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Abstract: This study employs mainly the Bayesian DCC-MGARCH model and frequency connected-
ness methods to respectively examine the dynamic correlation and volatility spillover among the
green bond, clean energy, and fossil fuel markets using daily data from 30 June 2014 to 18 October
2021. Three findings arose from our results: First, the green bond market has a weak negative correla-
tion with the fossil fuel (WTI oil, Brent oil, natural gas, heating oil, and gasoline) and clean energy
markets, which means that green bonds play a critical hedging role against fossil fuel and clean
energy. Second, the green bond and clean energy are net volatility receivers from WTI crude oil and
heating oil for the short term, indicating that investors and policymakers need to pay attention to the
WTI oil volatility spillover risk when promoting green bonds and clean energy. Third, the correlation
and volatility spillover from WTI crude oil to green bonds and clean energy is stronger than that
of Brent oil, which implies that investors and policymakers need to consider the price movements
of WTI crude oil more than Brent oil when investing in the green bond market. In summary, our
conclusion is that investors should be aware that green bond investing addresses the two-pronged
investment strategy of (i) risk diversification and (ii) carbon mitigation. Thus, this study can provide
essential information for energy investors and policymakers to achieve sustainable investment.

Keywords: fossil fuel; green bond; clean energy; Bayesian DCC-MGARCH models; frequency
connectedness methods

1. Introduction

To mitigate the environmental degradation caused by climate change, environmentally
conscious investors and policymakers have shown increased interest in investing in green
development. As shown in Figure 1b, over 2015–2021, investments for building new
renewable capacity through traditional financing, such as shares and corporate bonds,
showed a slow upward trend from USD 317 bn in 2015 to USD 382 bn in 2021, while
investments in fuel supply and power showed a downward trend from USD 1149 bn in
2015 to USD 813 bn in 2021. However, the amount invested in the fossil fuel market is still
higher than that invested in renewable energy.
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and thereby ensure issuance price stability. It is particularly important to assure investors 
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Green bonds (GBs) are financial instruments that are aimed at mitigating adverse
environmental impact through the investment of financial assets in renewable energy
projects. GBs are relatively new fixed-income assets, and their proceeds are generally used
for environmental projects geared toward mitigating climate change (Reboredo, 2018 [2]).
Although GBs represent less than 1% of the bond market (Reboredo, 2018 [2]), the scale
of investment in GBs is growing rapidly. As the amount of GBs issued showed a growing
trend from USD 11 bn in 2013 to USD 290 bn in 2020 (see Figure 1a), GBs are expected to
develop further and help mobilize the financing needed to improve renewable capacity
and energy efficiency.

Thus, understanding how the GB market relates to clean energy (CE) stock and fossil
fuel markets can offer essential information for energy investors and policymakers to
identify the importance of the GB markets. This information would demonstrate how GB
markets prices may be impacted by price oscillations in the energy markets. If there is a
strong relationship between GBs and CE and the fossil fuel market, then the GB markets
may affect or be affected by CE and fossil fuel markets. This implies the significance of
considering the mutual effect among GB, CE, and fossil fuels when developing policies and
investing in efforts to improve the areas of energy conversion.

Moreover, volatility spillover is defined as the transmission of instability from market
to market. It occurs when the volatility price change in one market causes a lagged impact
on the volatility price in another market above the local effects of the market, which
is important information for understanding the transmission of the price volatility risk
between the two markets. Thus, understanding the volatility spillover among GBs, CE, and
fossil fuels may help policymakers deal with the price volatility risk involved in developing
the GB markets. If the changes in the CE and fossil fuel prices also lead to volatility in
GB prices, then policymakers need to use appropriate policy instruments to eliminate the
risk of the price volatility spillover effects of CE and fossil fuel on GB markets and thereby
ensure issuance price stability. It is particularly important to assure investors of GB yields,
which are crucial in mobilizing the financing needed for sustainable investment (Reboredo
and Ugolini, 2020 [3]).

Prior studies have documented evidence supporting the spillover effects between
the GBs and equity markets (Pham, 2021 [4] ), and the relationship between GBs and the
energy commodity index (Reboredo, 2018 [2]; Reboredo and Ugolini, 2020 [3]). However,
the inadequate samples of specific prices of fossil fuel (e.g., coal, West Texas Intermediate
(WTI) oil, Brent oil (Brent), natural gas (NG)) and the inappropriate methodologies have
restricted the validity and generalizability of the findings for analyzing the short-term,
medium-term, and long-term investment horizons.

To expand previous research (Reboredo, 2018 [2]; Reboredo and Ugolini, 2020 [3];
Pham 2021 [4]), the current study examines how the GB market is related to CE stocks



Sustainability 2023, 15, 6586 3 of 23

and fossil fuel markets (coal, WTI, NG, etc.) simultaneously by applying the Bayesian
dynamic conditional correlation (DCC) multivariate generalized autoregressive conditional
heteroskedasticity (MGARCH) model. Furthermore, we study how the volatility spillover
effects among these markets change in the short-term, medium-term, and long-term hori-
zons by using the frequency connectedness method developed by Baruník and Křehlík
(BK method hereafter) (2018) [5]. Based on the results of the above two studies, our goal
is to propose sustainable investment recommendations to investors or policymakers who
want to identify the importance of the GB markets and deal with the price volatility risk
involved in developing the GB markets.

In this study, we focus on the US markets, which remain the largest source of green
debt, with a total of USD 52.1 bn (18%) (Climate Bonds Initiative, 2020 [6]), and the world’s
largest energy and financial trading markets. With these characteristics, the US market can
effectively reflect the co-movement of the GB markets with the CE stock and fossil fuel
markets. Meanwhile, we consider Brent crude oil in identifying the impact of crude oil on
GBs, as this oil type is the most volatile of the fossil fuel products.

This study offers two important contributions. First, it analyzes the changes in the
volatility spillover effects among GBs, CE, and fossil fuels in the short-term, medium-
term, and long-term horizons for investors or policymakers to identify the price volatility
spillover risk of another energy market on GB markets from a frequency perspective to
achieve sustainable investment. Second, it introduces a new method that combines the
Bayesian DCC-MGARCH model (Tang and Aruga, 2022 [7]) and frequency connectedness
method (BK, 2018 [5]) to analyze the new GB market in relation to the CE and fossil fuel
markets to gain more dynamic information, such as a dynamic correlation and frequency
volatility spillover between them. Firstly, the Bayesian DCC-MGARCH model is sampled
by Monte Carlo simulation, which makes the prediction of dynamic relations among
GB, CE, and fossil fuel markets more flexible and less biased, because the Monte Carlo
simulation can overcome the problem of the maximum likelihood method being difficult to
fit on wider parameter regions, and then estimate in the wider parameter region to obtain
more information. Secondly, the frequency connectedness method uses the frequency
impulse function variance decomposition method to decompose the structure of volatility
spillover into short-term, medium-term, and long-term horizons, which can provide more
dimensional information for investors and policymakers.

The rest of the paper is structured as follows. Section 2 presents a review of the existing
literature. Sections 3 and 4, respectively, describe the data and methods used in this study.
Section 5 covers the results of the analysis and the relevant discussion. Section 6 provides a
summary of the conclusions.

2. Previous Research

Some previous empirical research has attempted to review the GB market by using
extensive literature and market data analysis (Ehlers and Packer, 2017 [8]; Banga, 2018 [9];
MacAskill et al., 2021 [10]; etc.). Ehlers and Packer (2017) [8] examined the certification of
GB financing and suggested that more consistent GBs across jurisdictions could help the
market to further develop because a standard certification makes it easier for asset managers
to identify environmentally related financial risks. Banga (2018) [9] explored the drivers and
barriers of the GB market relative to conventional bonds for developing countries, reporting
that some of the barriers include the lack of appropriate institutional arrangements for GB
management, which leads to the issue of minimum size, and the high transaction costs
associated with GB issuance; meanwhile, the key drivers include investors’ increasing
climate awareness. As for the premium of the GB market, Macaskill et al. (2021) [10]
suggested that GBs have a 56% and 70% green premium when issued in the primary and
secondary markets, respectively, and concluded that the environmental preferences of
investors should be considered in future bond pricing.

Other studies have focused on how GBs differ from traditional bonds (Pham, 2016 [11];
Zerbib, 2017 [12]; Zerbib, 2019 [13]; Nanayakkara and Colombage, 2019 [14]; Lebelle et al.,
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2020) [15]. Pham (2016) [11] suggested that the impact of a shock on the entire conventional
bond market may spill over into the GB market and with the spillover effect being time-
varying. Zerbib (2017) [12] employed a matching method to survey the GB premium relative
to 135 investment-grade senior bullet fixed-rate GBs and reported that the difference in
yield between a GB and a conventional bond is controlled by the difference in liquidity
between the two bonds. Moreover, Zerbib (2019) [13] suggested that the yield of GB has a
small negative premium that is lower than that of a conventional bond. As GBs have a lower
negative premium, they are important for funding to achieve sustainable development
(Nanayakkara and Colombage, 2019 [14]). However, Lebelle et al. (2020) [15] suggested
that the investors react in the same manner as GBs are no different from conventional or
convertible bonds.

From the perspective of investors, the factors affecting the GB market are important
for its development. Pham and Luu Duc Huynh (2020) [16] used the vector autoregressive
(VAR) model to identify how the factor of investor attention is related to GB growth, and
explained that the link between them varies over time and is stronger in the short run than
in the long run. The mechanism of influence of investor sentiment on the GB markets was
studied by Piñeiro-Chousa et al. (2021) [17], who suggested that investor sentiment has a
positive impact on GBs’ returns. Other macroeconomic latent factors (regulatory quality,
the rule of law, stock market capitalization, size of the economy, and trade openness) also
positively affect the development of GB markets (Tolliver et al., 2020 [18]). For example,
the macroeconomic factors related to infrastructure and the economy contribute to the
development of the GB markets in Vietnam (Tu et al., 2020 [19]). In addition, Broadstock
and Cheng (2019) [20] suggested that changes in the connection between GBs and black
bonds are influenced by macro factors such as economic policy uncertainty, financial market
volatility, and daily economic activity.

For portfolio investment and risk management, the work of Reboredo (2018) [2],
Reboredo and Ugolini (2020) [3], Tiwari et al. (2022) [21], Dutta et al. (2021) [22], Lee et al.
(2021) [23], and Pham (2021) [4] studied the co-movement among the GB and other markets.
Reboredo (2018) [2] employed the threshold GARCH model to show that the co-movement
between the GB market and the energy commodity index is not significant, although the
GB markets are affected by substantial price spillovers from traditional bonds. Reboredo
and Ugolini (2020) [3] used the structural VAR model to determine the connectedness
between the GB and energy markets (S&P GSCI Energy spot), and reported that high-yield
corporate bond markets are relatively weak. In addition, Dutta et al. (2021) [22] employed
the VAR-asymmetric DCC-GARCH model to identify that the dynamic correlations among
GB, stock, gold, and the oil market is switching between positive and negative states.
Lee et al. (2021) [23] suggested a significant bi-directional causality from oil price to the
GB index. Tiwari et al. (2021) [21] studied the transmission of return patterns between
GB, carbon prices, and renewable energy stocks by using the time-varying parameter
(TVP)-VAR approach, and found that when a shock occurs, the GB and wind indexes are
the main net recipients of the solar and S&P CE index, which is the main net transmitter of
shocks. Moreover, Pham (2021) [4] used the frequency connectedness method to suggest
that the spillover effects between GBs and green equity are significant in the short term,
and dissipate in the medium- and long-term investment horizons.

Finally, due to the occurrence of COVID-19, there are some studies on the associations
between green bonds and commodity prices. For example, Rehman et al.(2023) [24] employ
the OLS predictive model to examine the predictive power of oil shocks for the green
bond markets in the period classifying the dataset into pre-COVID-19 and COVID-19 eras,
and the results show that the oil shocks have predictive power for green bonds during
the crisis period. Su et al. (2023) [25] used the quantile-on-quantile (QQ) method to
investigate how oil prices influence the prospects of green bonds during the COVID-19
period, and found that the impacts of oil prices on green bonds are positive in the short run.
Wang et al. (2022) [26] only investigated the link between crude oil prices and green bonds
using the Granger-causality test, and showed that green bonds could not moderate the
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oil crisis due to COVID-19, instability in the international political environment, and the
immaturity of the green bond market. In addition, there are some other perspective studies
on the associations between green bonds and gas prices. For example, the volatilities
and conditional correlations between green bonds and US gas prices are investigated by
Abakah et al. (2023) [27], who use GO-GARCH, ADCC, and DCC models to evidence that
green bonds have a strong correlation with shale gas and natural gas.

However, the above studies only focus on the impact of an energy market (such
as oil or natural gas prices) on green bonds, but lack the consideration of the impact of
coal and clean energy on green bonds. This will lead to losing some useful information
for analyzing the impact of the entire energy market on the green bond market. At the
same time, only COVID-19 factors are considered to investigate the relationship between
energy and green bonds; this will also lose other useful information. For example, there is
information on the impact of other political events factors, such as the OPEC agreement
and the Russia–Ukraine War, which occurred during COVID-19. In order to avoid the
influence of other factors, unlike in other studies, we focus on the price based on Fama’s
efficient market hypothesis (Fama, 1991) [28], assuming that the demand and supply factors
are incorporated in the market price, and our study will further examine the dynamic
correlation and volatility spillover among GBs, CE stocks, and fossil fuel markets (coal,
WTI, NG, etc.) simultaneously using the Bayesian DCC-MGARCH model and frequency
connectedness method.

3. Data

This section may be divided into subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

To explore the dynamic correlation and risk spillover effects among the GBs, fossil
fuel, and CE markets, we consider the daily data of the S&P U.S. Municipal GB Index, the
fossil fuel market (coal, WTI, Brent, Henry Hub NG, heating oil (HO), and gasoline), and
Invesco Wilder Hill CE Index as samples analyzed in this study from 30 June 2014 to 18
October 2021.

(1) S&P U.S. Municipal GB Index. This index is designed to track the U.S. green
municipal bond market. It is more representative of the green-labeled bonds index because
it maintains stringent standards and includes only those bonds whose proceeds are used
for financing environmentally friendly projects, such as those that promote climate change
mitigation and other environmental sustainability efforts. The index is developed by the
institutions of S&P Dow Jones Indices and calculated in USD on the basis of its fixed income
policies and practices methodology. Thus, the index is sourced from the S&P Dow Jones
Indices (2021) [29].

(2) Fossil fuel market. These samples included coal (USD/ton), WTI (USD/barrel),
Brent (USD/Barrel), Henry Hub NG (USD/MMBtu), HO (USD/100 L), and gasoline
(USD/gallon) commodity prices, which were obtained from INSIDER (2021) [30]. The
official daily close prices are last traded at a particular trading time; thus, we used them as
representative benchmark prices of daily trading for each of the fossil fuel markets.

(3) Invesco Wilder Hill CE Index. As this CE Index is not directly available, we used
the CE exchange-traded fund as a proxy variable because it is based on the CE index.
The daily prices of the index are computed on the basis of the stocks of U.S. publicly
traded companies engaging in the business of advancing CE and conservation sourced
from Invesco (2021) [31].

As the samples mentioned above have different calculation units, we denote them
uniformly as logarithms, as shown in Figure 2. In addition, the frequency connectedness
method and DCC-MGARCH model need to use price return data; thus, the percentage of
continuously compounded returns rt is computed by rt = 100 × [ln(pt) − ln(pt−1)], where
pt denotes the GB, fossil fuel, and CE prices in period t. Figure 3 reports the plot of price
returns against time.
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4. Methods and Materials

It is known that the Bayesian DCC-MGARCH model is flexible for capturing the
dynamic correlation between fossil fuels and the financial market (Tang and Aruga, 2022 [7]).
As the shocks to economic activity impact variables at various frequency domains with
various strengths, we applied the frequent domain spillover approach of BK (2018) [5],
which overcomes the hypothesis that the preferences, anticipations, expectations, and risk
aversion of the market participants are the same, which is ignored by Diebold and Yilmaz
(DY method hereafter) (2012) [32].

Thus, we first discuss the methodology of the Bayesian DCC-MGARCH model to
analyze the correlation between GBs, CE, and fossil fuels. We secondly elaborate on the
frequency-domain spillover methods of BK (2018) [5] for different market participants to
identify which market among GBs, CE, and fossil fuels is the spillover or the recipient of
price volatility and to estimate how the extent of the volatility spillover among them are
changing at short-, medium-, and long-term investment horizons.
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4.1. Bayesian DCC-MGARCH Models

In the Bayesian DCC-MGARCH model framework, we follow the framework of Tang
and Aruga (2022) [7] for discussion.

First, the conditional correlation can be obtained from the decomposition of the con-
ditional covariance matrix because of the conditional heteroskedasticity in the MGARCH
model. If the conditional correlation matrix is time-invariant, then it is called a constant con-
ditional correlation (CCC) matrix. However, the most empirical applications (Dutta et al.,
2021 [22]; Shiferaw, 2019 [33]; Tang and Aruga, 2022) [7] showed that the hypothesis of a
CCC matrix is not very realistic and the dynamic conditional correlation (DCC) is more
flexible by allowing the conditional correlation matrix to be time-varying. Therefore, we
applied the DCC-MGARCH model, and it can be made up of the following equations:

Pt = µt + rt (1)

rt = Ht
1/2Zt (2)

Ht = DtRtDt (3)

Dt = diag
(

h11t
1
2 . . . hnnt

1
2

)
(4)

Rt = {diag(Qt)
1
2 }Qt{diag(Qt)

1
2 } (5)

where Pt is a vector of the logarithmic value of the GB, fossil fuel, and CE market price
at time t. µt is a vector of the expected value of Pt. rt is a vector of the returns related to
Pt asset prices at time t with E[rt] = 0, Cov[rt] = Ht, E(Zt) = 0, and E(ZtZt

′) = I. Ht and
Zt are conditional variance matrix and identically independently distributed (iid) errors,
respectively. Dt is a diagonal matrix of standard deviations, including the conditional
covariance hnnt

1
2 . Rt is the time-varying correlation matrix, including the symmetric

positive definite matrices Qt = (ρij,t).
Given a GARCH (p, q) model for each conditional covariance hii,t and symmetric

dynamic correlation Rt, they are specified as follows:

hii,t = ωi + ∑Pi
p=1 αipr2

i,t−p + ∑Qi
q=1 βiqhii,t−q, i = 1, 2, . . . , n (6)

Qt = (1− a− b)Q + aεt−1ε′t−1 + bQt−1 (7)

Rt = Q∗−1
t QtQ∗−1

t (8)

where ωi > 0, αi ≥ 0, βi ≥ 0, ∑Qi
q=1 αiq + ∑Pi

p=1 βip < 1. In addition, Q is the unconditional
covariance matrix computed by Cov[εtε

′
t] = E[εtε

′
t], where εt is the standardized error. To

ensure positive unconditional variances, the parameters a and b are a ≥ 0, b ≥ 0, and
a + b < 1. The Q∗t is the diagonal matrix with the square root of the diagonal elements of
Qt. For a detailed equation, please see Tang and Aruga (2022) [7].

Next, we applied the Bayesian approach to estimate the parameters of the DCC-
MGARCH model. Due to financial time series data often being skewed (Fioruci, Ehlers, and
Filho, 2014 [34]), we consider three different innovation distributions: skew multivariate
normal (SMN) with a shape parameter γ, skew multivariate Student t (SMST) with an extra
parameter ν, and skew multivariate generalized error distribution (SMGED) with a tail
parameter δ. For a detailed equation, please see Tang and Aruga (2022) [7].

If the SMN is assumed to calculate the error Zt in Equation (2), the extra parameter
ν is not needed to be estimated. However, the SMST is considered to be an error Zt,
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given the extra parameter ν to SMN. Additionally, if the error Zt are SMGED, another the
extra parameter δ will be calculated. Therefore, parameter θ = (ωi, αi, βi, ν, δ, γi, a, b) is
needed to set the prior distributions for estimating these parameters based on the Bayesian
theory. For setting prior distributions, please see Tang and Aruga (2022) [7].

Finally, according to Fioruci, Ehlers, and Filho (2014) [34] and Tang and Aruga
(2022) [7], the Markov chain Monte Carlo (MCMC) method was used to sample the joint
posterior distributions from the prior distributions, and the Metropolis–Hastings algorithm
is applied to provide the easiest sampling. In addition, the Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC), and Deviance Information Criterion (DIC) are
applied to choose the best DCC-MGARCH model. The best-fitting model can be judged by
the minimum value of the AIC, BIC, and DIC.

4.2. The Frequency-Domain Spillover Methods

Due to the DCC-MGARCH model not allowing for calculating the volatility spillover,
we used the frequency-domain spillover methods by decomposing variance from a vector
autoregressive (VAR) model. This measuring is how BK (2018) [5] imported a set of
frequency domains into the generalized forecast error variance decompositions (GFEVD)
of DY (2012) [32] to explore short-, medium-, and long-term volatility spillover. Hence, we
first discussed the method of DY (2012) [32] and then defined the connectedness measures
in the frequency domain of BK (2018) [5].

4.2.1. Measuring Connectedness with Variance Decompositions

Given n-variate process xt = (xt1, . . . , xtn), t = 1 . . . .T, the mathematical representa-
tion of the VAR(p) is written as follows:

xt = φ0 +
p

∑
i=1

φixt−i + εt (9)

where xt is a vector of the k price series of this study. φ0 is a constant vector (k× 1), φ1 · · · φn
are coefficient matrices to be estimated (k× k), p is the optimal lag order, and the model with
the lower value of Schwarz information criterion (SIC) is preferred for selecting optimal
lag. The εt ∼ (0, Σ) is a vector of i.i.d disturbances with covariance matrix Σ.

Following DY (2012) [32], given the assumption of stationary covariance, the VAR
process has a vector moving average (i.e., MA (∞)) as follows:

xt =
∞

∑
i=0

ψiεt−i (10)

where ∑∞
i=0 ψi = ψ(L) is a matrix of infinite lag polynomials calculated by φ(L) = [ψ(L)]−1.

Moreover, the GFEVD can be written as follows:

(ΘH)ij =
σ−1

jj ∑H
h=0(

(
ψhΣ)ij

)2

∑H
h=0 (ψhΣψ′h)jj

(11)

where ψh is a (N × N) matrix of moving average coefficients at lag h, and σjj = (Σ)jj. The
term (ΘH)ij is denoted as the contribution of the j-th variable to the variance of the forecast
error of i-th variable at forecast horizon H. Since the values of the corresponding rows of
the variance decomposition matrix ΘH do not sum to 1, we normalize them by the row
sum as follows: (

Θ̃H

)
ij
=

(ΘH)ij

∑N
i=1(ΘH)ij

(12)
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where ∑N
i=1

(
Θ̃H

)
ij
= 1 and the sum of all elements in the structure of Θ̃H is equal to N. In

addition, the pairwise connectedness from the j-th variable to i-th variable is measured by(
Θ̃H

)
ij

at forecast horizon H.

4.2.2. Frequency Response Function for Decomposing Variance

For measuring connectedness in the frequency domain (short, medium, long-term),
the spectral representation of variance decompositions based on frequency responses to
shocks instead of impulse responses to shocks needs to be considered (BK, 2018 [5]). If
the coefficients ψi in Equation (9) made the Fourier transformation, a frequency response
function is obtained as follows:

ψ
(

e−iω
)
= ∑

h
e−iωhψh (13)

where w implies frequency and i =
√
−1.

Given a frequency w, the spectral density of xt in Equation (9) can be expressed
as follows:

Sx(ω) =
∞

∑
h=−∞

E
(

xtx′t−h
)
e−iωh = ψh

(
e−iω

)
Σψ′

(
e+iω

)
(14)

where Sx(ω) is the power spectrum that can be used for identifying how the variance of
the xt is distributed over the frequency components ω.

Moreover, according to the “Definition 2.1” of BK (2018) [5], the generalized causation
spectrum over frequencies ω ∈ (−π, π) is given by the following:

( f (ω))ij =
σ−1

jj

((
ψ
(
e−iω)Σ)ij

)2(
ψ
(
e−iω

)
Σψ′

(
e+iω

))
ii

(15)

where ψ
(
e−iω) = ∑h e−iωhψh, ( f (ω))ij is the portion of the spectrum of the i-th variable at

frequency ω that results from the shock to the j-th variable. As the denominator holds the
spectrum of the i-th variable, which is on the diagonal element of the cross-spectral density
of xt at frequency ω, we thus can interpret the ( f (ω))ij as within-frequency causation. To
obtain a natural decomposition of the GFEVD to frequencies, we used the frequency share
of the variance of the i-th variable to weight ( f (ω))ij. The weighting function is defined
as follows:

Γi(ω) =

(
ψ
(
e−iω)Σψ′

(
e+iω))

ii
1

2π

∫ π
−π

(
ψ
(
e−iλ

)
Σψ′

(
e+iλ

))
iidλ

(16)

where Γi(ω) is the power of the i-th variable at a given frequency ω whose sum is to be a
constant value of 2π. Given a frequency band d = (a, b), the GFEVD at a frequency band d
is defined as follows:

(Θd)ij =
1

2π

∫ b

a
Γi(ω)( f (ω))ijdω (17)

where a, b ∈ (−π, π), a < b.
Firstly, the decomposition in Equation (17) is used to obtain within-total, pairwise,

and net connectedness at the band d. The within-total connectedness is important for
us to identify the connectedness effect occurring within the frequency band. The pair-
wise connectedness is variance transmission from one market to another market. The
net connectedness is variance transmission from another market to one market that is
a net giver/receiver of variance to/from all other markets if the net connectedness is a
positive/negative value. For a detailed decomposition, please see “Definition 2.2” of BK
(2018) [5].
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4.2.3. Estimation of Connectedness in the Frequency Bands

For exploring short-, medium-, and long-term volatility spillover, we set eight fre-
quency bands: d1({2–4} days), d2({4–8} days), d3({8–16} days), d4({16–32} days), d5({32–64} days),
d6({64–128} days), d7({128–256} days), and d8({256–512} days) based on the work of Mensi et al.
(2021) [35]. Moreover, according to Maghyereh et al. (2019) [36], the sum of the d1 and
d2 series is defined as the short-term horizon equivalent to the periods 2 days to 8 days.
The medium-term horizon is the sum of d3 and d4, corresponding to the periods 8 days
to 32 days. In addition, we assumed that the long-term horizon is the sum of d5 to d8,
corresponding to the periods 32 days to 512 days based on Mensi et al. (2021) [35] and
Maghyereh et al. (2019) [36]. We estimated the connectedness on desired frequencies by
R 4.5 soft. The codes come from the “frequencyconnectedness-package” of Barunik and
Krehlik (2018) [5] and the “bayesDccGarch-Package-Package” of Fiorucci et al. (2014) [34].
For detailed computations, please see the links in the “Supplementary Material”.

4.3. Variable Characteristics

Before identifying the correlation and volatility spillover among GBs, CE, and fossil
fuels, we need to understand the statistical characterization of our test variables. First,
we applied the Augmented Dickey–Fuller (ADF), Phillips–Perron (PP), and Kwiatkowski–
Phillips–Schmidt–Shin (KPSS) tests to test the stationarity of our test variables to avoid
pseudo-regression problems. Second, the Shapiro–Wilk (SW) and Jarque–Bera (JB) tests are
used to detect the normality, skewness, and kurtosis of the sample distribution. Moreover,
we applied Engle’s Lagrange multiplier (LM) test to identify the effects of autoregressive
conditional heteroscedastic (ARCH) for each of the returns.

5. Result
5.1. Descriptive Summary of All Prices and Return Series Data

Table 1 presents the results of the ADF, PP, and KPSS test results, indicating that all
price series data are non-stationary at a 5% level of significance, but become stationary
when first differencing them. In addition, all the return series are stationary at a 5% level
of significance.

Table 1. Unit root tests.

Variables

Level Data (t-Value) First Difference Data

ADF PP KPSS ADF PP KPSS ADF PP KPSS
(Return) (Return) (Return) (Price) (Price) (Price) (Price) (Price) (Price)

GB
−11.28 * −22.77 * 0.02 −3.18 −3.27 16.60 * −11.28 * −22.42 * 0.02

(0.01) (0.01) (0.10) (0.09) (0.08) (0.01) (0.01) (0.01) (0.10)

CE
−11.36 * −40.18 * 0.43 −1.93 −1.80 9.27 * −10.93 * −39.03 * 0.24

(0.01) (0.01) (0.06) (0.61) (0.66) (0.01) (0.01) (0.01) (0.10)

Coal
−10.97 * −34.84 * 0.86 * 4.98 4.26 1.64 * −10.20 * −36.88 * 1.22 *

(0.01) (0.01) (0.01) (0.99) (0.99) (0.01) (0.01) (0.01) (0.01)

WTI
−11.53 * −41.91 * 0.21 −2.80 −2.75 0.93 * −10.60 * −41.53 * 0.56 *

(0.01) (0.01) (0.10) (0.24) (0.26) (0.01) (0.01) (0.01) (0.03)

Brent
−11.08 * −43.60 * 0.08 −1.98 −1.91 6.82 * −11.00 * −42.30 * 0.08

(0.01) (0.01) (0.10) (0.59) (0.62) (0.01) (0.01) (0.01) (0.10)

NG
−11.81 * −40.76 * 0.24 −2.02 −2.09 1.11 * −10.89 * −41.38 * 0.31

(0.01) (0.01) (0.10) (0.57) (0.54) (0.01) (0.01) (0.01) (0.10)

HO
−11.21 * −41.51 * 0.28 −2.17 −2.17 1.07 * −11.12 * −41.72 * 0.51 *

(0.01) (0.01) (0.10) (0.51) (0.51) (0.01) (0.01) (0.01) (0.04)

Gasoline
−10.39 * −42.40 * 0.18 −2.80 −2.85 0.93 * −10.31 * −42.00 * 0.41

(0.01) (0.01) (0.10) (0.24) (0.22) (0.01) (0.01) (0.01) (0.07)

Note: * Denotes statistical significance at the 5% level. Heating oil: HO; natural gas: NG.
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Table 2 shows the results of the summary statistics. The JB test results suggested that
all the return series have skewness and excess kurtosis at the 1% level. The SW test results
indicated the null hypothesis of a normally distributed population is rejected at a 1% level
of significance in each of the return series. All of the JB and SW test results highlight the
validity of considering asymmetric distributions instead of normal distributions. Moreover,
the LM test results suggested that all return series have the ARCH effects at a 1% level
of significance. These results imply the need to consider the three different innovation
distributions introduced in Equations (9)–(11) for fitting the Bayesian DCC-MGARCH
(1,1) models.

Table 2. Statistical properties of fossil fuel, CE, and GB market returns.

Variables Max. Min. Std. Skewness Kurtosis JB SW LM

GB
4.13 −3.38 0.29 −0.74 67.74 307,810 ** 0.61 ** 2077.02 **

(0.00) (0.00) (0.00)

CE
19.84 −15.64 2.21 −0.12 9.68 6290 ** 0.91 ** 1352.33 **

(0.00) (0.00) (0.00)

Coal
21.51 −14.65 1.72 1.33 27.83 52,417 ** 0.74 ** 9780.68 **

(0.00) (0.00) (0.00)

WTI
31.96 −60.17 3.60 −2.66 62.09 260,387 ** 0.73 ** 4094.26 **

(0.00) (0.00) (0.00)

Brent
14.57 −12.71 2.30 0.31 4.04 1278 ** 0.96 ** 1015.08 **

(0.00) (0.00) (0.00)

NG
19.80 −15.77 3.18 0.14 3.19 2553 ** 0.95 ** 1484.11 **

(0.00) (0.00) (0.00)

HO
13.95 −27.43 2.46 −0.79 14.07 6028 ** 0.90 ** 3397.69 **

(0.00) (0.00) (0.00)

Gasoline
22.40 −38.54 3.31 −1.78 27.79 307,810 ** 0.61 ** 4070.25 **

(0.00) (0.00) (0.00)

Note: ** Denotes statistical significance at the 1% level. Heating oil: HO; natural gas: NG.

Figure 4 shows the heat map of a visual correlation matrix across the GB, CE, and
fossil fuel assets. The magnitude of the correlation is indicated by the color intensity of the
shaded boxes, and the red color shows a positive correlation, while the blue color presents
a negative correlation. The map shows a strong positive correlation between WTI, coal, NG,
HO, and gasoline, but a negative correlation is observed between Brent and other market
assets. It would be worthwhile to note that GBs have a negative correlation with WTI, NG,
HO, and gasoline, and a positive correlation with coal and the CE stock market.
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5.2. Bayesian Estimation of the DCC-MGARCH (1,1) Model

For estimating parameter θ = (ωi, αi, βi, ν, δ, γi, a, b), we use the MCMC method
to run 10,000 iterations with a burn-in phase of 1000 and a thinning interval of 10 to
sample the posterior distribution following Fioruci, et al.,(2014) [34]. The first 1000 sam-
ples were rounded off, and the remaining 9000 samples were kept for estimating each
parameter sample.

Table 3 displays the results of the information criteria of the AIC, BIC, and DIC for
the DCC-MGARCH models with the SMN, SMST, and SMGED errors. The AIC, BIC, and
DIC information criteria values for SMGED are minimal, with 42,611.94, 42,800.27, and
42,644.03, respectively. According to the smallest values of AIC, BIC, and DIC, the Bayesian
DCC-MGARCH models with SMGED errors is appropriate to provide a better fit than
other models, as they can capture the fat tails and skewed features present in the prices of
our test variables (Shiferaw, 2019 [33]).

Table 3. Information criteria for all returns under the SMN, SMST, and SMGED.

Cri. SMN SMST SMGED

All return
AIC 44,566.8 42,716.43 42,611.94
BIC 44,749.75 42,904.76 42,800.27
DIC 44,571.85 42,709.34 42,644.03

Notes: All returns included the GB, CE, Brent, WTI, Coal, NG, HO, and Gasoline.

Table 4 summarizes the results of parameters’ estimations in the DCC-MGARCH
model with the SMGED errors for all returns. The posterior means, medians, and standard
deviation (SD) with 2.5% to 97.5% credible intervals are also reported in Table 4. First, the
skewness parameters γ̂ are significant at the 95% credible intervals, indicating there is an
asymmetry for all returns. Second, statistical significance at 95% credible intervals is noted
for the conditional variance parameters a and b, and the sums of a and b values are lower
than 1, indicating that the GARCH effects exist in all returns. Finally, the extra parameter
δ is also statistically significant at the 95% credible intervals, thus providing applicable
evidence of the DCC-MGARCH model with the SMGED errors.

Table 4. Summary of the MCMC simulations for the model with SMGED.

Commodities Parameters Mean SD. 2.5% 25% 50% 75% 97.5%

GB

γ 0.906 0.039 0.776 0.903 0.915 0.928 0.954
ω 0.003 0.001 0.002 0.003 0.003 0.004 0.006
α 0.277 0.048 0.201 0.246 0.274 0.312 0.362
β 0.672 0.043 0.571 0.645 0.672 0.706 0.742

CE

γ 0.854 0.029 0.797 0.840 0.857 0.874 0.902
ω 0.086 0.018 0.058 0.075 0.084 0.096 0.128
α 0.068 0.008 0.053 0.062 0.067 0.073 0.082
β 0.918 0.010 0.898 0.911 0.919 0.925 0.933

Coal

γ 1.028 0.027 0.953 1.018 1.032 1.045 1.065
ω 0.454 0.114 0.221 0.380 0.449 0.534 0.658
α 0.113 0.031 0.052 0.094 0.111 0.136 0.171
β 0.597 0.078 0.453 0.542 0.595 0.648 0.756

WTI

γ 0.929 0.025 0.883 0.912 0.928 0.945 0.977
ω 0.331 0.058 0.232 0.299 0.331 0.366 0.432
α 0.099 0.013 0.076 0.090 0.099 0.108 0.125
β 0.851 0.015 0.821 0.841 0.852 0.862 0.875

Brent

γ 1.038 0.052 0.888 1.026 1.047 1.067 1.107
ω 0.124 0.033 0.075 0.102 0.121 0.143 0.199
α 0.085 0.019 0.055 0.071 0.081 0.097 0.124
β 0.898 0.021 0.855 0.882 0.901 0.914 0.929
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Table 4. Cont.

Commodities Parameters Mean SD. 2.5% 25% 50% 75% 97.5%

NG

γ 1.002 0.035 0.899 0.991 1.008 1.024 1.051
ω 0.358 0.130 0.200 0.280 0.331 0.397 0.761
α 0.104 0.019 0.072 0.089 0.103 0.118 0.142
β 0.874 0.025 0.813 0.861 0.877 0.892 0.911

HO

γ 0.960 0.036 0.893 0.937 0.962 0.984 1.028
ω 0.176 0.033 0.119 0.153 0.177 0.201 0.233
α 0.094 0.015 0.068 0.082 0.096 0.104 0.124
β 0.870 0.015 0.841 0.859 0.870 0.881 0.898

Gasoline

γ 0.940 0.031 0.877 0.917 0.943 0.961 0.995
ω 0.353 0.090 0.124 0.322 0.369 0.409 0.493
α 0.103 0.016 0.067 0.093 0.104 0.113 0.131
β 0.841 0.020 0.806 0.827 0.839 0.852 0.884

δ 1.050 0.023 1.011 1.038 1.052 1.064 1.088
a 0.016 0.004 0.010 0.013 0.017 0.019 0.024
b 0.835 0.044 0.746 0.804 0.836 0.870 0.911

a + b 0.851 0.048 0.755 0.818 0.852 0.889 0.935

Table 5 reports the results of the bivariate Bayesian DCC-MGARCH model with the
SMGED errors. As can be seen from Table 5, each of the estimated parameters is statistically
significant at the 97.5% credible intervals. Specifically, the null hypothesis (a = b = 0) is
rejected, indicating that the model should be the DCC model assumption rather than the
CCC model hypothesis (a = b = 0). Moreover, the sums of a and b are less than 1 for all
bivariate models, implying that the DCC can be measured by the Bayesian DCC-MGARCH
model with the SMGED.

Table 5. The Bayesian DCC-MGARCH(1,1) estimation results for the bivariate model with SMGED.

Bivariate Parameters Mean SD. 2.5% 25% 50% 75% 97.5%

GB vs. Coal
a 0.084 0.036 0.020 0.058 0.087 0.107 0.153
b 0.361 0.249 0.007 0.155 0.325 0.542 0.849

GB vs. WTI
a 0.027 0.016 0.004 0.015 0.025 0.037 0.061
b 0.493 0.276 0.013 0.259 0.521 0.732 0.934

GB vs. Brent
a 0.015 0.012 0.002 0.006 0.012 0.022 0.047
b 0.512 0.276 0.026 0.264 0.551 0.755 0.929

GB vs. NG
a 0.011 0.011 0.000 0.003 0.008 0.016 0.041
b 0.435 0.268 0.013 0.206 0.425 0.658 0.915

GB vs. HO
a 0.015 0.011 0.000 0.007 0.013 0.021 0.040
b 0.648 0.294 0.024 0.434 0.743 0.899 0.974

GB vs. Gasoline
a 0.016 0.015 0.000 0.004 0.012 0.023 0.055
b 0.459 0.295 0.007 0.190 0.459 0.726 0.936

GB vs. CE
a 0.029 0.014 0.010 0.019 0.026 0.036 0.063
b 0.872 0.122 0.463 0.853 0.904 0.939 0.971

GE vs. Coal
a 0.018 0.016 0.001 0.005 0.013 0.026 0.060
b 0.413 0.269 0.008 0.176 0.395 0.629 0.929

GE vs. WTI
a 0.038 0.018 0.004 0.025 0.038 0.050 0.077
b 0.682 0.186 0.087 0.620 0.723 0.802 0.922

GE vs. Brent
a 0.011 0.009 0.001 0.004 0.008 0.015 0.034
b 0.520 0.269 0.029 0.297 0.550 0.746 0.945

GE vs. NG
a 0.022 0.016 0.001 0.009 0.019 0.031 0.059
b 0.573 0.243 0.057 0.408 0.600 0.768 0.939



Sustainability 2023, 15, 6586 14 of 23

Table 5. Cont.

Bivariate Parameters Mean SD. 2.5% 25% 50% 75% 97.5%

GE vs. HO
a 0.026 0.015 0.001 0.016 0.026 0.035 0.059
b 0.730 0.192 0.191 0.674 0.787 0.855 0.942

GE vs. Gasoline
a 0.039 0.017 0.013 0.027 0.036 0.048 0.081
b 0.741 0.148 0.337 0.676 0.775 0.840 0.926

WTI vs. Coal
a 0.029 0.014 0.006 0.017 0.027 0.037 0.062
b 0.513 0.249 0.019 0.340 0.571 0.716 0.857

WTI vs. NG
a 0.014 0.013 0.000 0.004 0.010 0.021 0.049
b 0.460 0.270 0.025 0.234 0.444 0.680 0.937

WTI vs. HO
a 0.092 0.016 0.065 0.081 0.091 0.102 0.123
b 0.843 0.048 0.771 0.829 0.849 0.868 0.896

WTI vs. Gasoline
a 0.081 0.015 0.053 0.072 0.081 0.091 0.109
b 0.850 0.035 0.771 0.836 0.856 0.873 0.900

Brent vs. Coal
a 0.016 0.014 0.000 0.005 0.012 0.023 0.052
b 0.426 0.247 0.022 0.227 0.422 0.615 0.883

Brent vs. NG
a 0.019 0.015 0.000 0.007 0.016 0.026 0.055
b 0.508 0.272 0.047 0.272 0.516 0.747 0.941

Brent vs. HO
a 0.010 0.009 0.000 0.003 0.007 0.014 0.035
b 0.433 0.264 0.025 0.204 0.415 0.653 0.905

Brent vs. Gasoline
a 0.012 0.011 0.001 0.004 0.009 0.017 0.040
b 0.459 0.260 0.021 0.233 0.477 0.683 0.891

5.3. The Dynamic Conditional Correlations

To estimate the DCC among the GB, CE, and fossil fuel markets, this study uses the
Bayesian DCC-MGARCH model with the SMGED on the basis of the results in Table 3. The
DCC results are shown in Figure 5.
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It is worth noting from Figure 5c that except for the positive relationship between GB 
and coal (R1), the relationship between GB and all other markets is negative and fluctuates 
between 0 and −0.2 (R2, R3, and R4). It is easy to see from Figure 5d that the relationship 
between CE and these markets presents a positive correlation, where the CE relation to 
HO (R3) and Gasoline (R4) is greater than the relation of CE to coal (R1) and NG (R2). 
Figure 5e,f shows that WTI and Brent are related to coal, NG, HO, and gasoline. Figure 5e 
indicates that the WTI presents a strong positive correlation with HO (R3) and Gasoline 
(R4), while WTI shows a weaker positive correlation with coal (R1) and NG (R2). How-
ever, the relation of Brent to coal, NG, HO, and gasoline presents weaker correlation val-
ues, with a range fluctuating from 0.1 to −0.1 (Figure 5f). 
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and green bonds with oil; (c) The correlation between green bond and another fossil fuels; (d) The
correlation between clean energy and another fossil fuels; (e) The correlation between WTI oil and
another fossil fuels; (f) The correlation between Brent oil and another fossil fuels.

Figure 5a indicates that the correlations between WTI and Brent are almost positive
values fluctuating from 0 to 0.1 (R1), while the correlations between GB and CE are almost
negative values (0 to −0.2) (R2). Figure 5b indicates that the relationship between WTI
and GB shows a negative correlation fluctuating range from 0 to −0.2 (R1), but the WTI
relation to CE is a positive fluctuating range from 0.2 to 0.4 (R3). However, the correlation
of Brent to GB and CE is vibrating between 0 (Figure 5b: R2 and R4), indicating that they
are different from that of the WTI to GB and CE.

It is worth noting from Figure 5c that except for the positive relationship between GB
and coal (R1), the relationship between GB and all other markets is negative and fluctuates
between 0 and −0.2 (R2, R3, and R4). It is easy to see from Figure 5d that the relationship
between CE and these markets presents a positive correlation, where the CE relation to
HO (R3) and Gasoline (R4) is greater than the relation of CE to coal (R1) and NG (R2).
Figure 5e,f shows that WTI and Brent are related to coal, NG, HO, and gasoline. Figure 5e
indicates that the WTI presents a strong positive correlation with HO (R3) and Gasoline
(R4), while WTI shows a weaker positive correlation with coal (R1) and NG (R2). However,
the relation of Brent to coal, NG, HO, and gasoline presents weaker correlation values, with
a range fluctuating from 0.1 to −0.1 (Figure 5f).

5.4. The Connectedness Network Results

Figure 6 shows the overall volatility spillover among the GB, CE, and fossil fuel
markets under eight frequency bands: d1, d2, d3, d4, d5, d6, d7, and d8. With the GB
market as an example, the volatility spillover contribution of another market to the GB
market decreases gradually from d1 to d8 (Figure 6a). In particular, WTI oil (WO) makes
the largest volatility spillover contribution to the GB market among all markets in d2 and
d3. In addition, the volatility spillover contribution of the GB market to other markets is
less than what it receives from other markets. These results indicate that the GB markets
receive more risk from the other markets in the d1 and d2, but the risk weakens in d3 to
d8. However, the volatility spillover contribution of another market to the CE (Figure 6b)
or NG (Figure 6f) decreases quickly from d1 to d2, showing the CE or GB markets receive
more risk from the other markets only in the d1, but the risk weakens in d2 to d8. This
phenomenon also happens in the WO, HO, and G (Figure 6d,g,h). The reason is that when
a shock to the energy and GB markets occurs, it will first lead to the volatility in the price
of fossil fuels related to WTI oil, and then this volatility has a spillover to other markets in
d1; finally, the volatility spillover weakens in d2 to d8.
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Figure 6. The volatility spillover among interesting markets. Notes: d1: {2–4} days; d2: {4–8} days;
d3: {8–16} days; d4: {16–32} days; d5: {32–64} days; d6: {64–128} days; d7: {128–256} days; d8: {256–512} days;
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to NG; (g) Volatility spillover of another market to HO; (h) Volatility spillover of another market to G.
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Tables 6–8 display the overall volatility spillover among the GB, CE, and fossil fuel
markets at the short-term horizon (2–8 days), the medium-term horizon (8–32 days), and
the long-term horizon (32–512 days), respectively. Here, ABS and WTH mean “absolute”
and “within” in the estimated system, respectively. The values of the overall volatility
spillover in Tables 6–8 are all expressed by percentile. For example, the values of the cells
corresponding to TO_ABS and FROM_ABS are expressed as the total spillover percentage
results. The results are the sum of values corresponding to GB to G in the TO_ABS row. In
addition, if we look at the direction of the row, then the result of the corresponding cells is
expressed as the value obtained from other market volatility spillovers. For example, in
the GB corresponding row in Table 6, the volatility spillover value obtained from the GB
column is 69.78, while the volatility spillover value obtained from the CE column is 0.94.

Table 6. The total spillovers in the short term.

GB CE C WTI Brent NG HO G FROM_ABS FROM_WTH

GB 69.78 0.94 0.41 2.24 0.01 0.1 0.98 0.34 0.63 0.73
CE 0.41 62.91 0.67 6.27 0.06 0.25 7.05 7.48 2.77 3.24
C 0.3 0.64 77.2 0.49 0.22 0.13 2.15 0.44 0.55 0.64

WTI 0.31 4.14 0.27 40.3 0.07 0.47 25 18.99 6.16 7.18
Brent 0.04 0.12 0.05 0.08 88.67 0.3 0.05 0.08 0.09 0.11
NG 0.23 0.32 0.31 1.57 0.04 82.9 1.68 1.51 0.71 0.83
HO 0.04 4.15 1.04 24.5 0.06 0.69 38.63 19.05 6.19 7.23
G 0.58 4.41 0.24 19.8 0.04 0.54 20.59 42.06 5.78 6.75

TO_ABS 0.24 1.84 0.37 6.88 0.06 0.31 7.19 5.98 22.87
TO_WTH 0.28 2.15 0.44 8.02 0.07 0.36 8.39 6.99 26.7

Notes: WTI oil: WO; Brent oil: BO; gasoline: G; coal: C; natural gas: NG; clean energy: CE; green bond: GB;
heating oil: HO.

Table 7. The total spillovers in the medium term.

GB CE C WTI Brent NG HO G FROM_ABS FROM_WTH

GB 20.2 0.79 0.02 0.73 0.01 0.01 0.36 0.02 0.24 1.94
CE 0.12 9.84 0.02 0.92 0.03 0.05 1.09 0.93 0.4 3.15
C 0.18 0.31 14.5 0.1 0.01 0.02 0.86 0.1 0.2 1.57

WTI 0.06 0.63 0.05 3.72 0 0.03 2.57 2.07 0.68 5.4
Brent 0 0.02 0.02 0 9.2 0.04 0 0 0.01 0.09
NG 0 0.04 0.15 0.08 0.01 9.36 0.28 0.12 0.09 0.68
HO 0 0.77 0.23 2.68 0.01 0.04 4.48 2.14 0.73 5.86
G 0.29 0.93 0.05 2.3 0 0.04 2.19 4.41 0.72 5.78

TO_ABS 0.08 0.44 0.07 0.85 0.01 0.03 0.92 0.67 3.07
TO_WTH 0.66 3.48 0.54 6.79 0.07 0.24 7.33 5.37 24.48

Notes: WTI oil: WO; Brent oil: BO; gasoline: G; coal: C; natural gas: NG; clean energy: CE; green bond: GB;
heating oil: HO.

Table 8. The total spillovers in the long term.

GB CE C WTI Brent NG HO G FROM_ABS FROM_WTH

GB 2.8 0.12 0 0.1 0 0 0.05 0 0.03 1.93
CE 0.02 1.44 0 0.13 0 0.01 0.16 0.14 0.06 3.22
C 0.03 0.05 2.12 0.01 0 0 0.13 0.01 0.03 1.68

WTI 0.01 0.09 0.01 0.52 0 0 0.36 0.3 0.1 5.39
Brent 0 0 0 0 1.3 0.01 0 0 0 0.09
NG 0 0.01 0.02 0.01 0 1.32 0.04 0.02 0.01 0.72
HO 0 0.11 0.03 0.38 0 0.01 0.64 0.31 0.1 5.85
G 0.04 0.14 0.01 0.34 0 0.01 0.32 0.63 0.11 5.97

TO_ABS 0.01 0.07 0.01 0.12 0 0 0.13 0.1 0.44
TO_WTH 0.67 3.67 0.53 6.84 0.06 0.23 7.45 5.41 24.85

Notes: WTI oil: WO; Brent oil: BO; gasoline: G; coal: C; natural gas: NG; clean energy: CE; green bond: GB;
heating oil: HO.
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Thus, the results show that the total spillover value in the short-term (22.87%) (Table 6)
is higher than those in the medium-term (3.07%) (Table 7) and long-term (0.44%) (Table 8).
This means that the overall volatility spillover among the GB, CE, and fossil fuel markets
was strongest at the short-term horizons (2–8 days), and gradually disappeared from the
medium-term to the long-term. It is also worth noting that the volatility spillover of WTI to
the GB market is higher than that of Brent to the GB market in the short- and medium-term
horizons (Tables 6 and 7, respectively), with the volatility spillover of Brent to the GB
market event disappearing in the long-term horizons (Table 8). This indicates that WTI has
a greater risk transfer to the GB market than Brent in the short-, medium-, and long-term
horizons. On the contrary, the volatility spillover of the GB market to other markets is less
than the volatility spillover of other markets to the GB market, implying that the GB market
is the receiver of volatility in the short-, medium-, and long-term horizons.

Figure 7 shows the pairwise directional connectedness among the GBs, CE, and the
fossil fuel market, which provides rich information containing the intensity and pathway
of risk spillover from one market to another market. The arrow indicates the direction of
the spillover effect. The thickness of the line indicates the size of the net spillover effect.
The thickness of the line among WO, G, NG, and C is the roughest in the short term, which
indicates that the connectedness among WTI, gasoline, NG, and coal has a greater spillover
effect than the connectedness between other markets in the short-term horizons (Figure 7a).
Furthermore, the pairwise directional connectedness among the GB, CE, and fossil fuel
markets is relatively high in the short term, but it becomes weaker and weaker from the
short-term horizon to the long-term horizon (Figure 7). Even in the long-term horizon, NG
only receives spillover effects from only coal, HO, gasoline, and WTI, thus becoming a
net receiver (Figure 7c). Finally, The GB markets receive the volatility spillovers from all
other markets in the short-term horizon, while the volatility spillovers of Brent to the GB
market disappear in the medium-term horizon, and only the CE, WTI, and HO demonstrate
volatility spillover to the GBs in the long-term horizon (Figure 7).
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Figure 8 shows the net connectedness among the GB, CE, and fossil fuel markets in the
short-, medium-, and long-term horizons. The net connectedness is variance transmission
from another market to one market, which is a net giver/receiver of variance to/from all
other markets if the net connectedness is positive/negative value. The volatility spillover
of the other markets to GBs, coal, NG, and Brent is negative in all three sample terms
(Figure 8), indicating their role as volatility receivers. In contrast, WTI and HO, having a
positive value, are the sources of volatility spillover. Although the volatility spillover of CE
to other markets has negative values in the short term (see blue rectangle in Figure 8), the
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value becomes positive in the medium- and long-term horizons; the opposite is true for the
GB market.
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6. Discussion

Our results suggested that using the Bayesian DCC-MGARCH model with the SMGED
to estimate the correlations among the GB, CE, and fossil fuel markets yields optimal results,
and that the correlation between them is time-varying because the values of a + b shown in
Table 4 are less than 1.

The results further suggested that the GB market has a weakly negative correlation
(0 to −0.2) with the CE stock market, which means that the CE stock market tends to rise
when bond yields fall, and tend to slump when GB yields rise (Figure 5 (a: R2)). The
effect may be attributed to the fact that there are no non-pecuniary motives associated with
investors’ pro-environmental preferences for investing in CE stock and GBs. If such motives
exist, investors may purchase CE stocks and GBs to drive their prices up, in which case
their relationship becomes positive. Thus, these non-pecuniary motives may exacerbate the
impact of CE stock price volatility on GBs, and vice versa.

In addition, our results suggest that the relation of fossil fuel to GBs and CE stocks has a
negative or weak positive value (less than 0.4), which implies that GBs, CE stocks, and fossil
fuels may be used as a portfolio to mitigate investment risk for energy investors because
of the existence of a weak or negative correlation between them. When the relationship
between one market and another market is negative or weakly correlated, the two assets
can be mutual hedges for investment diversification based on the basis of the concept that
an asset is a hedges asset if it is negatively correlated or uncorrelated with another asset
(Baur and Lucey, 2010 [37]), and vice versa. We confirmed the result of Reboredo and
Ugolini (2020) [3], who revealed that the linkage between GB, the energy index, and the
stock index has a weak correlation, which is important for GB-holding investors to make
risk portfolio decisions.

We also find that the volatility spillover among the GB, CE, and fossil fuel markets
presents the strongest in the short term but gradually weakens from the medium term
to the long term. Moreover, GBs are net volatility receivers from the WTI market and its
related markets (HO and gasoline) in the long- and medium-term (Figure 8), indicating that
investors holding GB assets should pay attention to the effects of WTI price volatility. This
is because the crude oil market is susceptible to price volatility resulting from the effect
of political and climatic factors (Lee et al., 2021 [23]); when the WTI price falls, investors
might buy less risky GB to mitigate losses, thus facilitating the volatility spillover of WTI
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prices to the GB markets. This result implies that if GBs, CE, and crude oil are invested as a
portfolio, the source of risk for the portfolio is mainly the volatility of WTI prices.

Finally, our results suggested that compared with Brent, WTI has a stronger relation-
ship with GBs and CE (Figure 5b). Meanwhile, the volatility spillover of WTI to the GBs
and CE markets is higher than that of Brent in the short-, medium-, and long-term horizons,
while the volatility among them is higher in the short term, gradually decreases in the
medium term, and disappears in the long term (Tables 6–8). A possible reason for this
difference between WTI and Brent is that WTI is the U.S. crude oil price while Brent crude
oil is a benchmark price for the European crude oil market (Aruga, 2015 [38]). Hence, the
U.S. GB and CE prices are more likely to be connected to the WTI price. The result implies
that in holding GBs and CE as a portfolio, investors need to pay more attention to the
volatility spillover of WTI to manage risks. These results are somewhat different from
those of Lee et al. (2021) [23], who indicated that the international Brent has a significant
bi-directional causality from the global GB index.

In summary, the results of the relationship and volatility spillover among the GB, CE
stock, and fossil fuel markets are consistent with those of Reboredo (2018) [2], Reboredo and
Ugolini (2020) [3], Tiwari et al. (2021) [21], Dutta et al. (2021) [22], Lee et al. (2021) [23], and
Pham (2021) [4], who suggested that the relation among them is time-varying and weakly
positive or negative; these characteristics provide important information for managing
portfolio risk. In addition, due to the occurrence of COVID-19, Rehman et al. (2023) [24]
and Wang et al. (2022) [26] found that the impact of WTI oil on GB markets was positive
in the short run, but these results do not consider how Brent oil affects GBs (not in US
markets). Unlike the results of Rehman et al. (2023) [24] and Wang et al. (2022) [26], our
study uses the Bayesian DCC-MGARCH model and frequency connectedness method to
gain two results: first, the correlation and volatility of WTI and GBs are stronger than those
of Brent oil and GBs because the WTI oil is independent relative to Brent oil in the US
market; second, the correlation and volatility spillover of WTI to another market is different
from those of Brent at different term horizons.

7. Conclusions and Policy Implications

In this study, the Bayesian DCC-MGARCH model is used to examine the correlation
between GB, CE, and fossil fuel markets. Due to the AIC, BIC, and DIC information criteria
values for SMGED being minimal, our study identifies that the Bayesian DCCM-GARCH
model with the skew multivariate generalized error distribution is credible for GB, CE,
and fossil fuel markets to estimate the time-varying conditional correlations between
them. The frequency connectedness method is also applied to identify how the volatility
spillover among them is transmitted and how it changes in the short-, medium-, and
long-term horizons.

Our empirical findings can offer some valuable implications for investors and
energy policymakers.

First, the GBs almost have a weakly negative correlation or zero correlation with
fossil fuel and CE, suggesting that the GB market is independent of the CE and fossil fuel
markets. This information helps investors realize the role of green bonds in diversifying
against the fluctuation of fossil fuel markets, and encourages portfolio investors who want
to achieve higher investment performance to include GBs in their portfolios. Moreover, for
policymakers, this information also indicates that the GB market has limited influence on
the CE and the fossil fuel markets.

Second, given that the GB and CE markets are net volatility receivers from WTI or
its related energy markets (HO and gasoline) in the short term, the result is important for
across-market investors to identify which market is the main risk receiver or transmitter and
how the risk spillover of the fossil fuel market to the GBs and CE stock markets changes at
different terms. Thus, policymakers should establish mechanisms (for example, to help deal
with oil price risk, many governments have established oil stabilization funds) to stabilize
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the WTI market to reduce price volatility spillover risk, which is not only important for the
investor to reduce losses, but develops the GB and CE markets for a sustainable economy.

Third, given that the correlation and volatility spillover of WTI to the GB and CE
markets are stronger than those of Brent in the short term, gradually decrease in the
medium term, and disappear in the long term, in developing the GB market, stakeholders
should be aware that the spillover effect of WTI prices is different from that of Brent
prices at different frequencies. Furthermore, policymakers should establish appropriate
mechanisms for mitigating the effect of WTI on the GB market in the short and medium
terms to ensure its issuance price stability. Such stability is important to mobilize financing
for sustainable investment.

Thus, our conclusion resulting from our findings is that investors or policymakers
should be aware that green bond investing addresses the two-pronged investment strategy
of (i) risk diversification and (ii) carbon mitigation.

Our study has some limitations in that it demonstrates the internal validity of the re-
sults in the U.S. market. Hence, further research is needed to determine whether our results
can be generalized to other countries to identify which market is the transmitter/receiver
of volatility to manage risk in cross-market investment. In future research, we will consider
the international GB market and other financial markets to test the external validity of
our study.
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DIC Deviance Information Criterion
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GFEVD Generalized forecast error variance decompositions
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IEA International Energy Agency
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LM Lagrange multiplier
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SMGED Skew multivariate generalized error distribution
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VAR Vector autoregressive
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