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Abstract: Vegetation activities and stresses are crucial for vegetation health assessment. Changes in an
environment such as drought do not always result in vegetation drought stress as vegetation responses
to the climate involve complex processes. Satellite-based vegetation indices such as the Normalized
Difference Vegetation Index (NDVI) have been widely used to monitor vegetation activities. As
satellites only carry information for understanding past and current vegetation conditions, there is a
need to model vegetation dynamics to make future predictions. Although many other factors are
related, we attempt to predict the vegetation activities and stresses via simulating NDVI, based on only
meteorological data and using a deep learning method (bidirectional long short-term memory model,
BiLSTM). The BiLSTM is a sequence processing model that can predict NDVI by establishing the
relationship between meteorological variables and vegetation activities. Experimental results show
that the predicted NDVI is consistent with the reference data (R2 = 0.69± 0.28). The best accuracy was
achieved in the deciduous forest (R2 = 0.87 ± 0.16). The vegetation condition index (VCI) calculated
from the BiLSTM-predicted NDVI also agreed with the satellite-based ones (R2 = 0.70 ± 0.28). Both
the monitored and predicted VCI indicated an upward but insignificant trend of vegetation activity
in the past decade and increased vegetation stresses in the early growing season over northern China.
Based on meteorological data, the deep learning-based solution shows the potential for not only
retrospective analysis, but also future prediction of vegetation activities and stresses under varied
climate conditions as compared with remote sensing data.

Keywords: NDVI time series; meteorological data; deep learning; BiLSTM; vegetation activities and
stresses; prediction

1. Introduction

Ongoing climate change has intensified droughts in particular regions [1]. Climatic
drought is the main influence factor of vegetation activities, affecting vegetation health, ecosys-
tem function, water cycle, soil, and agricultural production [2–4]. The available satellite images
make the monitoring of vegetation easier owing to data collection over large geographical
areas within short revisit intervals [5]. Vegetation indices (VIs) derived from remote sensing
data are indicative of vegetation activities or stresses on the land surface [6–8].

Various vegetation indices (VIs) have been defined by the combination of surface
reflectance at two or more wavelengths [7], such as the Normalized Difference Vegeta-
tion Index (NDVI) [9], Green Normalized Difference Vegetation Index (GNDVI) [10], Red
Edge Normalized Difference Vegetation Index (RENDVI) [11], Soil-Adjusted Vegetation
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Index (SAVI) [12], and Enhanced Vegetation Index (EVI) [13]. Based on a similar principle,
these VIs employ near-infrared band (NIR) and the band in the effective spectral range of
photosynthesis to derive information related to vegetation. Among the available indices,
NDVI is one of the most widely acknowledged and frequently used indices for monitoring
vegetation activities [14]. The generalized NDVI time series of vegetation often has a
seasonal cycle that is correspondent to activities such as plant growth and senescence [15].
NDVI time series at high temporal resolution provides a trajectory of vegetation activ-
ities and are useful for monitoring and detecting changes in vegetation conditions and
dynamics [7,16]. Ali et al. [8] studied the impact of drought on China’s vegetation based
on the NDVI derived from AVHRR, and temperature and precipitation data from NASA’s
MERRA. Zhao et al. [17] modified the comprehensive remote sensing drought indices and
analyze the spatial-temporal patterns of drought in China from 1982–2010. Jiang et al. [18]
employed the meteorological data-based index (SPEI) and remotely sensed derived NDVI
to investigate the drought activity as well as the relationship between drought and vegeta-
tion in Northwest China. For better vegetation activity monitoring, Kogan [19] proposed
vegetation condition index (VCI) to filter out these nonweather effects by using geographic
filtering. VCI enhanced weather-related impacts compared with NDVI, and has been
extensively used for monitoring vegetation activity. Liang et al. [20] used VCI for the analy-
sis of vegetative drought conditions in China based on NOAA/AVHRR. Satellite-based
drought indices [21] have been proved to be effective and convenient in detecting drought
conditions at regional and global scales.

While satellite-derived VIs have been found useful on retrospective studies and near
real-time monitoring of vegetation activities on the land surface, bad weather or cloud
pose a challenge for satellite remote sensing because they lead to missing data in the time
series [22]. It is a critical problem that limits the availability of usable images for continuous
fine-grained vegetation dynamics monitoring [23] and, what’s more, they cannot make
future predictions. There is a need to improve our abilities of modeling and predicting on
VIs when satellite observations were and are not available.

Vegetation activities are controlled by a changing environment on spatial and temporal
scales [24]. Although the meteorological droughts do not always result in decreases in
NDVI, meteorological data—such as temperature and precipitation—are important factors
of climatic determinants that affect vegetation activities [25]. Climate variables are moni-
tored day by day without data-missing issues. The Intergovernmental Panel on Climate
Change (IPCC) also presented the Shared Socio-Economic Paths (SSP) dataset that can
offer future climate scenarios. In land surface studies, it is an important goal to model
vegetation activities via climate variables. The past and future meteorological data at high
temporal and spatial resolutions are useful for understanding and predicting vegetation
activity dynamics. Gao, Jiao, Wu, Ma, Zhao, Yin and Dai [2] employed a geographically
weighted regression (GWR) model which is based on climate observation (temperature
and precipitation) for net primary productivity (NPP) simulation. Wang et al. [26] ana-
lyzed NPP changes in China based on 11 earth system models under 4 RCPs. Recently,
Zheng et al. [27] proposed a series of pixel-based Vegetation Dynamics Stepwise-cluster
Prediction models (VEDSP) to simulate NDVI via climate conditions. Zhou et al. [28]
developed a multi-regression prediction model for dynamic changes of vegetation in China,
based on meteorological data and NDVI. Barrett et al. [29] applied linear autoregression
and Gaussian process modelling methods to forecast NDVI based on MODIS and Landsat
data. Although many other factors, such as soil and elevation, influence vegetation activ-
ities [30], we attempt to investigate the ability of meteorological data for the NDVI time
series simulation.

Different from empirical or numerical methods, machine learning methods have
gained increasing attention in land surface modeling studies [31,32]. Convolutional neural
networks (CNNs) are able to learn the functional relationships between independent and
dependent variables. CNNs provide a hierarchical representation of the input data using
a stack of convolutional layers, and are suitable for handling large volume data over
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long time series [33]. Considering these advantages of CNNs, some studies have used it
for NDVI prediction. Das and Ghosh [34] proposed a deep CNN (Deep-STEP) derived
from the original deep stacking network for predicting NDVI, and validated the results
on Landsat-7 NDVI time series over four regions in India. Mazza, Gargiulo, Scarpa and
Gaetano [23] proposed a common CNN-based data fusion method to simulate the NDVI
from coupled Sentinel1-1 and Sentinel1-2 time series. The time series used in CNNs is
beneficial in the NDVI simulation as it is evaluated using spatial data; however, because
CNNs do not extract and use temporal information, the knowledge in the time series is
missing when using CNNs [5,22]. Recurrent neural networks (RNNs) with various dynamic
models are deep in time and are often used in sequence processing, such as music and
text generation [35]. To address this shortcoming, Stepchenko and Chizhov [7] used RNNs
for predicting the NDVI time series using input data from a multi-temporal smoothed
MODIS NDVI time series. Whereas RNNs often suffer from memory compression that can
impact the ability of long-range sequence information memory [36], as well as the vanishing
gradient effect that can result in error back-propagation over a long temporal interval [37],
long short-term memory (LSTM), first proposed by [38], is a variant of RNN architecture
that can memorize and forget the long-range temporal information based on the LSTM
units. According to the literature, LSTM is an excellent method for sequence-related tasks,
such as activity recognition, video description, and language translation [39]. LSTMs
have gained particular attention in land use and land cover [40]. The work of Reddy and
Prasad [5] provides an example of using the LSTM model to predict vegetation dynamics
based on MODIS NDVI time series data in a small evergreen forest in India. In the field of
vegetation activity monitoring, the application of LSTM is still at a nascent stage.

Motivated by the above context, this study investigates the ability of the LSTM architec-
ture to predict the NDVI time series for each vegetation type, based only on meteorological
data. Compared with satellite remote sensing data, the deep learning-based model can be
used for both monitoring and predicting vegetation activities. In this study, a bidirectional
LSTM was developed to match the meteorological data and NDVI time series from both
directions, and was used to predict NDVI. To illustrate the usefulness of our modeling
approach, we further identify and compare the vegetation stresses over China during the
period of 2009–2017, based on VCI derived from both predicted and observed NDVI.

2. Study Area and Materials
2.1. Study Area

With multiple climate regimes and diverse topographies, China covers almost all
vegetation types in the northern hemisphere (Figure 1). According to temperature dis-
tribution, we divided China into five temperate climate zones with different vegetation
types [41]. In China, coniferous forests are mainly distributed in the East humid zone,
ranging from cold temperate zone, temperate zone to subtropical zone. In addition, China
is rich in broad-leaved forests, which are often mixed with coniferous forests in temperate
and warm temperate zones, and are often evergreen in subtropical and tropical zones.
Grasslands cover large areas in China and are primarily distributed in the temperate zone
from northeast to northwest. Woody savannas and savannas are mainly scattered in the
warm temperate and subtropical zones. Croplands are mainly present in the central and
eastern coastal areas from the temperate to the tropical zones [42]. During the past few
decades, ecosystems in China have been influenced by climate change and human activities
such as urbanization and agricultural practices [43].

2.2. Meteorological Data

The meteorological data used in this study were collected from the China Meteoro-
logical Administration (CMA) land data assimilation system (CLDAS) 2.0. CLDAS 2.0 is
an hourly air drive field product with a spatial resolution of 0.0625

◦ × 0.0625
◦

covering
Asia (0◦–65◦ N, 60◦–160◦ E). CLDAS 2.0 provided data for six variables, including 2-m
air temperature, atmospheric pressure, humidity, 10-m wind speed, precipitation, and
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incoming shortwave radiation. For the NDVI simulation, we selected atmospheric pressure,
precipitation, and incoming shortwave radiation from CLDAS 2.0, and averaged hourly
data to daily data. We derived the daily maximum and minimum air temperatures from
hourly air temperature. In addition, we calculated the day length of each pixel in the study
area according to the method described by Amthor [44]. In summary, six daily variables,
including atmospheric pressure, precipitation, incoming shortwave radiation, maximum
air temperature, minimum air temperature, and day length, were used as the model inputs.
The meteorological time series data were derived for the time period spanning from 1
January 2008 to 31 December 2017.
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2.3. Remote Sensing Data and Preprocessing

We used the land surface reflectance product of MOD09A1 [45] based on MODIS for
calculating NDVI [9]. MOD09A1 provides 8-day gridded Level-3 land surface reflectance
data at 500-m spatial resolution. The surface reflectance data for MOD09A1 were derived
based on the MODIS Level1B products. Each pixel is assigned the best value every 8 days
according to factors such as cloud cover and solar azimuth. The 8-day NDVI time series
were derived from MOD09A1 using data from the NIR band and the visible band according
to Equation (1). We used high-quality bands to ensure data quality. NDVI varies from −1.0
to 1.0 in vegetated areas. NDVI is generally greater than 0.

NDVI = (BandNIR − BandRED)/(BandNIR + BandRED), (1)

We reconstructed the 8-day time series of NDVI to reduce the noise originating from
sensors, weather, and other reasons. We smoothed the 8-day NDVI using the Savitzky–
Golay filtering method [46] to remove spikes in the time series mostly caused by environ-
mental factors such as clouds and rain. We then linearly interpolated the smoothed 8-day
NDVI to obtain daily NDVI for an entire year.

We used the MODIS annual land cover product of MCD12Q1 with a spatial resolution
of 500 m for land cover extraction [47]. We used the land cover data based on the Interna-
tional Geosphere-Biosphere Programme (IGBP) classification system [48], which classifies
the land surface into 17 categories, including 11 types of natural vegetation, 3 types of land
use and land cover mosaic, and 3 types of non-vegetation. According to the purpose of
this study, the 11 natural vegetation types were merged into 7 classes: deciduous forests,
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evergreen forests, mixed forests, shrublands, grasslands, savannas, and croplands. Because
there are only small areas of shrublands in China, we selected the remaining six types,
including deciduous forests, evergreen forests, mixed forests, grasslands, savannas, and
croplands, for study. To match the input and output of the deep learning model, both
the preprocessed NDVI data and the land cover data were reprojected and resampled to
make them consistent with the meteorological data. The meteorological data are masked
by pixels of the above six vegetation types to serve as the BiLSTM model input.

3. Methodology
3.1. Simulation of NDVI Using Vegetation-Type-Based BiLSTM (NDVI–BiLSTM)
3.1.1. An Overview of Vegetation-Type-Based NDVI–BiLSTM

The proposed architecture of the BiLSTM model for NDVI simulation based on me-
teorological time series data for each vegetation type mainly consists of five layers and
is derived from LSTM (Figure 2) [49]. Two BiLSTM layers are employed to compute the
output sequence by iterating the forward and backward LSTM cells using the input se-

quence. The first BiLSTM layer transfers all hidden states (
→
ht,
←
ht) to the dropout layer. The

hidden states
→
ht extracts features from the forward sequence of time series (Blue right arrow

in Figure 2), while
←
ht extracts features from the inverse sequence of time series (Blue left

arrow in Figure 2). This dropout layer can discard the neural network unit temporally,
which can reduce the parameters and prevent overfitting. After these processes, the BN
layer normalizes the transferred features to avoid internal covariate shift and the resulting
vanishing gradients. The normalized features are transferred to the second BiLSTM layer

to compute the representation (
→
ht,
←
ht) of the sequence. The dense layer is a standard one-

dimensional fully connected layer. The representations given by the last hidden state of
the BiLSTM layer are then forwarded to the dense layer to form a one-dimensional vector.
Finally, the activation layer controls the activation level of the neuron for the forward signal
transformation and generates the outputs, that is, the predicted NDVI time series.
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Figure 2. (a) The architecture of the deep learning model of NDVI–BiLSTM, which is derived from
Graves, et al. [50] and Hochreiter and Schmidhuber [38]. The bidirectional LSTM cells are employed
in NDVI simulation, and (b) for forward LSTM cell and (c) for backward LSTM cell. (Reprinted with
permission from Ref. [50] and Ref. [38], Copyright 2013, IEEE and Copyright 1997, Massachusetts
Institute of Technology). Take the forward LSTM cell as example, the previous hidden state ht−1 for
the current cell state Ct and the current input Xt are concatenated for feature extraction using the
four neural network layers (three gates). The features are then transferred forward. In a branch, the
features are used to update the current cell state Ct. In the other branch, the features are copied to
transferred into the next BiLSTM layer and the next day (time sequence).

The LSTM cell is an important component in the NDVI–BiLSTM model. The hidden
units are a special gate unit in the LSTM cell, which includes three gates: the forget gate,
input gate and output gate, denoted by four red dashed boxes from left to right in the
forward LSTM cell in Figure 2. The hidden unit hk ∈ RN learns features from sequence
by incorporating the three gates incrementally, which is the short-term memory. In the
case of forward LSTM at the kth day in sequence n, the forget gate fk ∈ RN learns to forget
some features in the previous hidden state hk−1 for the current cell state Ck computation
(Equation (2a)). In addition, the input gate ik ∈ RN and the current memory C̃k ∈ RN learn
to reserve useful features in the current input Xtk for the current cell state Ck computation
(Equations (2b,c)). The output gate ok ∈ RN learns to update the new hidden state hk based
on the current cell state Ck (Equations (2d,e)).

fk = σ(W f ·[hk−1, Xk] + b f ) (2a)[
ik
C̃k

]
=

[
σ

tanh

]
(Wi·[hk−1, Xk] + bi) (2b)

Ck = fk
⊙

Ck−1 + ik
⊙

C̃k (2c)
ok = σ(Wo·[hk−1, Xk] + bo) (2d)
hk = ok

⊙
tanh(Ck) (2e)

, (2)

where σ(x) is a sigmoid nonlinearity that can squash the inputs to the range of [0, 1] and
σ(x) = 1/(1 + e−x). W and b are the filter and bias, respectively. tan h(x) is a hyperbolic
tangent nonlinearity with an output range of [−1, 1], and tanh(x) = (ex − e−x)/(ex + e−x).⊙

denotes the element-wise product. C̃k is the current memory. Wo, Wi, and Wf denote the
weights of the output gate, input gate and forget gate, respectively.

Predicting NDVI using a deep learning model is essentially a regression problem, and
we employ mean square error (MSE) as the loss function:

LossMSE = −∑n
i=1(yi − y

′
i)

2/n, (3)

where n is the mini-batch size (i.e., the number of input sequences), and yi and y
′
i denote

the reference and estimated NDVI values, respectively.
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The computation of the backward LSTM is similar to that of the forward LSTM but at
different sequences, where the input sequence for forward LSTM is (h1, h2, . . . , hn) and the
output sequence for backward LSTM is (hn, hn−1, . . . , h1).

3.1.2. Modeling NDVI with Vegetation-Based BiLSTM

Vegetation activity varies across land cover types, and annual NDVI fluctuation is
markedly different for different vegetation types [51]. Therefore, we trained models for
each vegetation type separately to predict the NDVI time series. For each vegetation type,
the task is to predict the NDVI time series by establishing the relationship between mete-
orological variables and vegetation activities [52]. Given a time series of meteorological
data M = (X1,1, . . . , X1,t, X2,1, . . . , X2,t, . . . , Xm,1, . . . , Xm,t), our NDVI-BiLSTM model esti-
mates (y1, . . . yT′), that is, the NDVI sequence for one vegetation type corresponding to
1 ∼ T′ days. The input time series (X1,1, . . . , X1,t, X2,1, . . . , X2,t, . . . , Xm,1, . . . , Xm,t) consists
of m training pixels. Each pixel has t sequences of meteorological variables, and each
sequence is expressed as X = (x1, . . . xn), where n is the length of a sequence. In this study,
500 pixels for each vegetation type were used for training. Every 90-day meteorological
variable at one pixel was used to form a sequence. t is the number of sequences for one
pixel, which depends on the given period T, the length of a sequence n, and the time step s
in a sequence:

t = (T − n + 1)/s, (4)

To predict an integral NDVI time series for a year, that is, t = 365, we set T = 454, n = 90,
and s = 1. Accordingly, the number of training data points is m × t for each vegetation type.

Modeling NDVI with BiLSTM is a “Sequential input, static output” learning task, that
is, (xt+1, . . . xt+90) 7→ yt+91 . With the meteorological variables of length 90 (t + 1–>t + 90)
as input, the goal is to predict a single NDVI value at day t + 91. We use a fusion approach
that uses meteorological time series data (xt+1, . . . xt+90) progressively to merge the single-
day predicted NDVI value into the full sequence of a year. The experimental codes are
available at https://github.com/sunying23/vegetation-BiLSTM (accessed on 5 April 2023).

3.1.3. Training Details

Our model is implemented using Keras [53], an application programmer’s interface
on top of TensorFlow, on an NVIDIA GTX Titan GPU. We use a base learning rate of 0.01,
and the learning rate is updated using Equation (5) epoch by epoch.

lri = 0.01 ∗ (1− i/50)0.6, (5)

where i denotes the ith epoch.
As mentioned above, 500 training samples were randomly selected for each vegetation

type. In total, 3000 samples were employed for model training. We conducted two kinds
of model tests from two perspectives. First, we randomly selected 20 test samples for
each vegetation type from the remaining pixels (except for the 500 training samples).
Second, all the remaining pixels were used for the model test in China. We trained the
NDVI–BiLSTM model with back-propagation over time for a total of 100 epochs, and a
mini-batch size of 64 was applied. We use the default initialization method in Keras for
parameter initialization with a uniform distribution. We use MSE as the loss function to be
minimized by the Adam optimizer. Dropout (Srivastava et al., 2014) [54] with a ratio of 0.5
was applied to the first BiLSTM layer. In terms of the activation layer, we used the softsign
activation function (Equation (6)) to train the six studied vegetation types separately.

so f tsign(x) =
x

1 + |x| , (6)

https://github.com/sunying23/vegetation-BiLSTM
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3.2. VCI for Monitoring Vegetation Stress

NDVI is considered to have spatial variability related to the weather, vegetation type,
or topography of a region [33], of which the latter two are local resource background
and nonweather factors. For example, dense tropical forests and deserts have markedly
different local resource backgrounds as well as NDVI values. Kogan [19] proposed VCI
to filter out these nonweather effects by using geographic filtering, which is widely used
in vegetation activity monitoring. Assuming that maximum NDVI is developed in years
with optimal weather (non-drought years) and minimum NDVI is developed in years with
unfavorable weather (drought years), for each pixel i and each week w, VCI is defined as:

VCIw
i = 100 ∗ (NDVIw

i − NDVIp
i, min)/(NDVIp

i,max − NDVIp
i,min), (7)

where NDVIw
i is the weekly NDVI of pixel i, NDVIp

i,max and NDVIp
i,min are the absolute

maximum and minimum NDVI for pixel i during a given period, respectively.
In this study, during the study period of 2009–2017, all pixels of different vegetation

types were included for VCI computation. As shown in Equation (7), VCI varies from 0
to 100. We used three ranges to reflect vegetation conditions [55], that is, 0–40 (in stress),
40–60 (normal), and 60–100 (favorable weather).

3.3. Trend Analysis of Vegetation Activity in China

Many studies have used the linear regression method for trend analysis; however, it
requires the normal distribution of data that are easily affected by noise. Sen’s slope [56]
is a trend calculation method that uses the median value of the time series, which can
effectively reduce the noise. The Mann–Kendall (MK) [57,58] method allows for testing the
significance of a trend in the time series. In this study, we employed Sen’s slope and MK
method [59] for analyzing the vegetation activity trend.

Given a time series Vt = (v1, v2, . . . , vn), Sen’s slope is defined as:

slope = Median
(Xj − Xk

j− k

)
∀ 1 < k < j < n, (8)


H =

n−1
∑

i=1

n
∑

j=i+1
sgn
(
vj − vi

)
, and (9− 1)

sgn
(
vj − vi

)
=


1, i f vj − vi > 0
0, i f vj − vi = 0
−1, i f vj − vi < 0

(9− 2)
, (9)

where n is the number of data in the time series, j > i.
When n > 10, the MK statistic value is derived as follows:

MKH =


H−1√
Var(H)

, i f H > 0

0, i f H = 0
H+1√
Var(H)

, i f H < 0
, (10)

Var(H) =
n(n− 1)(2n + 5)−∑m

i=1 ti(ti − 1)(2ti + 5)
18

, (11)

where m is the number of tied values, and ti denotes the number of ties of ith value.
Given a significant level, the slope and MK jointly determine vegetation activity

trends. In this study, we used α = 0.05, MK1−α/2 = MK0.975 = 1.96. Therefore, when
the Sen’s slope > 0 and |MK | > 1.96, the sequence showed an upward trend, that is,
vegetation showed marked improvement; when the Sen’s slope > 0 and | MK | ≤ 1.96, the
sequence showed an upward but insignificant trend, that is, the vegetation showed a slight
improvement. Similarly, when the Sen’s slope < 0 and | MK | > 1.96, the sequence showed
a significant downward trend, that is, the vegetation showed marked degradation; when
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the Sen’s slope < 0 and | MK | ≤ 1.96, the sequence showed a downward but insignificant
trend, that is, vegetation showed slight degradation.

3.4. Performance Assessment

For assessment, the NDVI predicted from meteorological data using BiLSTM was
compared with satellite-derived NDVI. Whether the predicted NDVI is suitable for moni-
toring vegetation activity was validated using satellite-derived VCI. Specifically, both the
spatial pattern and the time series values for NDVI and VCI were compared. For all kinds
of comparison, the widely used metrics, the coefficient of determination (R2), was used for
quantitative assessment:

R2 = ∑N
i=1(ŷi − y)2/ ∑N

i=1(yi − y)2, (12)

where N is the number of pixels; ŷi and yi denote the estimated and reference values of
pixel i, respectively; and y denotes the mean of reference values.

4. Results
4.1. NDVI Predicted Using Vegetation-Type-Based BiLSTM

Figure 3 shows the simulation results of mean NDVI fluctuation of the six vegetation
types from 2009 to 2017, that is, deciduous forest, evergreen forest, mixed forest, grassland,
savannas, and croplands. The mean value of NDVI for each vegetation type was calculated
based on 20 randomly selected samples. Annual NDVI fluctuation clearly varies from one
vegetation type to another. The vegetation types of deciduous forest, grassland, savannas,
and croplands have relatively stable year-to-year amplitudes compared to those of ever-
green and mixed forests. Although apparent discrepancies exist, the NDVI–BiLSTM deep
model can predict the NDVI time series of each vegetation type well. The predicted NDVI
time series profiles are remarkably close to the satellite-derived profiles. For vegetation
type with only one peak (such as deciduous forest, grassland, savannas, and croplands),
the predicted NDVI has a very good consistency with the satellite-monitored NDVI in
almost all years, especially the deciduous forest. As shown in Figure 3, evergreen and
mixed forests often have complex profiles owing to plant growth or leaf senescence. The
simulation values are somewhat worse than the four types above, whereas the results are
desirable compared to satellite monitoring.

The growing season is important for vegetation growth, and is often defined as the
daily temperature of 5 ◦C lasting for more than 5 days [60]. In this study, we employed ten
months from March to October as the growing season directly to investigate the agreement
between the predicted NDVIs and ground truth. Figure 4 shows the mean NDVI of the
growing season (March–October) throughout China. The mean monthly NDVI of each pixel
is calculated using all the values in each month throughout the nine years. Figure 4 shows
that the vegetation activities can be captured by our simulation method. The vegetation
growth starts in March and peaks in August, and vegetation grows well in both central and
southern China. Overall, the predicted NDVIs agree well with the ground truth derived
from satellites in the view of the country range, and the seasonal change information about
NDVI variation and trend are also well presented across months. It is slightly regrettable
that the predicted results appear smoother than that of the ground truth with less detailed
characteristics from the aspect of spatial distribution.
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4.2. Assessment of the NDVI Simulation

Figure 5 shows the performance of the 20 randomly selected pixels of each vegetation
type over the years 2009–2017. The x-axis presents the ground truth and the y-axis the
prediction. All R2 values of the six vegetation types are greater than 0.5. Specifically, the
vegetation type of deciduous trees achieved the highest accuracy, followed by savannas,
croplands, and grass, which is consistent with the previous results presented in Figure 3.
The strongest predictions of NDVI are between 0.1–0.8 for croplands and deciduous,
0.4–0.9 for evergreen, 0–0.3 for grassland, 0.4–0.9 for mixed, and 0–0.9 for savannas. In
other words, predictive performances are good for croplands, savannas, and deciduous as
the strongest predictions covering almost the entire range of NDVI, that is, 0–1. Performance
lowers for low NDVI values in evergreen and mixed forest and for high NDVI values in
grasslands. The low predictive performance for high NDVI values in grasslands may be
due to the overprediction of the peak NDVI values in grassland. As shown in Figure 3, the
peak NDVI values of grassland are often centered at approximately 0.4–0.5, and our method
may predict higher values than actual for high NDVI values. The drop in the accuracies
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of evergreen and mixed forest at low NDVI values are probably because they often have
high values in NDVI profiles, and our method achieves lower values than actual values. In
terms of the two types, mixed forests have slightly better accuracy than evergreen forests.
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Figure 5. Performance across mean values of satellite measured and predicted NDVIs of the 20
randomly selected pixels for each vegetation type; the total number of NDVI values is 65700 in each
density scatter plot.

We also assessed the performance of our method over the entire country. Figure 6
shows the yearly R2 between the predicted NDVI values and the satellite-derived values.
It is clear that the predicted NDVI has the strongest relationship with ground truth in the
middle and north of the country, especially the northeast. The results in the southeast and
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southwest vary in accuracy across different years, and the year 2012 has the highest R2

visually. Therefore, R2 values among the years range from 0.66 ± 0.29 (2017) to 0.75 ± 0.35
(2012) (See Table 1). The differences in performance are mainly because NDVI profiles often
change with the weather instead of maintaining a monotonous consistency. The model may
have some limitations owing to the training samples and can capture the change well in
some years but not in others. To investigate the simulation results of each vegetation type,
we visualized the mean R2 of each pixel in each vegetation type for the years 2009–2017
(Figure 7). Considering the entire country, we calculated the mean R2 of each vegetation
type (Table 1). Compared with the results of 20 randomly selected samples (Figure 5),
similar conclusions can be drawn from Figure 7, where the deciduous forest has the best
simulation accuracy. The croplands and mixed forests are underestimated in the random
sample assessment, whereas savannas are largely overestimated.
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Table 1. Yearly mean NDVI throughout China from 2009 to 2017, as well as the mean NDVI of each
vegetation type.

Year NDVI Vegetation Types NDVI

2009 0.66 ± 0.29 Croplands 0.73 ± 0.24
2010 0.70 ± 0.28 Deciduous 0.87 ± 0.16
2011 0.71 ± 0.27 Evergreen 0.46 ± 0.18
2012 0.75 ± 0.25 Grasslands 0.67 ± 0.28
2013 0.71 ± 0.27 Mixed 0.61 ± 0.23
2014 0.67 ± 0.29 Savannas 0.59 + 0.24
2015 0.69 ± 0.28 — —
2016 0.68 ± 0.28 — —
2017 0.66 ± 0.29 — —

Figure 8 shows the monthly R square between the predicted NDVI values and satellite-
derived values of growing seasons across 2009–2017, which indicates the seasonal oscilla-
tions under different meteorological conditions. The spatial pattern in the variability of
monthly R square varies with time and vegetation type, which corresponds to the vegeta-
tion phenological cycles. Savannas, grassland, and mixed forest marked on subfigures of
March, April and May (the top three), respectively, have the strongest relationship between
the predicted and satellite-derived values from March to October. The type of deciduous
(circled in subfigure of June) has good accuracy over the growing season, except August
and September, and croplands (circled in subfigure July) as well as grassland (the left one
circled in subfigure April) also have the similar results. The type of evergreen distributed
in bottom right (marked in subfigure August) has relative low R square, as it often has
complex activities owing to the plant growth or leaf senescence. The model performances
on grassland in the southern west and northern west (marked in subfigure September) are
lower than grassland in other regions, which is probably due to the fact that the elevation
is higher than that of the east, and the complex climate influences the vegetation activi-
ties. Beside these, the model performance is desirable on southern savannas (marked in
subfigure October). In summary, although low R square values exist, the BiLSTM method
can well capture the vegetation activity trend from the NDVI profiles (Figure 3) and NDVI
maps (Figure 4) above.
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4.3. Vegetation Activity and Stress Monitoring via Vegetation Condition Index

A full range of VCI in the growing season is shown in Figure 9 to obtain the vegetation
activities. Taking China as a whole, the average VCI of each month during 2009–2017
is reported in Table 2. According to the average VCI, March and April exhibit a vegeta-
tion stress, especially in the northwest and northeast regions. This stress may be partly
influenced by the growing season we used. As we defined above, we used months to
define the growing season, during which the daily temperature may be lower than 5 °C for
these regions in March and April, leading to vegetation stress. The vegetation condition is
gradually favorable from March to October. Taking the country as a whole, the average VCI
in the growing season is 55 ± 18, in comparison with the prediction of 51 ± 16. Thus, the
satellite-derived ground truth and predicted VCI have similar results, showing a normal
condition of vegetation growth. The VCI calculated from the predicted NDVI is lower than
those of the satellite-derived ground truth, which is probably because our method may
have underestimated the NDVI values when considering all six vegetation types together.
As shown in Figure 9, the predicted VCI values in the middle and northwest regions of the
country are lower than those of the ground truth.
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Figure 9. The mean VCI values from March to October during 2009–2017. Both the ground truth
and predicted VCIs are presented. The first and third columns show the results of the ground truth
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Table 2. The average VCI of whole China during growing season from March to October from 2009
to 2017.

March April May June July August September October Average

GT 27 ± 17 35 ± 18 45 ± 18 54 ± 18 65 ± 18 76 ± 16 75 ± 14 63 ± 14 55 ± 18
Prediction 25 ± 15 33 ± 15 42 ± 16 50 ± 16 59 ± 17 70 ± 16 70 ± 14 58 ± 14 51 ± 16

On filtering nonweather effects using geographic filtering, yearly mean VCI shows a
slightly better R2 than NDVI (Figure 10; Table 3). The vegetation activities predicted by
meteorological data in most of China have strong consistency with those monitored by
satellite. Similar to the above results (Figure 6), grasslands in the southwest and savannas
in the southeast and southwest have slightly lower simulation results. These areas are
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often located in the Qinghai Tibet Plateau, as well as the subtropical or tropical region,
with complex climatic conditions. If we use three ranges (stress, normal, and favorable) to
describe vegetation activity, the VCI calculated using predicted NDVI is a good alternative.
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Figure 10. Yearly mean R2 of VCI calculated by the predicted NDVI throughout China from 2009 to
2017. For each pixel, all the VCI values in the days of a year are used for calculating R2.

Table 3. Yearly mean R2 between the predicted and satellite-derived VCI throughout China from
2009 to 2017.

Year 2009 2010 2011 2012 2013

R2 0.67 ± 0.29 0.70 ± 0.28 0.72 ± 0.27 0.75 ± 0.25 0.72 ± 0.27

Year 2014 2015 2016 2017

R2 0.68 ± 0.29 0.70 ± 0.28 0.69 ± 0.28 0.67 ± 0.29

4.4. Trends in Vegetation drought in China across 2008–2017

We also analyzed the trends of vegetation activities in China during the period
2008–2017. Figure 11 shows the trend of vegetation activity using Sen’s slope and MK
test. In this study, the length of the time series is about 470 weeks (2009–2017), and the
test statistic MK is used for trend significance analysis and slope for magnitude calcula-
tion. Given the significance level α = 0.05, MK1−α/2 = MK0.975 = 1.96, we found that
there is no pixel that satisfies Sen’s slope > 0 and | MK | > 1.96, and Sen’s slope <0 and
| MK | > 1.96. Namely, there is no vegetation type that shows a marked improvement or
marked degradation. Throughout the whole country, an obvious upward but not significant
trend is displayed, that is, a slight improvement (see the black pixels). Statistically, 98.51%
of the vegetation over the country is slightly improved, in comparison with 95.74% of the
predicted value. The inconsistencies between the ground truth and simulation in Figure 11
lie in the northwest (circled with blue, mainly grasslands), middle west, and middle east
(circled with orange, covered with savannas or evergreen forests).
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5. Discussion

Deep learning architecture that influences NDVI simulation: For NDVI simulation,
we tested several LSTM architectures to obtain the best performance. Figure 12 shows
the performances of three different architectures: LSTM, BiLSTM-2layers and BiLSTM-
3layers. The LSTM (yellow line) has the largest gap with GT which is derived from the
satellite images among May and July. Both BiLSTM architectures provide better accuracies
than LSTM except for August, indicating that the NDVI prediction benefits from both the
forward and backward directions. The number of layers also influences the simulation
accuracy. As many studies have reported, deep architectures are helpful for time series
prediction. However, we found that the three-layer BiLSTM is sensitive to meteorological
data, and the result (green line) is not as smooth as the result of the two-layer one (blue line).
Moreover, the gap between the three-layer BiLSTM and GT is larger than that between the
two-layer BiLSTM and GT, meaning that the two-layer BiLSTM architecture produces the
least error over the time series. It is proven that it is worth considering both the forward
and the backward directions of time series in prediction as well as the length of the network
in temporal feature learning.
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Figure 13 shows the sensitivity of NDVI simulation to meteorological variables: To
quantify the impacts of meteorological variables on NDVI simulation, we explored the sim-
ulation sensitivity of the six vegetation types to the meteorological variables. Although the
vegetation phenological cycles vary with six vegetation types, the vegetation types—except
evergreen—showed similar sensitivity to meteorological variables in NDVI simulation.
The meteorological variables, maximum air temperature, and minimum air temperature
had the greatest impact on the NDVI simulation. This is consistent with our consideration
that air temperature correlated strongly with vegetation growth, followed by day length
and precipitation. Although air temperature was an important impact factor for evergreen,
the R2 was lower than that of other vegetation types. The reason may be that evergreen
forests are often distributed in subtropical and tropical areas, and that the air temperature is
sufficient. Comparatively, day length is the most important factor that influences evergreen
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growth. Because of the low relationships between meteorological variables and evergreen,
other factors may be included in the evergreen NDVI simulation in a future study.
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Figure 13. The sensitivity of NDVI simulation to meteorological variables across six vegetation
types. Y axis reports R2 between the meteorological variables and NDVI. PRS, PRE, SSRA, TMAX,
TMIN denote atmospheric pressure, precipitation, incoming shortwave radiation, maximum air
temperature, and minimum air temperature, respectively.

BiLSTM abilities to NDVI simulation and vegetation activity monitoring: The perfor-
mances of our one-model method are similar to the GAM and ANN-mixed model in the
work of Adede et al. [32], which used precipitation and vegetation indices as the input
variables. However, they only predict 3 months of vegetation conditions. Our method
can conduct the prediction at an arbitrary time scale as long as the future meteorological
data are available. Zhou et al. [28] employed a multi-regression model for NDVI predic-
tion based on precipitation and ET0. Our prediction results on the validation dataset are
comparable with their prediction results on the base period (they selected training data
for this period). The R square on the validation period was not reported in their work,
and the accuracy on the validation dataset is often lower than that on the training dataset.
For vegetation activity monitoring, we compared the relative studies about the drought
event in China. In the works of Li et al. [61] and Song et al. [62], the impacts of 2009–2010
Southwestern China winter-spring drought on vegetation were investigated. Here, we
visualized the predicted monthly NDVI from September 2009 to May 2010 (Figure 14). It
can be seen that the predicted NDVI based on our method agrees well with the spatial
pattern of their works, indicating a potential vegetation drought prediction method. The
results can provide reference for the early warning of drought to the policy maker and
help the management of regional vegetation growth. Governments can develop policies in
advance to protect vegetation in areas that may be at risk of drought and reduce vegetation
damage and ecological loss.

In general, vegetation-type-based BiLSTM–NDVI prediction using meteorological
data is a good alternative for satellite monitoring. For the six vegetation types, the model
performs best in vegetated areas such as deciduous forests, croplands, and grasslands.
It is encouraging that the model performs well in croplands, even though we did not
account for anthropic activities. This means that the model makes it possible to forecast
drought. Spatially, better performances are obtained in northern China than in regions with
complex climate conditions and topography, that is, southern China as well as the Qinghai
Tibet Plateau. In terms of monitoring vegetation activity, the VCI derived from the deep
learning method is similar to that derived from satellite data. When classifying vegetation
conditions into three categories based on the VCI values—that is, stressed, normal, and
favorable—as the target, the proposed method produces results that are comparable to the
satellite-derived results. All these results indicate that deep learning methods could play
an important role in identifying potential vegetation stress using meteorological data.
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6. Conclusions

In this paper, we proposed a vegetation-type-based BiLSTM method for simulating
NDVI time series based on meteorological data. The experimental results indicate the
feasibility of using BiLSTM and meteorological data for simulating NDVI time series
for each vegetation type. The long-term memory of the LSTM unit can effectively store
information on temporal time series. The mean R2 value between the BiLSTM-predicted and
satellite-derived NDVI was 0.69± 0.28. Among the six studied vegetation types, vegetation-
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type-based BiLSTM achieved the best accuracy in deciduous forests R2 = 0.87 ± 0.16. One
possible reason is that deciduous forests have a relatively simple temporal profile that
corresponds to vegetation phenology cycles. We further used the predicted NDVI to
monitor vegetation conditions and stresses in response to climate-related factors using the
VCI. Both model-predicted and satellite-derived VCIs can detect similar spatial patterns of
vegetation stresses with a mean R2 of 0.70 ± 0.28. We also found that vegetation activity
showed an upward, but insignificant, trend in the past decade.

Our study demonstrated the potential of using meteorological data for NDVI simu-
lation based on deep learning, not only useful for retrospective analysis, but it also has
the ability for future prediction. Moreover, the model can be used to monitor vegetation
type-based stresses using meteorological data, which could successfully reproduce the
behavior of vegetation activities and stresses under varied climate conditions, as compared
with remote sensing data.
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