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Abstract: To detect sustainable changes in the production processes, memory-type control charts
are frequently utilized. This study is conducted to assess the performance of the Bayesian adaptive
exponentially weighted moving average (AEWMA) control chart using ranked set sampling schemes
following two different loss functions in the presence of a measurement error for posterior and
posterior predictive distributions using conjugate priors. This study is based on the covariate model
and multiple measurement methods in the presence of a measurement error (ME). The performance of
the proposed Bayesian-AEWMA control chart with ME has been evaluated through the average run
length and the standard deviation of the run length. Finally, a real-life application in semiconductor
manufacturing was conducted to evaluate the effectiveness of the proposed Bayesian-AEWMA
control chart with a measurement error based on different ranked set sampling schemes. The results
demonstrate that the proposed control chart, in the presence of a measurement error, performed
well in detecting out-of-control signals compared to the existing control chart. However, the median
ranked set sampling scheme (MRSS) proved to be better than the other two schemes in the presence
of a measurement error.

Keywords: Bayesian approach; loss function; AEWMA; measurement error; average run length;
control charts

1. Introduction

The main objective of statistical process control (SPC) is to distinguish deviations from
optimal performance and discover unpredictable variations before producing defective
items, as well as improve the production process. The graphical technique that is widely
used in many industries to monitor a statistical process over time is known as a control
chart (CC). The concept of the control chart was first proposed by Shewhart [1], which
was also a memoryless type of CC that only used the current sample information and was
effectively used for the detection of large, subtle drifts. After Shewhart, the memory type
control chart developed by Page [2] and Roberts [3] is more suitable in cases of small to
moderate shifts in the manufacturing process because it uses both the current and historical
sample information, named the exponentially weighted moving average (EWMA) and
cumulative sum (CUSUM) CCs. In recent years, the adaptive version of control chart
schemes has received significant attention because of their efficient performance at the
different sizes of shifts.
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In recent years, the adaptive version of CC schemes has received significant considera-
tion because of their efficiency at different shift sizes. A significant amount of literature has
been available on memory-type adaptive CCs such as adaptive CUSUM (ACUSUM) and
adaptive (AEWMA) CCs for detecting shifts in the manufacturing process. Yoon et al. [4]
utilized the Kalman recursive average method to suggest the AEWMA-X CC and presented
that the suggested CC is more efficient than the EWMA-X CC in detecting shift size. Capizzi
and Masarotto [5] suggested an AEWMA CC based on the Huber score function that helps
in combination with the EWMA and Shewhart CCs for the process mean. An efficient
AEWMA CC was presented by Haq et al. [6] for monitoring the process mean by first
estimating the shift size and comparing it with the existing AEWMA CCs. The application
of the suggested CC has been studied in the semiconductor manufacturing process.

In many quality control applications, the effectiveness of CCs is influenced by the
existence of significant levels of ME. Sometimes, an imprecise measurement of the study
variable results in fluctuations caused by ME, which can prevent the CCs from detecting
out-of-control signals that are caused by incorrect measurements of the study variable.
Mittag and Stemann [7] proposed the X − S CC as a way to visualize the impact of ME
by taking into account the model Y = X + ε, where X represents the true value of the
study variable, Y is the observed value of the measurement operation, and ε represents the
random error term. In the presence of ME, Stemann and Weihs [8] examined the EWMA
X − S CC. Linna and Woodall [9] studied X − S2 CC in the presence of ME using the
model Y = A + BX + ε, where A and B are fixed values. Linna et al. [10] studied the
impact of ME on multivariate CCs. Noor-ul-Amin et al. [11] utilized different techniques,
i.e., the covariate method, multiple measurements, and linearly increasing variance to
check the effectiveness of the EWMA-Z CC in the presence of ME. The performance of the
EWMA-Z CC is evaluated through a comprehensive Monte Carlo simulation approach.
Typically, CCs based on the classical technique just use sample information and ignore
previous knowledge, whereas the Bayesian approach uses the posterior distribution, which
integrates both the sample information and prior knowledge. Menzefricke [12] studied
the variance CC based on the Bayesian posterior predictive distribution and assessed the
effectiveness of the CC using the semiconductor production process. Bayesian CUSUM
CC was offered by Wu and Tian [13] to monitor the manufacturing process mean and
variance, respectively, under the weighted LF. The Bayesian adaptive AEWMA CC is
proposed by Noor-ul-Amin and Noor [14] to monitor the process mean using informative
and non-informative priors under various LFs, such as SELF and LLF, to boost the detection
capability of the CC. Noor-ul-Amin and Noor [15] suggested a Bayesian EWMA CC with
ME utilizing different LFs and the performance of the CC has been checked by a variety of
methodologies, including the covariate method, repeated measurements, and linearly rising
variance. Imad et al. [16] suggested a Bayesian hybrid EWMA (HEWMA) CC applying
various RSS schemes with an informative prior to monitor the location parameter. They
used ARL and SDRL for performance evaluations and compared them with Bayesian-
HEWMA and Bayesian-AEWMA CCs using SRS. The results revealed that the proposed
method is more sensitive in detecting out-of-control signals. Moreover, the proposed
method was applied to the hard-bake manufacturing process. The aforementioned work is
performed for both the classical and Bayesian approaches using SRS.

The main motivation for this research is to study the performance of the AEWMA CC
under Bayesian theory with ME utilizing various RSS schemes under two different LFs,
such as SELF and LLF. An ME with two different methods is employed to determine the
shift in the process mean. The ARL and SDRL are used to evaluate the effectiveness of the
suggested Bayesian-AEWMA CC.

The remaining sections of the paper are organized as follows: A detailed explanation
of the Bayesian approach and LFs is provided in Section 2. Several RSS schemes and ME are
introduced in Section 3. The proposed Bayesian EWMA control chart with ME utilizing RSS
methods is discussed in Section 4. Section 5 contains the simulation study, while Section 6
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consists of discussion. A real-life application is discussed in Section 7, while the conclusion
is presented in Section 8.

The application of ranked set sampling in industrial engineering can help improve the
efficiency and sustainability of manufacturing processes by identifying and monitoring key
location parameters. This can lead to improved quality control, reduced waste, and more
sustainable production practices. Overall, this paper explores how the use of statistical
methods such as ranked set sampling can contribute to sustainability efforts in industrial
engineering by improving the accuracy and efficiency of monitoring and control processes.

2. Bayesian Approach

The Bayesian methodology makes use of the posterior distribution, which combines
both the sample information and prior knowledge to estimate the values of population
parameters that are not known. The prior distribution represents our pre-existing beliefs
or assumptions about the parameter before incorporating any new information. Prior
distributions can be classified as either informative or non-informative, depending on the
level of detail that they provide. An informative prior is utilized whenever it is possible
to directly know the value of a parameter of a prior distribution. If the sample and prior
distributions are from the same family of distributions, this is referred to as a conjugate
prior. For the in-control process, the research variable X has a mean θ of and a variance δ2,
and the conjugate prior distribution is assumed as normal prior with parameters θ0 and δ2

0
given below:

p(θ) =
1√

2πδ2
0

exp

{
− 1

2δ2
0
(θ − θ0)

2

}
(1)

If no information about the population parameter of the prior distribution is available,
it is known as a non-information prior, which has little or no impact on the posterior
distribution. The prior distribution is directly proportional to the uniform distribution in
the above-mentioned circumstances. The probability function of a uniform distribution is
defined as p(θ) ∝

√
n
δ2 = c

√
n
δ2 , where c is the proportionality constant.

The posterior distribution that is structured when the sample and prior distribution
for the parameter θ are combined is mathematically described as

p(θ|x) = p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

(2)

The posterior predictive distribution for a new data point Y is created by using the
posterior distribution as a prior distribution that is defined as

p(y|x) =
∫

p(y|θ)p(θ|x)dθ (3)

The role of loss function is very significant to minimize the risk related to Bayes
estimator. In the current study, two various symmetric and asymmetric LFs were explored.

2.1. Squared Error Loss Function

The symmetric type LF SELF proposed by Gauss [17], if θ̂ is an estimator for the
unknown population parameter θ of the study variable X, with SELF is given by

L
(
θ, θ̂
)
=
(
θ − θ̂

)2
(4)

Using SELF, the Bayes estimator is given by

ˆθ(SELF) = Eθ/x(θ) (5)
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2.2. Linex Loss Function

An asymmetric loss function in the Bayesian approach is a way of quantifying the
cost or penalty associated with making incorrect predictions or decisions in a statistical
model that incorporates prior knowledge. Unlike a symmetric loss function, which treats
overestimation and underestimation equally, an asymmetric loss function assigns different
weights to the two types of errors, reflecting the relative costs of each. By incorporating
prior beliefs about the distribution of the data and the costs of different outcomes, an
asymmetric loss function can help to improve the accuracy and efficiency of Bayesian
inference. Varian [18] proposed an asymmetric LF named LLF. The LLF is preferred to
mitigate the risk related to the Bayes estimator. It is defined as follows:

L
(
θ, θ̂
)
=
(

ec(θ−θ̂) − c
(
θ − θ̂

)
− 1
)

(6)

Under LLF, the Bayes estimator is given as

θ̂(LLF) = −
1
c

InEθ/x

(
e−cθ

)
(7)

where c 6= 1.

3. Ranked Set Sampling

The concept of RSS was first discussed by Mclntyre [19]. RSS is suitable in certain cir-
cumstances that offer difficulties in the exact measurement of the study variable. Compared
to simple random sampling (SRS), the estimator that utilizes the RSS approach is considered
more efficient. The RSS scheme combines SRS with additional sources of information, such
as expert knowledge or auxiliary data. The complete process for selecting a sample using
the RSS method is outlined below:

Step 1. From the concerned population, select m2 elements and distribute these
elements into the m sets of the similar size randomly, and then arrange all the elements in
the m sets in ascending order.

Step 2. After ranking, select the first element from the first set, and from the second
element, the second, and so on, until the last unit is selected from the last set. This process
constitutes a single cycle of RSS, which is of size m.

If necessary, the above aforementioned steps are repeated r times to reach the desired
sample size, i.e., n = mr. The RSS procedure can be illustrated as follows: For a given cycle
r, let Zi(j),r represent the jth order statistic in the ith sample, where r = 1, 2, 3 . . . c, and i, j =
1, 2, 3 . . . l. The estimator under RSS with a single cycle for population mean are as follows:

The RSS mean estimator is given as

Z(RSS) =
1
m

m

∑
i=1

Zi(i) (8)

With variance

var
(

Z(RSS)

)
=

δ2

m
− 1

m2

m

∑
i=1

(
µ(i) − µ

)
(9)

3.1. Median Ranked Set Sampling

Muttalk [20] suggested another modified version of RSS for the efficient estimation of
the population mean called the median ranked set sampling (MRSS) scheme. The complete
method for selecting sample by MRSS are as follows:

Step 1. Similar to RSS, picked m2 elements from the underlying population and
allocated these elements into m sets each of the same size. The elements in every set are
arranged in ascending order.
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Step 2. After ranking, if the sample size m is odd, pick the
{

(m+1)
2

}
th order unit from

all sets. For an even sample size m, pick the
(m

2
)
th ranked units and

{
(m+1)

2

}
th ranked

units from the first and last
(m

2
)
th sets. This procedure completes one cycle of MRSS sample

of size m.
The above two steps can be repeated r times to achieve an MRSS sample size n = mr.
If the selected size for the sample is odd, the estimator under MRSS, using one cycle

for the population mean is given by

Z(MRSS)O =
1
m

(
m

∑
i=1

Zi(m+1
2 )

)
(10)

With variance
var
(

Z(MRSS)O

)
=

1
m

(
δ2
(m+1

2 )

)
(11)

In case of an even sample size, the estimator using MRSS for the population mean
with one cycle is

Z(MRSS)O =
1
m

 m
2

∑
i=1

Zi(m
2 )

+

m
2

∑
i=1

Z m
2 +i(m+1

2 )

 (12)

With variance
var
(

Z(MRSS)O

)
=

1
m

(
δ2
(m

2 )
+ δ2

(m+2
2 )

)
(13)

3.2. Extreme Ranked Set Sampling

Samawi et al. [21] proposed a modified RSS scheme known as the extreme ranked set
sampling (ERSS) scheme, which is useful as the collection of elements is a tougher task
than extreme elements. The whole procedure for picking an ERSS sample is as follows:

Step 1. Randomly selected m2 units from the population under consideration and
arranged into m sets each with the similar size m; the units within each set share similar
characteristics with respect to the study variable.

Step 2. After ranking, if the sample size m is even, select the smallest and largest
units from the first and last

(m
2
)
th order sets, respectively. For an odd sample size, select

the smallest and largest elements from the first and last
(

m−1
2

)
th order sets, respectively,

and the median elements is selected from the last order set. This completes a single cycle
of ERSS.

If needed, repeat the above two steps r times to obtain an ERSS sample of size n = mr.
The estimator utilizing ERSS of one cycle in case of an even sample size for the population
mean is defined as

Z(ERSS)O =
1
m

(m−1
2 )

∑
i=1

Zi(1) +
(m−1

2 )

∑
i=1

Z(m−1
2 )+i(l) + Zm(m+1

2 )

 (14)

With variance

var
(

Z(ERSS)O

)
=

1
2m2

(
δ2
(1) + δ2

(m)

)
+

1
l2

(
δ2
(m+1

2 )

)
(15)

The estimator under ERSS with for population mean one round, for an odd number of
sample size is mathematized as

Z(ERSS)e =
1
m

(m
2 )

∑
i=1

Zi(1) +
(m

2 )

∑
i=1

Z m
2 +i(l)

 (16)
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With variance
var
(

Z(ERSS)e

)
=

1
2m

(
δ2
(1) + δ2

(m)

)
(17)

3.3. Measurement Error

The measurement error refers to the amount of inaccuracy or deviation that exists
between the actual value of a quantity being measured and the value obtained through a
measuring instrument or a measuring process. It is consistently present with a constant
magnitude and does not exhibit variability across different observations. It can result from
various sources, such as an imperfect calibration of the instrument, variations in the envi-
ronmental conditions, or errors made by the person taking the measurements. Accurately
assessing and minimizing measurement errors is crucial to ensuring the reliability and
validity of scientific data. In the current study, we have considered a covariate model to
address the ME, and we have utilized the multiple measurements technique as a means to
mitigate its effects.

3.3.1. Covariate Model

Bennett [22] proposed a model to check the effect of MEs on the Shewhart CC defined
as Y = X + ε, where X represents the study variable and is considered normally distributed
with mean θ and variance δ2, respectively, for the in-control process and ε represents a
stochastic error component arising from imprecision in the measurement process. Later,
the covariate model was studied by Linna and Woodall (2001) given by

Y = A + BX + ε (18)

The model includes constants A and B, and ε is a normally distributed variable with
a mean of zero and variance δ2

m, i.e., ε ∼ N
(
0, δ2

m
)
. It is assumed that all the parameters

in the model are known and X and ε are independent, i.e., Cov(X, ε) = 0. The measured
variable Y is also normally distributed with mean A + Bθ and variance B2δ2 + δ2

m, i.e.,
Y ∼ N

(
A + Bθ, B2δ2 + δ2

m
)
.

3.3.2. Multiple Measurements Method

Multiple measurements per sampling unit have been utilized by Walden [14] instead of
a single measurement, leading to a reduction in the variation of the ME. The variance of the
ME component approaches zero as a result of the infinite number of multiple measurements.
It is important to note that using multiple measurements without considering ME does not
affect the performance of the CCs techniques. If a sample size of m is used with multiple
measurements, the variance of the overall mean can be expressed as follows:(

B2δ2

n
+

δ2
m

nk

)
(19)

4. Suggested Bayesian-AEWMA CC with Different RSS Schemes Using LF under ME

The suggested AEWMA CC based on the Bayesian approach with an ME using various
RSS techniques for monitoring the irregular variations in the location parameter of process
mean of the normally distributed process. Let X1, X2, ...Xn be a normally distributed
random variable with a mean and variance θ and variance δ2 that are independently and
identically distributed, and the probability density function is defined as

f
(

xt : θ, σ2
)
=

1√
2πδ2

exp
(
− 1

2δ2 (xt − θ)2
)

(20)

Let the mean shift estimate δ̂∗t be an {Xt} based AEWMA sequence given by

δ̂∗t = ψXt + (1− ψ) ˆδ∗t−1 (21)
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where δ̂∗0 = 0 and ψ are the smoothing constant, the estimator δ̂∗t for the in-control control
corresponds to the unbiased; whereas for the out-of-control process, the estimator δ̂∗t
corresponds to the biased. To obtain an unbiased for both scenarios, Haq et al. [6] suggested
δ̂∗t which is defined as

ˆδ∗∗t =
δ̂∗t

1− (1− ψ)t (22)

The author suggested using δ̂t =
∣∣ ˆδ∗∗t

∣∣ for estimating δ.
The suggested Bayesian-AEWMA statistic under RSS schemes using the sequence

{Xt} for the process mean is given by

Ft = g
(
δ̂t
)
θ̂ME(RSSi)LF +

(
1− g

(
δ̂t
))

Ft−1 (23)

where i = 1, 2, 3,
RSS1 = RSS

RSS2 = MRSS
RSS3 = ERSS

, g
(
δ̂t
)
∈ (0, 1] and F0 = 0 such that

g
(
δ̂t
)
=


1

a
[
1+(δ̂t)

−c] i f 0 < δ̂t ≤ 2.7

1 i f δ̂t > 2.7
(24)

Atif et al. [23] introduced the function given in (24) to adapt the value of the smoothing
constant based on the estimated shift. The constants used in g(δ̂t) are suggested to be a = 7
and c = 1, when 1 < δ̂t ≤ 2.7, and the value of c = 2 for δ̂t ≤ 1. The process is said to be
out-of-control if the plotting statistic of Bayesian-AEWMA exceeds the threshold value h;
otherwise, the process is in control.

If both the likelihood function and prior distribution have normal distributions, then
the posterior distribution will be a normal distribution with a mean θn and variance δ2

n and
the probability density function is

P(θ|x) = 1
√

2π

√
δ2δ2

0
δ2+nδ2

0

exp

−1
2

 θ −
n
∑

i=1

xiδ
2
0+θ0δ2

0
δ2+nδ2

0√
δ2δ2

0
δ2+nδ2

0


2 (25)

where θn =
nxδ2

0+δ2θ0
δ2+nδ2

0
and δ2

n =
δ2δ2

0
δ2+nδ2

0
, respectively.

4.1. Proposed Bayesian-AEWMA CC under an ME for Posterior and Posterior Predictive
Distribution Using Different RSS Schemes under SELF for Covariate Model

The estimator based on suggested Bayesian-AEWMA CC under an ME applying
different RSS methods for posterior and posterior predictive distribution under SELF,
utilizing covariate model is given as

θ̂psc(SELF) =
nx(RSSi)

δ2
0 +

(
B2δ2 + δ2

m
)
θ0

nδ2
0 + B2δ2 + δ2

m
(26)

4.2. Proposed Bayesian-AEWMA CC with an ME for Posterior and Posterior Predictive
Distribution Using Different RSS Schemes under SELF for Multiple Measurements Method

The estimator for the suggested Bayesian-AEWMA CC for posterior and posterior
predictive distribution using different RSS schemes under SELF in the presence of ME with
multiple measurements method is given as

θ̂psmm(SELF) =
nx(RSSi)

δ2
0 +

(
B2δ2

n + δ2
m

nk

)
θ0

nδ2
0 +

(
B2δ2

n + δ2
m

nk

) (27)
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where i = 1, 2, 3.
RSS1 = RSS

RSS2 = MRSS
RSS3 = ERSS

.

The remaining estimator of θ for the suggested Bayesian-AEWMA CC with an ME
utilizing informative prior for both the covariate model and multiple measurements method
and with various RSS schemes under LLF are given in Appendix A.

5. Simulation Study

The Monte Carlo simulation method is used to analyze the effectiveness of the
Bayesian-AEWMA CC utilizing various RSS methods, with a focus on assessing its per-
formance in the presence of ME. The evaluation is based on two measures, namely ARL
and SDRL. To evaluate the impact of the suggested control, the smoothing constants are
ψ = 0.10 and 0.25 under different LF based on RSS schemes, with the in-control process set
at 370. The simulation methodology for the proposed Bayesian-AEWMA CC is outlined in
the following steps.

Step 1: Setting in-control ARL

• The standard normal distribution is selected for both the prior and sampling distri-

bution, and the mean and variance are calculated using distinct LFs, i.e., E
(

θ̂(LLF)

)
and δLLF.

• For the specific value of the smoothing constant ψ, the value of h (threshold) is selected.
• To simulate an in-control process, a random sample of size n is generated from a

normal distribution., i.e., X ∼ N
(
E
(
θ̂
)
, δ2).

• Calculate the suggested Bayesian-AEWMA statistic under the Bayesian approach Ft
and appraise the design-based procedure;

• If initially, the process is declared in-control, repeat the above steps until it is deter-
mined to be out of control, and then write down the frequency of the run-lengths for
the in control process.

Step 2: For out-of-control ARL

• For a shifted process, the random samples are selected from the normal distribution,

given as follows: X ∼ N
(

E
(
θ̂LF
)
+ σ δ√

n , δ
)

.

• Calculate the Bayesian-AEWMA plotting statistic Ft and analyze the process based on
the recommended design.

• The aforementioned two steps are repeated until the process shows an out-of-control
signal; write down the run length for the in-control process, if it is initially declared to
be in-control.

• Compute the ARLs and SDRLs after repeating the above steps 100,000 times.

6. Results and Discussion

The results of the proposed Bayesian-AEWMA CC in the presence of an ME, with
various RSS schemes based on various LFs and using an informative prior for posterior and
posterior predictive distributions, are presented in Tables 1–6. Table 1 provides information
on the ARL and SDRL of the suggested CC under various RSS methods, using SELF with

the covariate model using A = 0 and B = 1, and with various values of δ2
m

δ2 . It is observed

that with an increase in the values δ2
m

δ2 , the ARL and SDRL values increase. For example,

at δ2
m

δ2 = 0.0, 0.5, and 1 with λ = 0.25 and σ = 0.40, the ARL values are 17.42, 23.14, and
28.39 for RSS, and 14.99, 15.39, and 16.21 for the MRSS. The ARL results utilizing ERSS
are 12.87, 18.03, and 25.84. Table 3 shows the effectiveness of the suggested CC under an
ME applying LLF based on various RSS methods for posterior predictive distribution; it

also reflects the impact of changes in the values of δ2
m

δ2 at smoothing constant λ = 0.25.

For example, at δ2
m

δ2 = 0.0, 0.5, and 1 with σ = 0.30, the ARL values are 29.24, 36.13, and
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44.50 for RSS, and 23.96, 29.93, and 36.66 using MRSS. The ARL results applying ERSS are
31.48, 39.46, and 48.12. When dealing with multiple measurements, the proposed Bayesian

AEMWA CC exhibited an increase in both the ARL and SDRL values as the value of δ2
m

δ2

increased. This trend was observed using RSS schemes that utilized SELF for both posterior

and posterior predictive distribution. For example, Table 4 showed that at δ2
m

δ2 = 0.0, 0.5,
and 1 with σ = 0.40, the ARL values are 17.42, 19.69, and 20.58 for RSS, and 14.99, 15.73
and 16.30 for MRSS and the values of ARL for ERSS are 12.87, 16.12, and 16.38. Table 6
shows the ARL and SDRL results of the suggested Bayesian-AEWMA CC for multiple
measurements, using various RSS methods for posterior and posterior predictive with LLF.

This reveals that as the δ2
m

δ2 increases, the efficiency of the proposed Bayesian-AEWMA CC

decreases. For example, at δ2
m

δ2 = 0.0, 0.5, and 1 with λ = 0.25, and σ = 0.40, the ARL values
are 18.11, 18.97, and 19.80, which are RSS, 14.72, 15.41, and 16.38. The ARL values for ERSS
are 20.49, 21.71, and 30.95.

From the outcomes of the proposed Bayesian-AEWMA CC under a measurement
error based on various RSS schemes, using informative prior for posterior and posterior
predictive distribution using both LFs, i.e., SELF and LLF, the results reveal that the
proposed Bayesian-AEWMA CC using the MRSS scheme is less vulnerable to the impacts
of an ME compared to the other RSS schemes. This suggests that the MRSS scheme may be
more accurate for accounting for the ME and producing reliable results.

Table 1. ARL and SDRL results under posterior and posterior predictive distribution using SELF for
Bayesian-AEWMA CC with ME for covariate model, for ψ = 0.25 and m = 5.

Bayesian-AEWMA-RSS Bayesian-AEWMA-MRSS Bayesian-AEWMA-ERSS

Shift No Error 0.5 1 No Error 0.5 1 No Error 0.5 1

0.0 369.23
(360.00)

370.01
(365.31)

370.78
(362.21)

370.03
(364.48)

370.17
(366.78)

370.21
(367.34)

370.13
(457.80)

369.89
(366.24)

370.90
(367.54)

0.10 113.64
(86.20)

148.48
(93.90)

187.09
(103.81)

99.97
(71.51)

87.96
(76.96)

78.26
(72.67)

104.84
(102.39)

61.35
(56.61)

78.30
(67.88)

0.20 49.08
(32.79)

66.37
(37.73)

80.60
(42.11)

44.00
(28.28)

46.41
(30.54)

51.67
(48.67)

41.80
(39.45)

30.45
(25.94)

36.92
(28.78)

0.30 27.63
(18.49)

37.30
(21.79)

46.01
(24.44)

15.65
(11.14)

23.58
(17.70)

24.34
(19.49)

21.96
(21.07)

11.83
(9.90)

21.42
(16.76)

0.40 17.42
(11.91)

23.14
(14.11)

28.39
(16.05)

14.99
(10.30)

15.39
(11.55)

16.21
(12.94)

12.87
(12.40)

18.03
(15.03)

28.00
(10.92)

0.50 11.95
(8.36)

15.54
(9.84)

19.18
(11.30)

9.77
(6.89)

10.62
(8.16)

11.56
(9.40)

8.30
(7.93)

8.07
(6.64)

9.68
(7.72)

0.60 8.51
(6.03)

10.93
(7.18)

13.19
(8.10)

7.01
(4.93)

7.68
(5.88)

8.56
(6.89)

5.94
(5.52)

6.06
(4.94)

7.06
(5.47)

0.70 6.26 (4.45) 8.04 (5.32) 9.72 (6.09) 5.21 (3.68) 5.86 (4.46) 6.61 (5.28) 4.43 (3.92) 4.64 (3.69) 5.39 (4.17)

0.80 4.88 (3.41) 6.20 (4.14) 7.28 (4.56) 4.05 (2.80) 4.59 (3.42) 5.19 (4.07) 3.47 (2.93) 3.68 (2.86) 4.27 (3.20)

0.90 3.92 (2.71) 4.81 (3.12) 5.69 (3.53) 3.22 (2.15) 3.76 (2.76) 4.28 (3.31) 2.86 (2.27) 3.06 (2.26) 3.48 (2.57)

1.0 3.22 (2.17) 4.00 (2.58) 4.67 (2.91) 2.66 (1.72) 3.15 (2.24) 3.56 (2.70) 2.39 (1.80) 2.56 (1.79) 2.91 (2.07)

1.5 1.66 (0.89) 1.94 (1.06) 2.14 (1.19) 1.43 (0.69) 1.66 (0.93) 1.86 (1.13) 1.37 (0.67) 1.46 (0.76) 1.56 (0.83)

2.0 1.18 (0.42) 1.28 (0.52) 1.38 (0.59) 1.08 (0.28) 1.20 (0.45) 1.32 (0.61) 1.09 (0.30) 1.12 (0.36) 1.03 (0.18)

2.5 1.03 (0.19) 1.07 (0.26) 1.10 (0.32) 1 (0) 1.04 (0.21) 1.09 (0.30) 1.01 (0.12) 1.02 (0.15) 1.16 (0.40)

3 1 (0) 1 (0) 1.01 (0.12) 1 (0) 1 (0) 1.02 (0.16) 1 (0) 1 (0) 1 (0)

4 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)
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Table 2. ARL and SDRL results under posterior distribution with ME, using LLF for covariate model,
for ψ = 0.25 and m = 5.

Bayesian-AEWMA-RSS Bayesian-AEWMA-MRSS Bayesian-AEWMA-ERSS

Shift No Error 0.5 1 No Error 0.5 1 No Error 0.5 1

0.0 370.92
(332.68)

370.89
(361.23)

370.12
(366.12)

369.44
(344.38)

370.04
(365.35)

369.89
(361.21)

371.12
(316.71)

370.67
(365.18)

370.33
(362.12)

0.10 113.62
(77.72)

148.72
(105.97)

183.96
(105.88)

102.05
(68.97)

127.41
(80.67)

156.53
(89.05)

125.03
(90.94)

156.37
(99.83)

200.20
(126.88)

0.20 50.89
(32.73)

63.47
(37.12)

78.87
(41.18)

43.63
(28.65)

53.21
(31.96)

66.43
(35.53)

52.45
(35.89)

69.43
(41.00)

86.21
(45.99)

0.30 29.15
(19.09)

35.89
(21.62)

44.15
(24.07)

23.39
(15.70)

29.57
(17.96)

35.84
(20.00)

31.99
(20.90)

39.87
(23.48)

48.63
(25.97)

0.40 18.11
(12.29)

22.54
(14.11)

27.36
(15.72)

14.72
(10.26)

17.86
(11.53)

21.73
(13.00)

20.49
(13.77)

25.17
(15.54)

31.09
(17.32)

0.50 12.37
(8.59)

14.94
(9.79)

18.38
(11.05)

9.81
(6.98)

11.73
(7.87)

14.33
(8.88)

13.79
(9.59)

17.03
(10.98)

20.57
(12.12)

0.60 8.64
(6.10)

10.56
(6.97)

12.71
(7.86)

6.91
(4.87)

8.31
(5.63)

9.98
(6.35)

10.00
(6.95)

12.06
(7.99)

14.57
(9.04)

0.70 6.56 (4.59) 7.90 (5.21) 9.37 (5.96) 5.13 (3.66) 6.10 (4.14) 7.29 (4.68) 7.52 (5.28) 8.99 (6.02) 10.89 (6.82)

0.80 5.10 (3.58) 6.05 (4.00) 7.22 (4.52) 4.03 (2.77) 4.68 (3.15) 5.49 (3.55) 5.74 (4.04) 6.96 (4.64) 8.20 (5.17)

0.90 4.01 (2.72) 4.76 (3.16) 5.60 (3.54) 3.23 (2.17) 3.71 (2.42) 4.22 (2.67) 4.62 (3.19) 5.47 (3.57) 6.43 (4.15)

1.0 3.36 (2.20) 3.86 (2.51) 4.45 (2.82) 2.65 (1.74) 3.02 (1.93) 3.52 (2.17) 3.81 (2.56) 4.44 (2.89) 5.19 (3.22)

1.5 1.69 (0.91) 1.06 (0.25) 2.10 (1.16) 1.42 (0.67) 1.54 (0.76) 1.68 (0.84) 1.88 (1.06) 2.12 (1.21) 2.40 (1.35)

2.0 1.19 (0.43) 1.27 (0.51) 1.35 (0.57) 1.09 (0.30) 1.13 (0.35) 1.18 (0.41) 1.28 (0.53) 1.38 (0.61) 1.50 (0.69)

2.5 1.04 (0.20) 1.06 (0.24) 1.08 (0.29) 1 (0) 1.01 (0.13) 1.02 (0.16) 1.07 (0.27) 1.11 (0.33) 1.15 (0.38)

3 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1.02 (0.14) 1.03 (0.18)

4 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

Table 3. ARL and SDRL results under posterior predictive distribution with ME utilizing LLF for
covariate model, for ψ = 0.25 and m = 5.

Bayesian-AEWMA-RSS Bayesian-AEWMA-MRSS Bayesian-AEWMA-ERSS

Shift No Error 0.5 1 No Error 0.5 1 No Error 0.5 1

0.0 370.18
(351.20)

370.89
(364.22)

370.98
(363.68)

370.56
(348.97)

369.78
(361.23)

370.08
(363.51)

369.23
(351.25)

370.65
(359.90)

370.05
(362.10)

0.10 115.82
(81.46)

149.01
(94.02)

187.52
(106.10)

99.75
(69.58)

128.24
(80.58)

160.78
(99.38)

119.83
(85.48)

154.45
(102.45)

191.77
(115.74)

0.20 51.42
(33.50)

64.85
(37.57)

79.72
(41.78)

36.48
(26.34)

54.27
(32.37)

67.07
(36.79)

54.59
(35.50)

69.51
(40.81)

84.63
(45.39)

0.30 29.24
(19.01)

36.13
(21.60)

44.50
(24.16)

23.96
(16.06)

29.93
(18.37)

36.66
(20.25)

31.48
(20.70)

39.46
(23.42)

48.12
(26.27)

0.40 18.34
(12.30)

22.65
(14.13)

27.64
(15.99)

14.77
(10.17)

18.06
(11.86)

22.03
(13.36)

20.16
(13.69)

24.94
(15.36)

30.33
(17.41)

0.50 12.42
(8.66)

15.17
(9.78)

18.43
(11.00)

9.87
(7.01)

12.05
(8.01)

14.32
(8.94)

13.82
(9.46)

16.81
(10.70)

20.42
(12.12)
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Table 3. Cont.

Bayesian-AEWMA-RSS Bayesian-AEWMA-MRSS Bayesian-AEWMA-ERSS

Shift No Error 0.5 1 No Error 0.5 1 No Error 0.5 1

0.60 8.87
(6.27)

10.70
(7.05)

12.91
(8.08)

7.00
(4.93)

8.18
(5.57)

9.97
(6.33)

9.83
(6.88)

11.91
(7.87)

14.38
(8.90)

0.70 6.56 (4.63) 7.90 (5.26) 9.38 (5.96) 5.20 (3.64) 6.15 (4.17) 7.33 (4.67) 7.40 (5.21) 6.85 (4.58) 10.59 (6.65)

0.80 5.13 (3.55) 5.99 (3.98) 7.20 (4.52) 3.99 (2.74) 4.72 (3.15) 5.50 (3.52) 5.80 (4.08) 8.89 (5.86) 8.06 (5.18)

0.90 4.10 (2.82) 4.79 (3.14) 5.64 (3.55) 3.22 (2.16) 3.75 (2.47) 4.35 (2.73) 4.65 (3.22) 5.44 (3.60) 6.45 (4.07)

1.0 3.34 (2.24) 3.92 (2.53) 4.52 (2.77) 2.69 (1.73) 3.09 (1.96) 3.57 (2.20) 3.77 (2.54) 4.43 (2.87) 5.15 (3.25)

1.5 1.71 (0.91) 1.90 (1.03) 2.14 (1.17) 1.43 (0.69) 1.56 (0.78) 1.69 (0.87) 1.88 (1.05) 2.08 (1.19) 2.37 (1.33)

2.0 1.20 (0.44) 1.27 (0.51) 1.36 (0.58) 1.09 (0.29) 1.12 (0.34) 1.17 (0.41) 1.29 (0.54) 1.40 (0.63) 1.49 (0.69)

2.5 1.04 (0.20) 1.06 (0.24) 1.09 (0.30) 1 (0) 1.01 (0.13) 1.03 (0.17) 1.07 (0.27) 1.11 (0.32) 1.15 (0.38)

3 1 (0) 1 (0) 1.01 (0.12) 1 (0) 1 (0) 1 (0) 1 (0) 1.02 (0.14) 1.03 (0.18)

4 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

Table 4. ARL and SDRL results using posterior and posterior predictive distribution with ME utilizing
SELF for multiple measurements, for ψ = 0.25 and m = 5.

Bayesian-AEWMA-RSS Bayesian-AEWMA-MRSS Bayesian-AEWMA-ERSS

Shift No Error 0.5 1 No Error 0.5 1 No Error 0.5 1

0.0 369.23
(360.00)

370.32
(363.10)

370.02
(365.18)

370.03
(364.48)

370.77
(359.98)

370.32
(357.48)

370.13
(457.80)

370.53
(355.48)

370.90
(346.48)

0.10 113.64
(86.20)

127.67
(86.57)

133.57
(90.78)

99.97
(71.51)

108.27
(75.50)

114.93
(75.01)

104.84
(102.39)

94.46
(76.67)

97.85
(77.40)

0.20 49.08
(32.79)

55.78
(34.57)

57.57
(34.93)

44.00
(28.28)

46.30
(29.34)

48.07
(30.06)

41.80
(39.45)

42.67
(31.28)

45.80
(32.30)

0.30 27.63
(18.49)

31.55
(20.01)

32.97
(20.47)

15.65
(11.14)

25.29
(16.46)

26.49
(17.11)

21.96
(21.07)

24.73
(18.20)

26.08
(18.77)

0.40 17.42
(11.91)

19.69
(12.91)

20.58
(13.41)

14.99
(10.30)

15.73
(10.80)

16.30
(10.93)

12.87
(12.40)

16.12
(11.93)

16.38
(12.06)

0.50 11.95
(8.36)

13.27
(8.98)

13.90
(9.13)

9.77
(6.89)

10.27
(7.18)

10.64
(7.31)

8.30
(7.93)

11.09
(8.32)

11.37
(8.54)

0.60 8.51
(6.03)

9.35
(6.49)

9.82
(6.65)

7.01
(4.93)

7.25
(5.07)

7.55
(5.22)

5.94
(5.52)

8.04
(5.99)

8.36
(6.15)

0.70 6.26 (4.45) 7.12 (4.87) 7.17 (4.96) 5.21 (3.68) 5.38 (3.79) 5.59 (3.87) 4.43 (3.92) 6.08 (4.56) 6.32 (4.69)

0.80 4.88 (3.41) 5.41 (3.70) 5.61 (3.83) 4.05 (2.80) 4.20 (2.85) 4.30 (2.95) 3.47 (2.93) 4.77 (3.47) 4.93 (3.56)

0.90 3.92 (2.71) 4.29 (2.88) 4.39 (2.92) 3.22 (2.15) 3.36 (2.27) 3.45 (2.28) 2.86 (2.27) 3.97 (2.81) 4.01 (2.85)

1.0 3.22 (2.17) 3.50 (2.29) 3.60 (2.35) 2.66 (1.72) 2.77 (1.77) 2.81 (1.78) 2.39 (1.80) 3.20 (2.22) 3.30 (2.30)

1.5 1.66 (0.89) 1.76 (0.96) 1.79 (0.96) 1.43 (0.69) 1.48 (0.72) 1.48 (0.72) 1.37 (0.67) 1.67 (0.93) 1.72 (0.97)

2.0 1.18 (0.42) 1.21 (0.45) 1.24 (0.49) 1.08 (0.28) 1.10 (0.31) 1.10 (0.32) 1.09 (0.30) 1.20 (0.45) 1.21 (0.47)

2.5 1.03 (0.19) 1.04 (0.22) 1.05 (0.22) 1 (0) 1.01 (0.11) 1.01 (0.11) 1.01 (0.12) 1.04 (0.21) 1.04 (0.21)

3 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

4 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)
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Table 5. For multiple measurements method, the ARL and SDRL values using posterior distribution
with ME, under LLF for ψ = 0.25 and m = 5.

Bayesian-AEWMA-RSS Bayesian-AEWMA-MRSS Bayesian-AEWMA-ERSS

Shift No Error 0.5 1 No Error 0.5 1 No Error 0.5 1

0.0 370.92
(332.68)

370.43
(346.68)

370.23
(357.18)

369.44
(344.38)

370.62
(354.38)

370.22
(351.38)

371.12
(316.71)

370.62
(356.51)

370.02
(355.51)

0.10 113.62
(77.72)

119.61
(84.33)

131.04
(90.83)

102.05
(68.97)

106.40
(72.90)

115.91
(77.29)

125.03
(90.94)

128.81
(95.38)

139.0
(96.08)

0.20 50.89
(32.73)

52.54
(33.62)

55.90
(34.64)

43.63
(28.65)

44.68
(28.72)

48.96
(30.06)

52.45
(35.89)

59.08
(37.64)

62.26
(38.06)

0.30 29.15
(19.09)

30.24
(19.58)

31.57
(19.73)

23.39
(15.70)

24.87
(16.39)

26.98
(17.14)

31.99
(20.90)

33.44
(21.58)

34.99
(21.86)

0.40 18.11
(12.29)

18.97
(12.67)

19.80
(12.89)

14.72
(10.26)

15.41
(10.52)

16.38
(11.04)

20.49
(13.77)

21.46
(14.11)

30.95
(7.39)

0.50 12.37
(8.59)

12.69
(8.68)

13.76
(9.06)

9.81
(6.98)

10.00
(7.04)

10.78
(7.30)

13.79
(9.59)

14.53
(9.84)

22.23
(14.57)

0.60 8.64
(6.10)

9.10
(6.36)

9.41
(6.52)

6.91
(4.87)

7.09
(4.98)

7.70
(5.33)

10.00
(6.95)

10.31
(7.04)

10.95
(7.39)

0.70 6.56 (4.59) 6.75 (4.69) 7.00 (4.81) 5.13 (3.66) 5.31 (3.74) 5.48 (3.80) 7.52 (5.28) 7.81 (5.42) 8.02 (5.53)

0.80 5.10 (3.58) 5.27 (3.66) 5.40 (3.68) 4.03 (2.77) 4.11 (2.83) 4.25 (2.90) 5.74 (4.04) 6.05 (4.18) 6.24 (4.28)

0.90 4.01 (2.72) 4.17 (2.81) 4.32 (2.90) 3.23 (2.17) 3.28 (2.20) 3.38 (2.21) 4.62 (3.19) 4.82 (3.25) 5.01 (3.40)

1.0 3.36 (2.20) 3.44 (2.29) 3.54 (2.35) 2.65 (1.74) 2.71 (1.76) 2.85 (1.82) 3.81 (2.56) 3.91 (2.60) 4.06 (2.72)

1.5 1.69 (0.91) 1.72 (0.92) 1.76 (0.94) 1.42 (0.67) 1.46 (0.70) 1.49 (0.73) 1.88 (1.06) 1.92 (1.07) 1.99 (1.11)

2.0 1.19 (0.43) 1.21 (0.46) 1.22 (0.46) 1.09 (0.30) 1.09 (0.29) 1.11 (0.33) 1.28 (0.53) 1.30 (0.55) 1.32 (0.57)

2.5 1.04 (0.20) 1.04 (0.21) 1.04 (0.22) 1 (0) 1.01 (0.10) 1.01 (0.13) 1.07 (0.27) 1.08 (0.28) 1.08 (0.29)

3 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

4 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

Table 6. ARLs and SDRLs using posterior distribution under LLF in the presence of ME, under
multiple measurements method, for ψ = 0.25 and m = 5.

Bayesian-AEWMA-RSS Bayesian-AEWMA-MRSS Bayesian-AEWMA-ERSS

Shift No Error 0.5 1 No Error 0.5 1 No Error 0.5 1

0.0 370.18
(351.20)

370.56
(348.97)

370.16
(335.97)

370.25
(331.27)

370.25
(341.27)

370.51
(348.21)

369.23
(351.25)

370.03
(343.15)

370.10
(342.22)

0.10 115.82
(81.46)

123.05
(85.57)

123.50
(98.55)

99.75
(69.58)

106.68
(71.96)

110.95
(74.69)

119.83
(85.48)

129.26
(93.16)

133.78
(93.15)

0.20 51.42
(33.50)

53.32
(33.95)

56.36
(34.50)

36.48
(26.34)

45.96
(28.81)

47.69
(29.80)

54.59
(35.50)

57.03
(36.74)

60.09
(37.49)

0.30 29.24
(19.01)

30.27
(19.43)

31.71
(20.01)

23.96
(16.06)

25.11
(16.41)

26.16
(17.01)

31.48
(20.70)

32.78
(21.00)

34.33
(21.84)

0.40 18.34
(12.30)

19.19
(12.71)

19.62
(13.02)

14.77
(10.17)

15.31
(10.29)

16.12
(10.84)

20.16
(13.69)

20.79
(13.95)

21.77
(14.23)

0.50 12.42
(8.66)

12.78
(8.70)

13.38
(8.94)

9.87
(7.01)

10.18
(7.10)

10.57
(7.44)

13.82
(9.46)

14.07
(11.20)

14.78
(9.87)
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Table 6. Cont.

Bayesian-AEWMA-RSS Bayesian-AEWMA-MRSS Bayesian-AEWMA-ERSS

Shift No Error 0.5 1 No Error 0.5 1 No Error 0.5 1

0.60 8.87
(6.27)

9.13
(6.33)

56.36
(34.50)

7.00
(4.93)

7.20
(5.11)

7.48
(5.21)

9.83
(6.88)

10.09
(6.93)

10.60
(7.28)

0.70 6.56 (4.63) 6.77 (4.68) 7.06 (4.83) 5.20 (3.64) 5.32 (3.69) 5.56 (3.80) 7.40 (5.21) 7.66 (5.28) 7.97 (5.55)

0.80 5.13 (3.55) 5.20 (3.56) 5.34 (3.66) 3.99 (2.74) 4.15 (2.87) 4.30 (2.92) 5.80 (4.08) 5.93 (4.13) 6.23 (4.27)

0.90 4.10 (2.82) 4.16 (2.85) 4.36 (2.94) 3.22 (2.16) 3.30 (2.18) 3.47 (2.29) 4.65 (3.22) 4.70 (3.24) 4.98 (3.33)

1.0 3.34 (2.24) 3.43 (2.26) 3.52 (2.30) 2.69 (1.73) 2.75 (1.79) 2.85 (1.82) 3.77 (2.54) 3.85 (2.58) 3.99 (2.65)

1.5 1.71 (0.91) 1.73 (0.92) 1.76 (0.95) 1.43 (0.69) 1.47 (0.71) 1.49 (0.72) 1.88 (1.05) 1.91 (1.08) 1.97 (1.12)

2.0 1.20 (0.44) 1.21 (0.45) 1.22 (0.47) 1.09 (0.29) 1.09 (0.30) 1.11 (0.32) 1.29 (0.54) 1.31 (0.55) 1.33 (0.58)

2.5 1.04 (0.20) 1.05 (0.22) 1.04 (0.21) 1 (0) 1.01 (0.11) 1.01 (0.12) 1.07 (0.27) 1.08 (0.28) 1.09 (0.29)

3 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

4 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

7. Real Data Applications

The illustration of the suggested Bayesian-AEWMA CC with ME utilizing different
RSS methods is evaluated through the data of the hard-bake process in semiconductor
production taken from Montgomery [24]. The hard-bake process is an important step in
semiconductor manufacturing, which is a closely related field to industrial engineering.
Industrial engineers are often involved in designing and optimizing the processes used
in semiconductor manufacturing to ensure that they are efficient, effective, and reliable.
In the present article, we consider that the data contains 45 samples, which each have
a size 5 wafers that consist of 225 observations; the flow width is measured in microns,
and the time interval between each sample is one hour. Assume that the first 30 samples
represent an in-control process (phase I dataset) that contains 150 observations, while
the remaining 15 samples are considered an out-of-control process (phase II dataset) that
contains 75 observations.

For the application of the proposed Bayesian-AEWMA control utilizing SELF for
covariate model using RSS schemes, we take λ = 0.25 and different values of error ratio

such as δ2
m

δ2 = 0.0, 0.5, and 1. Figures 1–3 show that the suggested Bayesian-AEWMA CC for

the covariate model using SELF using RSS for δ2
m

δ2 = 0.0, 0.5, and 1, which indicated that the
process is out of control on the 35th, 37th, and 41st sample.
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Figures 4–6 depict the performance of proposed CC based on MRSS scheme utilizing

SELF for covariate model taking δ2
m

δ2 = 0.0, 0.5, and 1, and λ = 0.25. Which indicated that the
process went out-of-control on the 33rd, 35th, and 39th sample. Similarly, Figures 7–9 illus-
trate the effectiveness of the proposed CC utilizing ERSS scheme, which also demonstrate
out of control indications on the 36th, 40th, and 42nd sample in the same situation.
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8. Conclusions

In this article, the effect of the ME on the Bayesian AEWMA CC using RSS schemes
under different LFs such as SELF and LLF has been reported. We computed the results
of the ARL and SDRL to evaluate the performance of the suggested Bayesian AEWMA
control chart under RSS schemes with an ME. The simulation results for the Bayesian
AEWMA control using RSS schemes for the covariate method and multiple measurements
are presented in Tables 1–6. It is observed that the proposed Bayesian AEWMA CC using
the MRSS scheme performed more efficiently than the other RSS schemes in the presence
of an ME. It is therefore recommended to use the Bayesian AEWMA CC under MRSS
for efficient monitoring of the process mean in the presence of an ME. The proposed CC
with RSS schemes in the presence of an ME can be applied to other memory-type CCs.
Furthermore, the proposed method can be used for distributions other than the normal
distribution. For example, the method can be extended to handle data that follows a Poisson
distribution or a binomial distribution. In this case, the likelihood function used in the
Bayesian updating would need to be adjusted accordingly. The extension of the proposed
method to other types of CCs and non-normal distributions can improve the effectiveness
and efficiency of quality control processes in various industries, such as healthcare, finance,
and manufacturing.
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Appendix A

Appendix A.1

Bayes estimator for the Bayesian-AEWMA CC under covariate model with ME under
LLF using different RSS schemes for posterior distribution.

θ̂plc(LLF) =
nx(RSSi)

δ2
0 +

(
B2δ2 + δ2

m
)
θ0

nδ2
0 + B2δ2 + δ2

m
−

c′
(

B2δ2 + δ2
m
)
δ2

0

2
(
nδ2

0 + B2δ2 + δ2
m
) (A1)
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Appendix A.2

Bayes estimator for the Bayesian-AEWMA CC under covariate model with ME under
LLF using different RSS schemes for posterior predictive distribution.

θ̂pplc(LLF) =
nx(RSSi)

δ2
0+(B2δ2+δ2

m)θ0

nδ2
0+B2δ2+δ2

m

− c′
2

[
(B2δ2+δ2

m)δ2
0

(nδ2
0+B2δ2+δ2

m)
+

(B2δ2+δ2
m)

P

] (A2)

Appendix A.3

Bayes estimator for the Bayesian-AEWMA CC under multiple measurements method
with ME under LLF using different RSS schemes for Posterior distribution.

θ̂plmm(LLF) =
nx(RSSi)

δ2
0 +

(
B2δ2

n + δ2
m

nk

)
θ0

nδ2
0 +

(
B2δ2

n + δ2
m

nk

) −
c′
(

B2δ2

n + δ2
m

nk

)
δ2

0

2
(

nδ2
0 +

(
B2δ2

n + δ2
m

nk

))
Appendix A.4

Bayes estimator for the Bayesian-AEWMA CC under multiple measurements method
with ME under LLF using different RSS schemes for posterior predictive distribution.

θ̂pplmm(LLF) =
nx(RSSi)

δ2
0+

(
B2δ2

n +
δ2
m

nk

)
θ0

nδ2
0+

(
B2δ2

n +
δ2
m

nk

)

− c′
2


(

B2δ2
n +

δ2
m

nk

)
δ2

0(
nδ2

0+
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n +
δ2
m

nk

)) +

(
B2δ2
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)
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