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Abstract: Considerable attention has been paid to the establishment of an appropriate cropping
patterns for the restoration of saline-alkali lands. This study’s goal was to explore changes in nitrogen-
cycling (N-cycling) gene (nitrogen fixation: nifH; nitrification: AOA, AOB, and nxrB; denitrification:
narG, norB, and nosZ) abundance of three cropping patterns at two soil depths in saline-alkali soils.
Results showed that rotation and mixture promoted soil nutrients. N-cycling functional genes were
significantly influenced by soil depths and cropping patterns. Compared with monoculture, rotation
decreased the abundance of nifH, AOA, narG, and nosZ and increased the abundance of AOB; mixture
decreased the abundance of AOA, narG, and nosZ and increased the abundance of AOB and nxrB in
the 0–15 cm soil depth. Rotation increased all genes abundance; mixture increased nosZ abundance
and decreased nxrB abundance in 15–30 cm soil depth. Soil protease, cellulase, nitrate reductase,
pH, AK (available potassium), and AP (available phosphorus) were important factors influencing
N-cycling gene abundance. In conclusion, rotation and mixture not only reduced soil salinity but
also improved soil fertility and nitrogen cycling. These findings can provide some theories for the
sustainable development of N-cycling during the restoration of saline-alkali soils.

Keywords: nitrogen fixation; nitrification; denitrification; cropping patterns; qPCR

1. Introduction

Saline-alkali soils contain high levels of soluble salts. Globally, about 932 million
hectares (M ha), including 831 million hectares of agricultural land, are affected by salt
damage [1]. Saline-alkaline soils have little productivity [2]. Several nations and regions
pay significant attention to the improvement and extension of saline-alkali wastelands,
especially considering the present global food crisis, and China has 99.13 × 106 ha of
various forms of saline-alkali land [3]. Natural and anthropogenic increases in soil salinity
are a key environmental issue that hinders plant development and production [4–8]. Due to
their high salt concentration, saline-alkali soils affect the osmotic potential outside the root
system, preventing plants from absorbing water and so affecting plant development [9–13].
The microbial populations responsible for the cycle of organic compounds are under a
rising challenge from soil salinity [14]. In order to ensure national food and ecological
security, the improvement and usage of salt-affected land are essential.

Planting alkali-tolerant plants has been observed to enhance microbial activity and
restore soil fertility [15–17]. Oats, alfalfa, and tall wheatgrass are commonly used as species
for the phytoremediation of saline lands. Alfalfa is a C3 plant and one of the world’s
most important perennial leguminous forage grasses that improve soil fertility [18,19].
In addition, Li et al. [20] found that the introduction of oats mixed with other salinity-
tolerant plants significantly contributed to the soil fungal communities in saline-alkali
soils in Northeast China. Likewise, tall wheatgrass has a very high salinity tolerance
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and is a good choice when considering alkali-tolerant plants [21,22]. It can tolerate salt
and sodium stress and has good production [23]. Phytoremediation does not only refer
to the cropping of resistant plants but also includes field management practices, such
as cropping patterns. Soil rotation has many advantageous uses, such as human food,
bioenergy, and animal feed [24]. Crop rotation may exert beneficial effects on the phys-
ical, chemical, and biological properties of soils, help in the control of weeds and insect
pests, and alleviate the adverse effects of climate and exogenous factors on soils [25]. In
addition, mixed cropping systems can leverage resources, enhance biodiversity [26], pro-
vide insights for managing agricultural systems more sustainably, and improve ecosystem
stability [27–29]. Nevertheless, information on the effects of saline land improvement under
different cropping patterns is still insufficient.

Soil microorganisms are often considered indicators of soil health because they show
great sensitivity to changes in agroecosystems [30], which is what allows researchers
to infer the impact of a process or decision on the soil environment [31]. In addition,
the critical contributions of soil biota to ecosystem services have now been universally
recognized. It is an important cutting-edge research field of agroecosystems to fully
improve the positive influences of soil microorganisms on sustainable agriculture cropping
patterns [32]. Microorganisms play a crucial role in soil N-cycling and controlling the
amount of soil N accessible to plants [33]. Nitrogen-cycle processes, such as assimilation,
ammonification, nitrification, and denitrification, involve microorganisms [34]. Biological
nitrogen fixation (BNF) is the primary route for nitrogen intake in the soil-nitrogen cycle,
converting molecular nitrogen to ammonia or other nitrogen-containing compounds by the
catalytic activity of nitrogenase in nitrogen-fixing bacteria [35]. The critical and rate-limiting
phase in autotrophic nitrification is the oxidation of ammonium (NH4

+) to nitrite (NO2
−)

by ammonia-oxidizing bacteria (AOB) and archaea (AOA) [36,37]. Nitrite is then oxidized
to nitrate (NO3

−), which is gradually reduced by denitrifying bacteria to gaseous products
(NO, N2O and N2), removing nitrogen from the ecosystem [38]. However, information on
how agricultural practices change the functional bacteria involved in the nitrogen cycle
is still insufficient [39]. Numerous studies have demonstrated that quantitative marker
genes are good indicators of key biogeochemical processes in the nitrogen cycle and have
been used to quantify the quantity of bacteria in soils using genetic markers [40–42]. In
the nitrogen cycle, the nifH gene (encoding nitrogenase) is related to nitrogen-fixation;
amoA (ammonia monooxygenase) and nxrB (Nitrite oxidoreductase enzyme) are related
to nitrification; and narG (nitric oxide reductase), norB (nitric oxide reductase), and nosZ
(nitrous oxide reductase) are related to denitrification [43].

So far, the impact of different cropping patterns and soil depths on the abundance of
functional genes for N-cycling in the saline-alkaline soils of Northeast China is unknown.
Therefore, we used monoculture, rotation, and mixture in three experimental field distri-
butions in Northeast China and evaluated the variations in N-cycling gene abundance by
qPCR methods. The purpose of our study was to determine if the abundance of N-cycling
genes in soil was responsive to changes in cropping patterns and soil depths. We hypothe-
sized that (1) compared to monoculture, rotation and mixture will result in the restoration
of soil nutrients, such as soil properties and enzymes; (2) rotation and mixture will cause
changes in N-cycling gene abundance; and (3) variations in the abundance of N-cycling
genes are associated with soil chemistry and enzymes.

2. Materials and Methods
2.1. Site Description

The Sifang Mountain Farm is located in Zhaodong City, Heilongjiang Province
(125◦45′–126◦30′ E, 46◦12′–46◦22′ N), with flat terrain and a single type of landform. The
area of soil is carbonate meadow alkaline soil and carbonate meadow soil. The average
annual temperature is 2.4 ◦C, the annual evaporation is 1662 mm, the average annual
rainfall is 396 mm, the maximum temperature is 39.0 ◦C, the minimum temperature is
−37.5 ◦C, and the annual accumulated temperature is 2500–2700 ◦C. Before restoration, the
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soil pH in this location reached 11.00. According to the USDA soil taxonomy system, the
soil was predominantly loamy [44] and saline-alkaline experimental, which is a soda saline
soil dominated by sodium carbonate bicarbonate.

2.2. Experimental Design

This research was conducted in three experimental agricultural plots. These plots
consisted of (a) a monoculture system in which alfalfa was cultivated annually; (b) a
13-year-old cycle of alfalfa–oats–tall wheatgrass, with annual alfalfa in the first year, fol-
lowed by oats in the second year, and tall wheatgrass in the third year, in a three-year
rotation; and (c) a mixture system plot in which alfalfa, oats, and tall wheatgrass were
simultaneously planted, with each crop planted densely and virtually alternating in every
other row. These three cropping patterns use a common approach to fertiliser management,
applying nitrogen, phosphorus, and potash in the form of urea, calcium superphosphate,
and potassium nitrate. During the experimental period, all plots had similar soil and
climate conditions and were fertilized and managed in the same manner.

2.3. Soil Sampling

On the 17th of August 2017, soil samples were obtained from three alfalfa-planted plots.
Before the alfalfa harvesting, samples were taken. A soil auger was used to collect soil
samples from 0–15 cm and 15–30 cm depth in each repeated plot (8 cm diameter and
15 cm deep). Five samples were gathered in an “S” formation and then thoroughly
combined to produce one composite sample for each replication, resulting in a total of
18 samples at the plot level. After removing roots and debris, each composite field soil
sample was homogenized, packaged in sterile plastic bags, and delivered to the laboratory
immediately. The soil was then passed through a 2 mm sieve and each soil sample was
divided into two parts. One portion was frozen at −80 ◦C for DNA extraction, while the
other was air-dried at ambient temperature for soil chemical testing.

2.4. Soil Chemical Analysis

The examined soil properties, including soil pH, exchange capacity (EC), soil organic
matter (SOM), soil total nitrogen (TN), soil total phosphorus (TP) and potassium (TK),
and soil available phosphorus (AP) and potassium (AK), were described by previous
studies [45,46]. According to the description of Guan et al. [47], we determined the soil-
enzyme activity. The urease activity was determined using urea as a substrate. The protease
activity was determined using casein as a substrate. The nitrate reductase activity was
determined using nitrate of potash as a substrate. The cellulase activity was determined
using carboxymethylcellulose as a substrate. The β-glucosidase activity was determined
using β-glucoso-saligenin (salicin) as a substrate.

2.5. Soil DNA Extraction and Quantitative PCR (qPCR)

The Power Soil DNA Isolation kit (MO BIO Laboratories Inc., Carlsbad, CA, USA)
was used for DNA extraction from 0.25 g of soil following the manufacturer’s instructions.
The quantity and quality of the extracted DNA were assessed using a NanoDrop ND2000c
spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) and checked on 1%
agarose gel. The DNA samples were used to quantify the functional N-cycling genes in
the soil samples. Gene encoding the nitrogen fixation (nifH), nitrification (amoA bacteria,
AOB; amoA archaea AOA; nxrB), and denitrification (narG, norB, and nosZ) processes
(Table S1) were performed by quantitative real-time PCR (qPCR). ABI7500 Fluorescent
Real-Time PCR Detection System (Applied Biosystems, Carlsbad, CA, USA) for qPCR.
Primer sets and the PCR conditions of each gene are detailed in Table S2. The standard
curves all had R2 values above 0.99, with slope values in the range of −3.28 and −3.59 and
an estimated amplification efficiency in the range of 101.93 and 89.93%.
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2.6. Statistical Analysis

The Pearson correlation heat maps of soil properties and N-cycling genes were plotted
with the “pheatmap” package [48]. In addition, the different N-cycling gene abundances
were ordinated using non-metric multidimensional scaling (NMDS) with the dissimilarity
matrices using the “metaMDS” function in the “vegan” package [49]. To analyse the soil
chemical drivers of N-cycling gene abundance, we used the “rfPermute” package for
random forest analysis [50]. The correlations between N-cycling gene abundance and soil
important factors were analysed using Pearson linear regressions.

Using a two-way ANOVA, the impacts of cropping patterns and soil depths on soil
chemical properties and enzyme activity were investigated. Subsequently, the effect of
cropping patterns on soil properties, enzyme activity, N-cycle gene abundance, and their
ratios at two soil depths was investigated using a one-way ANOVA. Before the ANOVA,
all data were examined using Levene’s test for normality and homogeneity. Differences
between groups were examined with Duncan’s post hoc test, p < 0.05. All the analyses
above were carried out in R (v.4.2.2) [51].

3. Results
3.1. Soil Chemical Properties and Soil Enzymes

The presence of cropping patterns and soil depths can influence soil properties and
soil enzymes differently, as shown in Table 1. Results from a two-way ANOVA indicate that
pH and TN are significantly influenced by cropping patterns and soil depths, respectively
(Table 2). The soil pH in all three cropping patterns ranged from 7.72 to 8.26, indicating that
all samples are weakly basic and nearly neutral. Notably, the pH of monoculture soil was
higher than that of rotation and mixture soils at two soil depths (p < 0.05) (Table 1). With
increasing soil depths, the TN content of monoculture, rotation, and mixture soils decreased
by 22.99%, 10.79%, and 44.15%, respectively (p < 0.05) (Table 1). Cropping patterns and soil
depths also significantly influenced EC and AK content (p < 0.05) (Table 2). Specifically, at
0-15 cm soil depth, the EC of monoculture soil was significantly higher than that of rotation
and mixture soils (p < 0.05) (Table 1). In addition, the EC of rotation soil was significantly
higher than that of mixture soils (p < 0.05) (Table 1). At 15–30 cm soil depth, there were no
significant differences in EC among the three cropping patterns (p > 0.05) (Table 1). The
AK content of mixture soil was significantly higher than that of rotation (+73.22%) and
monoculture (+43.67%) soils at 0–15 cm soil depth (p < 0.05) (Table 1). At 15–30 cm soil
depth, the AK content of rotation soil was significantly higher than that of mixture and
monoculture soils (p < 0.05) (Table 1).
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Table 1. The soil chemical properties and soil enzymes in the three cropping patterns.

0–15 cm 15–30 cm

Monoculture Rotation Mixture Monoculture Rotation Mixture

pH 8.19 ± 0.08 a 7.98 ± 0.14 a 7.72 ± 0.11 b 8.26 ± 0.13 a 8.15 ± 0.06 a 7.73 ± 0.20 b
SOM (g·kg−1) 49.02 ± 1.87 b 42.05 ± 8.85 ab 55.44 ± 1.06 a 48.78 ± 2.44 a 50.95 ± 14.84 a 46.81 ± 2.14 a

TP (g·kg−1) 0.54 ± 0.21 a 0.37 ± 0.09 a 0.73 ± 0.35 a 0.39 ± 0.00 a 0.43 ± 0.05 a 0.31 ± 0.33 b
TN (g·kg−1) 2.74 ± 0.99 a 2.41 ± 0.24 a 3.42 ± 0.20 a 2.11 ± 0.40 a 2.15 ± 0.17 a 1.91 ± 0.15 a

AP (mg·kg−1) 61.95 ± 11.53 a 52.31 ± 14.57 a 69.24 ± 29.00 a 49.16 ± 2.07 b 58.57 ± 0.93 a 39.31 ± 4.35 c
AK (mg·kg−1) 50.01 ± 4.23 b 41.48 ± 6.05 b 71.85 ± 8.80 a 43.61 ± 0.04 b 51.61 ± 3.20 a 40.95 ± 0.92 b
EC (mS·cm−1) 417.84 ± 1.95 a 392.63 ± 3.03 b 382.32 ± 2.49 c 443.23 ± 12.80 a 440.75 ± 20.31 a 435.98 ± 6.47 a

Urease (mg·g−1·d−1) 0.09 ± 0.00 c 0.12 ± 0.01 b 0.17 ± 0.01 a 0.09 ± 0.00 c 0.10 ± 0.00 ab 0.10 ± 0.01 a
Nitrate reductase (mg·g−1·d−1) 0.13 ± 0.01 b 0.12 ± 0.00 b 0.17 ± 0.01 a 0.11 ± 0.02 b 0.09 ± 0.01 c 0.13 ± 0.01 a

Cellulase (µg·10 g−1·d−1) 89.91 ± 0.05 c 188.81 ± 0.02 b 216.45 ± 0.02 a 53.28 ± 0.01 c 69.93 ± 0.01 b 136.53 ± 0.02 a
β-glucosidase (µg·g−1·h−1) 34.37 ± 2.82 b 58.03 ± 6.32 a 66.75 ± 5.26 a 23.82 ± 0.72 b 24.20 ± 1.61 b 30.71 ± 3.09 a

Protease (µg·g−1·h−1) 511.86 ± 98.68 b 848.40 ± 87.25 ab 1021.47 ± 278.07 a 399.68 ± 251.54 a 502.24 ± 64.02 a 684.94 ± 187.52 a

Values represented mean ± standard deviations (n = 3). Different letters stand for significant effects (p < 0.05). SOM, soil organic matter; TN, total nitrogen; TP, total phosphorus; AP,
available phosphorus; AK, available potassium; EC, electrical conductivity.
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Table 2. Two-way ANOVAs for the impact of cropping patterns (CP), soil depths (SD) and their
interaction (CP × SD) on soil chemical properties and soil enzymes.

CP SD CP × SD

F p F p F p

pH 23.345 <0.001 1.813 0.203 0.656 0.537
SOM 0.614 0.557 <0.001 0.988 2.204 0.153

TP 0.692 0.519 4.342 0.059 2.846 0.091
TN 1.072 0.373 13.346 0.003 2.903 0.094
AP 0.015 0.985 3.294 0.095 2.436 0.129
AK 7.935 0.006 15.482 0.002 26.804 <0.001
EC 6.647 0.011 76.099 <0.001 3.169 0.079

Urease 74.454 <0.001 71.61 <0.001 32.763 <0.001
Nitrate reductase 64.508 <0.001 56.702 <0.001 2.419 0.131

Cellulase 204.903 <0.001 348.367 <0.001 32.880 <0.001
β-glucosidase 39.943 <0.001 219.684 <0.001 20.329 <0.001

Protease 7.235 0.009 9.612 0.009 0.8 0.472

Table 2 shows that soil enzyme activity is influenced by cropping patterns and soil
depths. When comparing different cultivation methods, the activity of urease, cellulase,
and nitrate reductase was significantly higher in mixed soils at a soil depth of 0–15 cm,
compared to rotated and monoculture soils (p < 0.05) (Table 1). Furthermore, the activity
of urease and cellulase was significantly higher in rotation soils than in monoculture soils
(p < 0.05) (Table 1). The activity of β-glucosidase was significantly lower in monoculture
soils than in mixed and rotation soils (p < 0.05) (Table 1), while the activity of protease
was significantly lower in monoculture soils compared to mixed soils (p < 0.05) (Table 1).
At a soil depth of 15–30 cm, the activity of urease was significantly lower in monoculture
soils than in mixed soils (p < 0.05) (Table 1). Moreover, the activity of nitrate reductase,
β-glucosidase, and cellulase was significantly higher in mixed soils than in rotated and
monoculture soils (p < 0.05) (Table 1). The nitrate reductase activity was significantly higher
in monoculture soils than in rotation soils, while cellulase activity was higher in rotation
soils compared to monoculture soils (p < 0.05) (Table 1).

3.2. N-Cycling Gene Abundance

Cropping patterns and soil depths had a significant impact on all N-cycling functional
genes (Table 3). At a soil depth of 0–15 cm, the abundance of nifH was significantly higher
in monoculture than in rotation (p < 0.05) (Figure 1). Similarly, the abundance of AOA,
narG, and nosZ was significantly higher in monoculture than in rotation and mixture soils
(p < 0.05), while the AOB abundance was significantly lower in monoculture than in
rotation and mixture soils (p < 0.05). The AOA abundance in mixture soils was significantly
lower than in rotation (p < 0.05), and the nxrB abundance in monoculture and rotation was
significantly lower than in mixture soils (p < 0.05). There was no significant difference in
norB abundance among the three cropping patterns (p > 0.05), as shown in Figure 1.

Table 3. Two-way ANOVAs for the impact of cropping patterns (CP), soil depths (SD) and their
interaction (CP × SD) on N-cycling gene abundance.

CP SD CP × SD

F p F p F p

nifH 2.34 0.014 47.58 <0.001 8.46 0.01
AOA 18,587.73 <0.001 23,284.08 <0.001 19,630.12 <0.001
AOB 31.88 <0.001 247.85 <0.001 24.57 <0.001
nxrB 74.17 <0.001 339.44 <0.001 82.10 <0.001
narG 8.39 <0.001 68.31 <0.001 17.38 <0.001
norB 9.67 0.03 76.96 <0.001 1.04 0.39
nosZ 29.90 <0.001 200.08 <0.001 29.29 <0.001
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letters on the right side of the bar chart are for 0–15 cm soil depth, while the letters on the left side are
for 15–30 cm soil depth.

At a soil depth of 15–30 cm, all N-cycling abundances in rotation were significantly
higher than in mixture and monoculture soils (p < 0.05) (Figure 1). In addition, the nosZ
abundance in mixture soils was significantly higher than in monoculture soils (p < 0.05),
while the nxrB abundance in monoculture was significantly higher than in mixture soils
(p < 0.05).

3.3. N-Cycling Gene Abundance Ratio

To investigate how soil depths and cropping patterns impact N-cycling processes as-
sociated with gene abundance, we calculated the ratios for different N-cycling abundances.
At surface soil, we found no significant difference in the nifH/(AOA +AOB + nxrB) ratio
among all cropping patterns. However, at deep soil, the nifH/(AOA + AOB + nxrB) ratio
in monoculture was significantly lower than in rotation and mixture (p < 0.05) (Figure 2a).
The nifH/(AOA + AOB + nxrB) ratio in rotation and mixture at deep soil was significantly
higher than that at surface soil (p < 0.05) (Figure 2a). Furthermore, the AOA/AOB ratio
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in mixture and rotation was significantly lower than in monoculture at both soil depths
(p < 0.05) (Figure 2b). The AOA/AOB ratio in monoculture at surface soil was significantly
higher than that at deep soil (P<0.05) (Figure 2b). We found no significant difference
in the nifH/(narG + norB +nosZ) ratio among the three cropping patterns at both soil
depths (p < 0.05) (Figure 2c). The norB/nosZ ratio in mixtures was significantly higher than
in monoculture at surface soil and lower than in monoculture and rotation at deep soil
(p < 0.05) (Figure 2d).
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Figure 2. The efficiency of N-cycling processes were inferred from the calculation of different N-
cycling gene abundance ratios. (a–d) represent the nitrogen sequestration process, ammonia oxidation
process, nitrogen loss process, and N2O production process, respectively. Different small letters
indicate significant differences among the three cropping patterns (p < 0.05). A significant difference
between soil depths and statistical significance is indicated as follows. * p < 0.05.

3.4. Association of Soil Properties and Enzyme Activity with Gene Abundance

Based on the NMDS results, we observed that both soil depths and cropping pat-
terns had a significant impact on the abundance of N-cycling genes (Figure 3a). We then
proceeded to investigate the individual effects of surface soil and deep soil cropping pat-
terns on the abundance of N-cycling genes (Figure 3b,c). Furthermore, we carried out
a correlation analysis between soil properties, enzymes, and N-cycling gene abundance
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(Figure 3d,e). Specifically, we found a significant positive correlation between pH and
nosZ abundance, and a negative correlation between urease and nosZ abundance, within a
soil depth range of 0–15 cm (Figure 3d). AOB abundance was positively correlated with
protease and β-glucosidase, and negatively correlated with soil EC (Figure 3d). Addi-
tionally, the nifH/(AOA + AOB + nxrB) ratio was negatively associated with cellulase,
while the nifH/(narG + norB + nosZ) ratio was positively correlated with SOM and TP
(Figure 3d). Furthermore, the abundance of nxrB was positively correlated with TP in deep
soil (Figure 3e), and the norB/nosZ ratio was positively correlated with EC and negatively
correlated with protease (Figure 3e).
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3.5. Random Forest Analysis

We utilized a random forest model (Figure 4) to predict the impact of soil chemical
properties and enzymes on the abundance of different N-cycling genes. At a soil depth of
0–15 cm, the abundance of nifH and norB was primarily driven by the activity of protease,
while cellulase was the main driver for the abundance of AOA and nosZ. Additionally,
pH was the primary driver for the abundance of AOB and narG, while nitrate reductase
drove the abundance of nxrB (Figure 4a). At a soil depth of 15–30 cm, nitrate reductase
was the primary driver for the abundance of AOA and nifH, AK was the main driver for
the abundance of nxrB, and AP was the primary driver for the abundance of AOB, narG,
norB, and nosZ (Figure 4b). We further investigated the relationship between important soil
factors and N-cycling gene abundance through linear regression (Figure 5).
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A significant linear pattern was observed between soil factors and the abundance
of nitrification functional genes (AOA, AOB, and nxrB) and nosZ at 0–15 cm soil depth
(Figure 5a). At a soil depth of 15–30 cm, all models of N-cycling gene abundance were
significantly correlated with important soil factors (Figure 5b).

4. Discussion

The security and sustainability of food production is one of the key challenges of
the 21st century, and mixture and rotation are essential for soil fertility maintenance as
conservation tillage practices. Our study found that complex cropping patterns promoted
soil nutrients and prevented the further development of soil salinization (Table 1). This
seems to be due to the effective increase of root secretions containing organic acids with
the use of mixture and rotation, which in turn neutralized the CO3

2− and HCO3
− content

on soil colloids [52]. In addition, plants could absorb soil salts because of their ability to
absorb salt ions directly [53,54].
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4.1. Complex Cropping Patterns Alter nifH Gene Expression

Soil nitrogen is critical and the lack of nitrogen will severely limit agricultural pro-
duction [55]. In the biosphere, nitrogen can only be fixed naturally by nitrogen-fixing
microorganisms [56]. Zhou et al. found that crop rotation significantly affected the commu-
nity structure of nifH diazotrophs, especially the community composition, by comparing
soil samples from uncultivated and rotation fields [57]. Our study showed that soil depth
may be an important factor affecting nifH expression in rotation soils, specifically by de-
creasing in topsoil and increasing in deeper soils. Previous studies have shown that high
soil NH4

+ amounts can suppress the abundance of the nifH gene [58–60]. Unfortunately,
we did not test the NH4

+ content of the three cropping patterns. Therefore, we speculate
that it may be caused by high plant N uptake and N loss from different plants in the
rotation soils triggered by heavy summer rainfall [61]. Hao et al. [62] also showed by
a meta-analysis that long-term crop diversification appears to lead to a decrease in the
abundance of the nifH gene. Our study found that the lowest AP content was detected
in surface rotation soils (Table 1). The decrease in the abundance of nifH in the soil also
seems to be closely related to the reduction of AP content [63]. Furthermore, we noted
that proteases were the most important factors driving the abundance of the nifH gene
(Figure 4). Soil microorganisms are capable of secreting extracellular proteins to influence
soil nutrient cycling, so changes in proteases that are sensitive to the external environment
may affect soil microbial-mediated nutrient cycling [64,65]. Proteases could suppress the
abundance of the nifH gene from rotation soil in 0-15 cm soil depth, even though the two
do not show significant correlation (Figures 3d and 5a). This may be due to the fact that
proteases provide bioavailable nitrogen by breaking down organic matter in the soil [66]
and smaller organic matter molecules such as oligopeptides and amino acids [67]. In
addition, Wang et al. also showed that the abundance of nifH may also be negatively
correlated with bioavailable nitrogen in soil due to changes in the ecological niche, which
further confirms our speculations [68]. The abundance of nifH increases with increasing
soil depth. It appears to exhibit higher abundance for rotation soils in the 15–30 cm soil
depth [69]. By comparing continuous and rotational cropping treatments, Zou et al. [70]
showed that rotational cropping systems could significantly increase the abundance of the
nifH gene at 0–20 cm soil depth in the black soils of Northeast China. This may be due to
the perturbation of the multi-year crop rotation promoting an increase in the abundance of
the nifH gene that was not as stable as in monoculture [71]. In addition, the abundance of
nifH seems to be associated with soil N2 fixation [72]. It has been shown that the abundance
of nifH genes detected in Australian soils during the disturbance experiment was signifi-
cantly and positively correlated with the rate of nitrogen-fixation processes, indicating the
vigorous activity of bacterial populations [73]. By comparing the abundance of functional
genes mediating different nitrogen-cycling processes, we found that the nitrogen-fixation
efficiency of rotation and mixture soils may be higher than that of monoculture in deep
soil (Figure 2a). The increase in soluble organic carbon promoted by the litter left in the
soil by rotation and mixture can provide a sufficient carbon source for the enrichment of
diazotrophic bacteria [72], which promotes the nitrogen-fixation efficiency of the rotation
and mixture in the deep soil (Figure 2a). In addition, we noted that soil depth significantly
influenced the nitrogen-fixation efficiency in complex cropping systems (Figure 2a). Deeper
soils have higher soil temperatures than topsoil, which promotes the decomposition of soil
organic matter and thus increases the efficiency of N fixation. Soil quality improvement
can improve greenhouse-gas (N2O) emissions, and the significant correlation between
nitrate reduction and the abundance of nifH may be due to the relationship established by
N2O emissions [74]. It has been established that N2O emissions appear to be positively
correlated with nitrate-reductase activity, while a reduction in soil N2O emissions is able
to increase the abundance of N-fixing microorganisms [74]. Soil nitrate reductase may
have influenced N2O emissions and, in turn, the abundance of nifH. The increased abun-
dance of nifH is supported by the possible higher availability of oxygen in the soil, as low
oxygen conditions are also considered to be one of the controlling factors for microbial ni-
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trogen fixation [75,76]. In addition, deeper soils have higher soil temperatures than topsoil,
which promotes the decomposition of soil organic matter and thus increases the efficiency
of N fixation.

4.2. Cropping Patterns Ecological Niches Affect Nitrifying Bacteria Abundance

Nitrification can be driven by AOB or AOA and is a central process in the N-cycling
process [77]. Our study found that the abundance of AOA of monoculture was significantly
higher than in rotation and mixture soils in surface soil, which seemed to be caused by
differences in soil oxygen levels (Figure 1). The multi-year rotation of soils introduces
different vegetation types of apoplastic material, which can act as cover crops that can
play a role in increasing soil oxygen [78]. In addition, mixture soils have greater planting
density, and more plant roots and an excess root system ensure sufficient soil pore space
to store oxygen [79]. Interestingly, we noted a significant negative correlation between
cellulase activity and AOA gene abundance (Figure 5a). Zhang et al. [80] reported that
elevated CO2 can lead to a decrease in soil-cellulase activity. This indicates that the link
between AOA abundance and the presence of cellulose seems to be caused by changes in
CO2 due to changes in oxygen content. In contrast to the abundance of AOA, more complex
cropping patterns appear to have led to an increase in the abundance of AOB in 0–15 cm
soil depth (Figure 1). Although a study reported that crop rotation seems to have little
effect on AOB abundance [81], for saline low-nutrient soils, the restoration of soil nutrients
seems to provide more ecological niches for increased AOB abundance. Rotation and
mixture will inevitably introduce more nutrient inputs than monoculture soils, and this will
inevitably increase the abundance of AOB [82,83]. Many studies have confirmed that pH
is a driving factor affecting the abundance of AOB [84–86]. Our study found that soil pH
was significantly and negatively correlated with the abundance of AOB (Figure 5a). It was
reported that AOA seems to prefer an acidic environment while AOB prefers an alkaline
environment [87]. AOB is more sensitive to environmental changes and more susceptible
to soil-salt stress than AOA [88]. Saline and alkaline stress reduced the number of AOB and
reduced the preference of AOB for saline and alkaline environments [89]. Furthermore, in
addition to soil acidity, the ecological niche specialization between AOA and AOB depends
on the availability of nutrients from soil resources [90]. Soil proteases and β-glucosidases
have been shown to be significantly correlated with soil-nutrient content [91], suggesting
that AOB seems to be able to benefit soil nutrients better than AOA to ensure bacterial
population growth. In addition, a significant negative correlation between EC and AOB
abundance has also been reported, and EC may have an effect on AOB abundance [92].
Luo et al. [93] also reported a significant positive correlation between soil AP content and
AOB abundance. In deeper soils, we observed significantly higher abundances of both
AOA and AOB in rotation than in monoculture and mixture soils (Figure 1). The changes
in AOA and AOB abundance were consistent, showing that AOA also plays an important
role in soil nitrification in deep soils [94]. Crop rotation can better increase the carbon and
nitrogen content of the soil and maintain soil quality as well as nutrient balance [95,96]. It
has been confirmed that nitrate reductase is closely related to the AOA community [97].

We noted that the mixture possessed higher nxrB abundance than monoculture and
rotation at a soil depth of 0–15 cm (Figure 1). It is reported that nxrB is a functional gene
of the Nitrospira bacterial populations [98] and mixture soils are richer in root secretions
and thus recruit Nitrospira [99]. We also found that the abundance of nxrB appeared
to be significantly higher in monoculture than in a mixture at a soil depth of 15–30 cm
(Figure 1). Zhang et al. [100] found that a conventional monocrop pattern could increase the
abundance of Nitrospira, which may explain the higher abundance of nxrB in monoculture
soils. Nitrospira is a diverse group of nitrite-oxidizing bacteria (NOB) and among the
environmentally most widespread nitrifiers [101] and it responded significantly to the
gradient of environmental nutrients, which included soil TP content [102]. In addition,
Yu et al. [103] tested nine classes of Nitrospira and three of them showed a significant
positive correlation with soil TP, which would suggest that a significant positive correlation
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between nxrB and TP is possible. Hu et al. found that the AOA/AOB ratio decreased
with increasing pH by gaining insight into the ecological characteristics of AOB in 65 soils
collected from various soil and ecosystem types [104]. This contrasts with our findings that
AOA microorganisms seem to remain active in saline soils and that AOA and AOB do not
compete. In addition, the higher soil nutrient content of rotation and mixture promoted the
increase in AOB abundance, resulting in a lower AOA/AOB ratio [105]. Szukics et al. [106]
found that AOA abundance can also be favored by high pH through the study of eight
mountain grasslands in Austria, France, and the UK. In addition to this, we observed a
significant effect of soil depth on AOA/AOB (Figure 2). AOA has the advantage of being
more numerous in the amoA gene pool relative to AOB, and as AOA decreases with depth
leading to the same trend in the AOA/AOB ratio [107].

4.3. Mixture and Rotation Reduce N Losses by Reducing narG and nosZ Abundance

In this study, we observed that the abundance of narG and nosZ was significantly
higher in monoculture than in rotation and mixture soils in a soil depth of 0–15 cm (Figure 1).
The decrease in the abundance of narG may be related to the shallow groundwater of the
soil. Zhang et al. found that the abundance of narG genes decreases as the water table
decreases and the soil profile continues to dry [108]. Crop rotation soils have more plant
litter in the surface soil to play a certain role in water absorption [109]. In addition, more
roots in mixture soils also led to increased water demand [110]. Soil pH appears to be
an important factor affecting nosZ abundance, and the abundance of nosZ was inhibited
by low pH and increased with increasing pH [111]. The present study confirms this idea,
with lower pH values in rotation and mixture than in monoculture soils (Figure 3d and
Table 1). In addition, an increase in the denitrifying bacteria abundance and a significant
decrease in urease activity have been reported, which is consistent with the results of
the study (Figure 3d). The abundance of narG, norB and nosZ genes were significantly
higher in rotation than in monoculture and mixture soils in 15–30 cm soil depth (Figure 1)
Crop rotation can increase the rate of denitrification, which also increases when a mixture
of crop residues is added to the soil [112]. It seems that the difference in oxygen levels
due to soil depth provides a better environment for denitrifying bacterial populations to
survive, and residual apoplast is less likely to decompose and meet nutrient requirements.
In addition, we also observed that the abundance of nosZ in the mixture was significantly
higher than in monoculture in deep soils (Figure 1). Castellano et al. demonstrated that
mixed crops of both legumes and non-legumes significantly increased nosZ abundance
and significantly reduced N2O emissions by mixing two types of plants, legumes, and
non-legumes [113]. This may be due to the influence of soil moisture. It has been reported
that nosZ gene abundance is increased by reducing soil moisture [114]. More roots in
the mixture reduce soil water retention compared to monoculture soils in the deep soil.
Notably, we found that the norB/nosZ ratio in the mixture soils was significantly higher
than the monoculture soils in surface soil (Figure 2d). This suggests that N2O emissions in
monoculture may be greater than in mixture soils. A tighter link between N2O-reducers
and mixture-composition compared to microbes involved in N2O production, which may
be of agronomic relevance as microbes containing the nosZ gene are the only known
biological sink for N2O emissions [115]. This indicates that the abundance of nosZ is closely
related to N2O emissions, and the abundance of nosZ is significantly higher in monoculture
than in mixture soils in 0–15 cm soil depth (Figure 1). Unlike the topsoil, the norB/nosZ
ratio was significantly lower in the mixture than in the rotation and monoculture soils in
15–30 cm (Figure 2d). This may be due to changes in microbial community structure as well
as changes in nosZ community diversity. Different mixed-crop species affect the abundance
of nosZ and nosZ communities [116]. This is due to differences in the composition of plant
root exudates and root morphology, which determine the degree of competition between
plant and microbial communities for available soil N [117,118]. In addition, our study
found a significant correlation of the norB/nosZ ratio with soil EC and protease activity
(Figure 3e). Adviento et al. found that the maximum N2O loss occurred at the highest EC
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level by exploring the effect of electrical conductivity (EC) on N2O production in five soils
under intensive cultivation [119]. It has also been confirmed that soil N2O emissions are
significantly correlated with soil protease activity [120], which remains consistent with the
results of this study (Figure 3e).

5. Conclusions

The introduction of a mixture of oats and tall wheatgrass, along with rotation, has
been found to promote soil desalination and nutrient restoration, particularly soil enzyme
activity, in saline soils. The abundance of N-cycling is strongly influenced by cropping
patterns and soil depths, with rotation decreasing nifH abundance in surface soils and
increasing nifH abundance, AOA, and AOB abundance in deep soils. Crop diversity
is crucial, resulting in the highest nxrB abundance in mixture surface soils. However,
complex cropping patterns decrease AOA abundance and increase AOB abundance in
surface soils. They also reduce narG and nosZ abundance in surface soils while increas-
ing denitrification in deep soils. Mixtures may promote N2O emissions from surface
soils and suppress N2O emissions in deep soils. Changes in soil chemistry and enzyme
activity play a vital role in the genetic variation of N-cycling functions in saline soils. Fur-
ther investigation into changes in microbial communities of different N-cycling genes is
necessary to better understand the mechanisms of genetic variation in nitrogen-cycling
processes in saline soils.
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