical; 1O2: singlet oxygen;
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biphenyls; PCMX: para-chloro-meta-xylenol; PMS: peroxymonosulfate; POPs: persistent organic pol-
lutants; PPCPs: pharmaceuticals and personal care products; PSM: post-synthetic-modification; PSS:
polystyrenesulfonate; rGO: reduced graphene oxide; RhB: rhodamine B; SEM: scanning electron micro-
scope; SMT: sulfamethizole; SMX: sulfamethoxazole; SMZ: sulfamethazine; SO• −−

4 : sulfate radical;
TC tetracycline; TCs: tetracycline antibiotics; TCS: triclosan; TEM: transmission electron microscopy.
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