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Abstract: The increase in environmental and human-related changes (e.g., increase in the carbon cycle
flux of plants) has increased the dynamism of ecosystems. Examining fluctuations in net primary
production (NPP) is very important in adopting correct strategies for ecosystem management. The
current study explores the spatiotemporal variations in NPP and its association with agricultural
droughts in Iran’s ecosystems over 20 years (2000–2020). Mann–Kendall and Sen’s slope methods in
each pixel were used to track changes in trends. Drought upsets the terrestrial carbon cycle balance.
In this study, Vegetation Health Index (VHI) used to assess drought that extracted from different
bands of images satellite. Then, the relationship between NPP rates and agricultural droughts was
investigated through running Pearson correlation. The results demonstrated that Iran’s annual share
of carbon sequestration is 1.38 kg*C/m2/year. The highest carbon sequestration rate was recorded
in Caspian Hyrcanian forests. In contrast, the lowest rate was observed in the Arabian Desert and
East Sahero-Arabian xeric shrublands in southwestern Iran. Moreover, the highest photosynthesis
variations were recorded in Arabian Desert and East Sahero-Arabian xeric shrublands and Tigris–
Euphrates alluvial salt marsh, while the lowest changes were registered in Badghyz and Karabil.
In total, 34.2% of the studied pixels showed a statistically significant rising or falling trend. Sen’s
slope estimator demonstrated that the sharpest negative trend in carbon sequestration belonged
to Caspian Hyrcanian mixed forests (−12.24 g*C/m2/year), while the sharpest positive trend was
observed in Azerbaijan shrub desert and steppe (12.29 g*C/m2/year). The results of the Pearson
correlation revealed significant correlations between NPP and VHI in different ecosystems with
coefficients ranging from −0.93 to 0.95. The largest area with a positive correlation (33.97%) belonged
to the Zagros Mountains forest steppe. Identification of areas with the greatest carbon sequestration
changes could result in prioritizing varied ecosystems management for carbon sequestering. It can be
also utilized in environmental planning such as scaling up ecosystem values or estimating current
and past ecological capacity.

Keywords: carbon cycle; Hyrcanian forest; MODIS; Pearson correlation; trend analysis; vegetation health

1. Introduction

Climate change and human activities have influenced the dynamics of terrestrial
ecosystems worldwide [1], which in turn has led to changes in the cycle of elements.
Carbon is a critical element for all life forms on Earth [2], which regulates the climate
and is the primary source of fuel for energy in a global economy [3]. Carbon cycle is
a biogeochemical cycle describing the continuous process of carbon composition and
release in the biosphere, pedosphere, hydrosphere, geosphere, and atmosphere. In this
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process, energy and heat are constantly stored and dissipated [4]. There is a fast (short-
term) and a slow (long-term) carbon cycle, and the difference between the two lies in the
storage type and the length of time required to complete the cycle. The slow carbon cycle
encompasses a longer interval of several million years; the fast carbon cycle, on the other
hand, entails carbon activity and return in the soil, water, and atmosphere accomplished
through photosynthesis, breathing, and decomposition of living organisms. This cycle may
last from several minutes to several years [5]. In recent years, the carbon cycle balance
has undergone notable changes caused by the growing consumption of fossil fuels and
considerable carbon release in the atmosphere.

Climate change and future climate conditions will cause more and more droughts [6].
Drought is an extreme climate phenomenon that may occur in different climate zones. In
recent years, this phenomenon occurs more frequently due to the rising trend in temper-
ature [7]. Droughts are likely to happen in various climate periods. They influence the
economy by reducing water and food resources [8]. The increasing frequency of droughts
profoundly impacts the vegetation growth pattern and distribution of terrestrial ecosys-
tems [9]. Drought can also alter the intensity of photosynthesis by decreasing the water
content of chlorophyll and vegetation [10], and exert a significant effect on NPP patterns.
Indeed, the amount of carbon sequestrated through photosynthesis comprises the most
significant carbon flux between the terrestrial biosphere and the atmosphere [11].

Terrestrial ecosystems constitute a significant source of the global carbon cycle, absorb-
ing carbon from the atmosphere and slowing down the increase in CO2 concentration [12].
NPP, which is defined as the net rate of carbon production in vegetation for a given period,
indicates the mutual impact of environmental factors (e.g., soil and type of tree), human
activities, and climatic factors (e.g., temperature, rainfall, and relative humidity) [13,14].
NPP is an essential index to measure ecosystem reaction to climate changes [15]. Generally,
climate change boosts NPP in ecosystems, while human activities slightly decrease it [1].

Although it is highly critical to measure carbon flux on a global scale with the aim
of adopting policies to reduce climate change and carbon production, such measurement
is conducted only in a limited number of areas that are not evenly distributed across the
world [16]. To date, no comprehensive supervision method or accurate model has been
proposed to gauge the NPP rate. The common methods currently employed to measure
NPP mainly include the use of chambers [17–19], the eddy covariance [20–22], and remote
sensing [21,23,24]. In chamber method, the NPP of a product is measured by assessing
CO2, product flux, and soil. This method requires a massive number of chambers, which
constrains NPP measurements on a large scale [25]. The eddy covariance can automatically
monitor CO2 exchange but cannot distinguish between soil and product CO2 fluxes. In
this method, therefore, it is still necessary to gauge the soil CO2 flux to assess changes
in product NPP [21]. Lieth and Whittaker (1975) carried out the first NPP assessment
on a global scale through conducting a regression analysis based on the data related to
temperature and simple annual measurement of actual evapotranspiration in millimeters
gleaned from around 1000 weather stations. Placing the data in an experimental equation
and conducting interpolation, they estimated global NPP, which was equal to 118 million
metric tons per year of biomass [26]. Over the past five decades, remote sensing on spatial
and temporal scales has played an important role in quantifying carbon flux and estimating
biomass reserves [27–31]. Some studies which have used this method include [32–36],
which examined the impact of global changes on the dynamism of carbon flux in plants.

Previous studies have primarily concentrated on the effect of precipitation and temper-
ature on NPP changes in climatic boundaries. In these studies, the study areas have been
initially classified in light of climatic features. Then, the influence of changes in climatic
elements on NPP has been explored based on geographical locations [35,37]. Some studies
have also examined changes in a particular ecosystem [38–40].

There is a considerable spatial and temporal variation in NPP across the globe, which
is basically influenced by climate, land cover, and land use practices [28]. It is essential to
conduct further studies in other areas to draw a more comprehensive picture and make
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better decisions. The first step in this regard is identifying fluctuations in ecosystem NPP
patterns, followed by monitoring and extracting spatiotemporal variation patterns.

Ecologically, two major landscapes in Iran are desert and mountain. As one of the
largest countries in world with complex topography, distinct climate areas, and massive
plant and animal diversity, Iran supports various ecosystems, which often plays an impor-
tant role in preserving biodiversity throughout the world. For instance, North Forests and
coral reefs in south coastal regions have built a lot of ecosystems and great genetic diversity.
Additionally, several Iranian wetlands are globally significant, hosting large populations
of migratory birds for wintering. Considering the spatial extent, the climatic diversity
distribution of NPP is very high in Iran, particularly in the northern and northwestern parts
of the country. In contrast, the eastern and southeastern regions have lower NPP values
such that the Northern Forests NPP amounts to 1.3, and in the case of central deserts, it is
almost 0. During recent years, the major quantitative changes in NPP are caused by the
pure effects of climate changes and intensified anthropogenic activities in Iran. Given the
spatial extent, climatic diversity, and lack of relevant data in Iran, few studies have focused
on NPP in this country. In addition, there is no comprehensive study on spatiotemporal
variations in NPP in different ecosystems and the impact of droughts on this index. To par-
tially address this gap, the primary objective of this study was to delineate spatiotemporal
variation patterns in terrestrial carbon flux of plants in different ecosystems of Iran using
remote sensing and statistical procedures. The study also aimed to examine the impact of
carbon flux variations on agricultural droughts. The findings can help authorities make
better decisions regarding risk management to reduce fluctuations in carbon flux.

2. Materials and Methods
2.1. Study Area

The study area, Iran, is located in Southeast Asia with latitudinal coordinates of
25◦–40◦ N and longitudinal coordinates of 44◦–64◦ E. It covers an area of 1,648,195 km2 [41].
Iran borders Armenia and Azerbaijan in the northwest, the Caspian Sea in the north,
Turkmenistan in the northeast, Afghanistan and Pakistan in the east, the Persian Gulf and
the Oman Sea in the south, and Iraq and Turkey in the west [42] (Figure 1). Iran is the
only country in the world with coastlines on the Caspian Sea, the Persian Gulf, and the
Indian Ocean [43]. In general, Iran is located in a mountainous and semi-arid region and
its average height is over 1200 m above sea level. Since Iran encompasses a vast area,
hosts numerous geographical factors, and is located at the transition point of different
atmospheric circulation systems, it is home to a wide range of climates and ecosystems.
Moreover, due to its biological historical background and considerable power in speciation,
the country enjoys much biodiversity. According to the latest census, Iran’s population
exceeds 85 million with an annual population growth rate of 1.2% [44]. In 2019, Iran
recorded a CO2 per capita emission rate of 7.5 tons, which is over 1.6 times the global
average. Its emission growth rate since 1990 is more than 134% [45], indicating an excessive
rate of carbon emission and poor environmental conditions.

2.2. Methods

In order to conduct spatiotemporal analysis of carbon sequestration in Iran’s ecosys-
tems and explore its association with agricultural droughts, NPP data and VHI were
analyzed for the entire country from the spatiotemporal perspective. Then, trends and
breaks in the data were analyzed using Mann–Kendall and Sen’s slope methods. The
identified trends in each of the ecosystems were assessed from the spatiotemporal perspec-
tive. After that, the relationship between carbon sequestration and drought was assessed.
Figure 2 illustrates the overall procedure followed in this study. In what follows, further
details are provided for those sections requiring more elaboration.
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Figure 2. Flowchart of methodology.

2.2.1. Calculation of Net Primary Production (NPP)

The Monteith equation [46] was used to estimate NPP based on satellite images.
According to Equation (1), annual NPP is obtained from gross primary productivity (GPP).

https://rmgsc.cr.usgs.gov/outgoing/ecosystems/
https://rmgsc.cr.usgs.gov/outgoing/ecosystems/
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To this end, daily gross NPP was first calculated and then the respiration rate required for
maintenance and growth of the plant organs was subtracted, yielding NPP [47–49].

NPP = ∑365
1 GPP− Rm − Rg (1)

where GPP is the gross primary productivity rate, Rm is the residual plant respiration, and
Rg is the respiration rate required for plant growth. Rm − Rg was calculated based on leaf
area index (LAI) product, MODIS sensor (MODIS 15), and climate data [48]. MOD17A3HGF
V6 product provides information about annual NPP at 500 m pixel resolution from the
given year, which was retrieved from https://lpdaac.usgs.gov, accessed on 18 October
2022, maintained by the NASA EOSDIS Land Processes Distributed Active Archive Center
(LP DAAC) at the USGS Earth Resources Observation and Science (EROS) Center.

2.2.2. Calculation of Agricultural Drought Index

Vegetation Health Index (VHI) combines both the Vegetation Condition Index (VCI)
and the Temperature Condition Index (TCI), and is used to assess drought stress [50] based
on Equation (2).

VHI = αVCI + (1 − α) TCI (2)

where α is a fixed coefficient equal to 0.5, and VCI and TCI were calculated using the fol-
lowing Equations. In these equations, NDVI and LST are Normalized Difference Vegetation
Index and Land Surface Temperature, respectively, which were extracted from different
bands of MODIS images based on Equations (3) and (4).

VCI =
NDVI − NDVImin

NDVImax − NDVImin
∗ 100 (3)

TCI =
LSTmax − LSTi

LSTmax − LSTmin
∗ 100 (4)

VHI values were divided into five categories: very severe drought (10<), severe
drought (10–20), moderate drought (20–30), mild drought (30–40), and no drought (>40) [50].
VHI with a resolution of 4 km and a weekly time scale was selected from the Blended
Vegetation Health Product (Blended-VHP). It is widely used to supervise and identify
agricultural droughts [50–53]. Blended-VHP products were derived from the satellite
images of the Visible Infrared Imaging Radiometer Suite (VIIRS) (since 2013) and the
Advanced Very High-Resolution Radiometer (AVHRR) (1981–2012). In the current study,
arithmetic mean was used to obtain annual VHI.

2.2.3. Trend Analysis

Trend analysis can be carried out using both non-parametric and parametric tests [54].
Normal distribution of the data set is not a prerequisite for conducting non-parametric
tests. Moreover, such tests are highly insensitive to outliers; thus, they are widely used by
researchers. Mann–Kendall is one of the most commonly used non-parametric tests for
detecting trends in time series data [55–57].

This test was initially used by Mann in 1945 and subsequently developed by Kendall
in 1970 [58,59]. The null hypothesis in this test states that the data are randomly distributed
and do not form any trend. Rejecting the null hypothesis confirms the presence of a trend
in the data set. First, the differences between each observation and the other ones were
calculated and then parameter S was obtained using Equation (5).

S = ∑n−1
k=1 ∑n

j=k+1 sgn
(
xj − xk

)
(5)

https://lpdaac.usgs.gov
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where n is the number of observations, xj and xk show the jth and kth series, respectively.
The sgn function was calculated as follows:

sgn
(
xj − xk

)
=


1 i f

(
xj − xk

)
> 0

1 i f
(

xj − xk
)
= 0

1 i f
(

xj − xk
)
< 0

(6)

The values of S and V(S) were used to compute the test statistic Z as follows:

Z =

 x = S−1√
var(s)

x = S+1√
var(s)


i f S > 0
i f S = 0
i f S < 0

(7)

If |Z| is larger than Z critical value, then the null hypothesis is invalid, indicating that
the trend is significant.

All the abovementioned steps were coded in the R programming platform. All NPP
images during 2000–2020 were recalled. Then, the data of each pixel were extracted as a
matrix, matched with the ecosystem boundaries, and analyzed. The magnitude of a trend
can be estimated using Sen’s slope estimator, which is a non-parametric method [60,61].
Equation (8) was used to calculate Sen’s estimate:

f(1) = Qt + C (8)

where C is a constant and Q is the trend obtained through the following equation:

Qij =
Xj − Xk

j− k
(9)

where Q indicates the trend magnitude, Xk and Xj are the data values in the time series, and
Qi is the Sen’s slope estimate obtained from the medians of the A number of observations
(N). The number of odd observations is obtained using Equation (10).

Qmed = Q
(

N + 1
2

)
(10)

The number of even observations is obtained through Equation (11).

Qmed =
1
2

(
Q[ N

2 ] + Q[ N+2
2 ]

)
(11)

The confidence interval is also calculated from the specific probability of determin-
ing whether the median trend is statistically different from zero. It is calculated using
Equation (12).

Ca = Z1− a
2

√
Var(s) (12)

where Z(1 − a/2) is typically obtained from the standard normal distribution table [62].

2.2.4. Correlation Analysis

Pearson correlation coefficient indicates the correlation of dispersion. It shows the
direction and the strength of correlation and is calculated based on Equation (13) [63].

rxy =

N
∑

i=1
(Xi−X)(Yi −Y)√

N
∑

i=1
(Xi − X)

2 N
∑

i=1
(Yi −Y)2

(13)
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The equation above yields an output that ranges from −1 to +1, with the former indi-
cating a perfect negative correlation between the two variables and the latter demonstrating
a perfect positive correlation. If the correlation between the variables is not perfect, the
correlation coefficient falls between−1 and +1. To assess the null hypothesis, the correlation
coefficient is compared against the t distribution with n − 2 degrees of freedom in light
of the desired significance level. If the absolute value of the observed t is greater than the
critical t, the null hypothesis is rejected.

3. Results

The annual NPP distribution pattern in different ecosystems for the interval ranging
from 2000 to 2020 was calculated. The results showed that the degree of carbon seques-
tration in Iran, which varies to 1.38 kg*C/m2, is a function of geographical longitude and
latitude (Figure 3). In fact, the northern parts of the country registered a higher amount of
carbon sequestration in comparison with the southern regions. There is also a decrease in
the amount of carbon sequestration in the direction from west to east, with the exception
of a cluster in the northern regions, where a high degree of carbon sequestration was
detected due to the existence of the Hyrcanian coniferous forest ecosystem on the edge of
the Caspian Sea. Almost no carbon sequestration was recorded in the central parts of Iran,
which is home to the ecosystem of the Central Persian desert basins and is characterized
by lack of rainfall and poor vegetation. Ecosystems which recorded an average carbon
sequestration above 100 g*C/m2 are located in the north of Iran, whereas those registering
an average carbon sequestration of fewer than 100 g*C/m2 are mainly located in the central
and eastern parts of the country. The highest amount of carbon sequestration was detected
in Caspian Hyrcanian mixed forests, Azerbaijan shrub desert and steppe, and Elburz Range
forest steppe, which is located in the north of Iran, with average carbon sequestration rates
of 492.90, 329.51 and 225.99 g*C/m2, respectively. Conversely, Arabian Desert and East
Sahero-Arabian xeric shrublands and Tigris–Euphrates alluvial salt marsh, located in south-
western Iran, were the ecosystems that recorded the lowest rate of carbon sequestration
(0.20 and 12.60 g*C/m2, respectively).

Sustainability 2023, 15, x FOR PEER REVIEW 8 of 18 
 

 

Figure 3. The spatial distribution of median net primary productivity in Iran, 2000–2020. 

We also calculated the coefficient of variation (CV) for different ecosystems. Arabian 

Desert and East Sahero-Arabian xeric shrublands (CV = 5.99) and Tigris–Euphrates allu-

vial salt marsh (CV = 1.87) in southwestern Iran were the two ecosystems registering the 

highest variability, which indicates instability in the amount of photosynthesis in these 

ecosystems. On the other hand, the lowest CVs were recorded for the Middle East steppe 

and the Badghyz and Karabil semi-desert ecosystem (with CV indices of 0.19 and 0.20, 

respectively). This indicates that vegetation photosynthesis in the studied period was rel-

atively stable in these regions during the studied period. Moran’s I was calculated in light 

of the values of each pixel to understand whether carbon sequestration followed a clus-

tered or dispersed pattern. Given that the value obtained for spatial Moran (0.9701) was 

higher than the expected value (−0/00001) and the p-value was equal to 0.000, the spatially 

clustered pattern of carbon sequestration in Iran was confirmed. Figure 4 demonstrates 

the available trends of carbon sequestration for each pixel obtained through conducting 

Mann–Kendall with a confidence level of 95%. Overall, 65.8% of the pixels in Iran indicates 

a statistically insignificant trend, while 34.2% of them demonstrates a significant increas-

ing and decreasing trends. As Figure 4 suggests, some parts of western, northwestern, 

northeastern, and central Iran possess a significant rising trend. The highest increasing 

trend obtained through the Z score (0.94) was observed in the Eastern Anatolian Mountain 

steppe. Additionally, the increasing trend of carbon sequestration was detected around 

mega cities such as Tehran, Isfahan, and Mashhad, which is attributed to planting trees in 

the surrounding areas of these cities. The highest increasing rates were observed in the 

Eastern Anatolian Mountain steppe (91.1%) and mountainous Zagros forests (62.26%). 

Figure 4 further shows that northern and southwestern parts of Iran recorded a significant 

decreasing trend. The highest declining trend with a Z score of −0.86 was observed in the 

Caspian Hyrcanian mixed forests ecosystem. 

Figure 3. The spatial distribution of median net primary productivity in Iran, 2000–2020.

We also calculated the coefficient of variation (CV) for different ecosystems. Arabian
Desert and East Sahero-Arabian xeric shrublands (CV = 5.99) and Tigris–Euphrates allu-
vial salt marsh (CV = 1.87) in southwestern Iran were the two ecosystems registering the
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highest variability, which indicates instability in the amount of photosynthesis in these
ecosystems. On the other hand, the lowest CVs were recorded for the Middle East steppe
and the Badghyz and Karabil semi-desert ecosystem (with CV indices of 0.19 and 0.20,
respectively). This indicates that vegetation photosynthesis in the studied period was
relatively stable in these regions during the studied period. Moran’s I was calculated in
light of the values of each pixel to understand whether carbon sequestration followed a
clustered or dispersed pattern. Given that the value obtained for spatial Moran (0.9701) was
higher than the expected value (−0/00001) and the p-value was equal to 0.000, the spatially
clustered pattern of carbon sequestration in Iran was confirmed. Figure 4 demonstrates
the available trends of carbon sequestration for each pixel obtained through conducting
Mann–Kendall with a confidence level of 95%. Overall, 65.8% of the pixels in Iran indicates
a statistically insignificant trend, while 34.2% of them demonstrates a significant increas-
ing and decreasing trends. As Figure 4 suggests, some parts of western, northwestern,
northeastern, and central Iran possess a significant rising trend. The highest increasing
trend obtained through the Z score (0.94) was observed in the Eastern Anatolian Mountain
steppe. Additionally, the increasing trend of carbon sequestration was detected around
mega cities such as Tehran, Isfahan, and Mashhad, which is attributed to planting trees
in the surrounding areas of these cities. The highest increasing rates were observed in
the Eastern Anatolian Mountain steppe (91.1%) and mountainous Zagros forests (62.26%).
Figure 4 further shows that northern and southwestern parts of Iran recorded a significant
decreasing trend. The highest declining trend with a Z score of −0.86 was observed in the
Caspian Hyrcanian mixed forests ecosystem.
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Sen’s slope method indicated that the spatial distribution of NPP trend changes
ranged from 53.41 to −80.73 g*C/m2 (Figure 5). The lowest mean of negative trend
(−12.24 g*C/m2) was recorded in the north of Iran in the Caspian Hyrcanian mixed forests
ecosystem (Table 1).
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Table 1. Statistical calculations NPP of slope change in different ecosystems.

ECO_NAME MIN
(g*C/m2)

MAX
(g*C/m2)

RANGE
(g*C/m2)

MEAN
(g*C/m2) STD 1

Caspian Hyrcanian mixed forests −80.73 52.19 132.9 −12.25 16.43
Tigris–Euphrates alluvial salt marsh −16.39 11.58 27.98 −3.09 4.73

Arabian Desert and East Sahero-Arabian xeric shrublands −8.66 0.56 9.22 −0.62 1.48
Kopet Dag semi-desert −15.93 12.14 28.08 −0.61 8.59
Caspian lowland desert −23.81 25.39 49.21 −0.02 10.97

Registan–North Pakistan sandy desert −6.21 2.34 8.55 0.90 2.04
South Iran Nubo-Sindian desert and semi-desert −22.70 37.69 60.40 1.88 5.6
Kuh Rud and Eastern Iran montane woodlands −21.60 33.95 55.56 3.382 2.37

Badghyz and Karabil semi-desert −4.30 9.92 14.22 3.99 1.34
Mesopotamian shrub desert −3.04 10.82 13.86 4.39 2.30
Central Persian desert basins −34.84 44.67 79.51 4.73 4.41

Lake −9.90 18.45 28.35 5.41 4.20
Elburz Range forest steppe −38.08 53.15 91.24 5.59 6.28

Zagros Mountains forest steppe −59.83 53.41 113.25 6.10 4.19
Kopet Dag woodlands and forest steppe −13.26 24.57 37.84 6.19 2.69

Middle East steppe 7.72 7.72 0 7.72 0
Eastern Anatolian montane steppe −78.40 51.93 130.33 8.58 4.86
Azerbaijan shrub desert and steppe −44.71 40.42 85.14 12.29 5.79

1 Standard Deviation.

The minimum trend change (−82 g*C/m2) was also observed in this ecosystem. On the
contrary, the highest mean of positive trend (12.29 g*C/m2) was detected in the Azerbaijan
shrub desert and steppe, while the maximum trend change (53.41 g*C/m2) was registered
for the Zagros Mountains forest steppe.

Table 2 displays the percentage and area of trend changes for each ecosystem (kg/m2/year)
categorized into four classes: extreme negative trend (−83 to −30), slight negative trend
(−30 to 0), extreme positive trend (0 to 30), and slight positive trend (30 to 53).

Caspian Hyrcanian mixed forests had the largest area with negative trend cover-
ing (12,598.61774 km2 equal to 24%), whereas the smallest area with negative trend was
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recorded for the Badghyz and Karabil semi-desert ecosystem with an area smaller than
1 km2 (0.037%). On the other hand, the Zagros Mountains forest steppe with an area of
149421/1033 (42%) and Kuh Rud and Eastern Iran mountain woodlands with an area
covering less than 1 km2 (0.0005%), respectively, were the largest and smallest regions with
positive trend. Considering the association between carbon sequestration and agricultural
droughts, the regions where a significant positive correlation was observed between NPP
and VHI are illustrated in Figure 6. The strongest correlations were detected in the north,
northeast, and southwest, while the weakest correlations were recorded in the central parts
of Iran. As observed, save for two ecosystems (i.e., Middle East steppe and Baluchistan xeric
woodlands), positive correlations between NPP and VHI were observed for the entire coun-
try. The strongest and weakest correlations, respectively, belonged to the Zagros Mountains
forest steppe (r = 97.33) and the Registan–North Pakistan sandy desert (r = 0.0059).

Table 2. Percentage of trend changes for each ecosystem.

ECO_NAME −83 to −30 −30 to 0 0 to 30 30 to 53

Caspian Hyrcanian mixed forests 6.42 24.64 11.41 0.13
Tigris–Euphrates alluvial salt marsh Non-significant 4.519 0.73 Non-significant

Arabian Desert and East Sahero-Arabian xeric shrublands Non-significant 3.27 0.04 Non-significant
Kopet Dag semi-desert Non-significant 0.32 0.316 Non-significant
Caspian lowland desert Non-significant 2.32 1.55 Non-significant

Registan–North Pakistan sandy desert Non-significant 0.00 0.03 Non-significant
South Iran Nubo-Sindian desert and semi-desert Non-significant 0.58 1.34 0.00
Kuh Rud and Eastern Iran montane woodlands Non-significant 0.33 18.12 0.0

Badghyz and Karabil semi-desert Non-significant 0.03 20.17 Non-significant
Mesopotamian shrub desert Non-significant 0.07 6.40 Non-significant
Central Persian desert basins 0.00 0.29 8.50 0.00

Lake Non-significant 0.06 1.187 Non-significant
Elburz Range forest steppe 0.04 1.94 37.77 0.03

Zagros Mountains forest steppe 0.003 1.01 42.57 0.01
Kopet Dag woodlands and forest steppe Non-significant 0.02 23.27 Non-significant

Middle East steppe Non-significant Non-significant 4.43 Non-significant
Eastern Anatolian montane steppe 0.02 0.34 63.40 0.03
Azerbaijan shrub desert and steppe 0.02 0.32 32.72 0.31
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4. Discussion

There is limited (if any) access to ground data on NPP measurement in Iran. Therefore,
it is difficult to conduct spatial matching and validate NPP estimates obtained through
remote sensing. Previous researches (e.g., [49,59,64,65]) indicate that MODIS data have
acceptable accuracy. MODIS sensor-based NPP data are available for only 46% of the areas
of Iran’s ecosystems. There are no such data for Central Persian desert basins and South
Iran Nubo-Sindian desert and semi-desert, which are characterized by a lack of vegetation.
In these locations, the degree of carbon sequestration can be accessed via experimental
models or ground observations. The average share of terrestrial carbon sequestration of
plants in Iran was estimated to be 1.38 kg*C/m2/year. This estimate is larger than the
one proposed by the authors of [35], who studied a time period ending in 2014 and used
average pixels.

Unlike some previous research, the median of estimated image values was used in
the current study. The numerical values of the pixels in the images are affected by cloud
conditions, various land cover conditions, or radiometric errors. Therefore, a mean score
may yield a value that is far from the actual focal point. Conversely, the median is less
susceptible to the lack of data in a particular time or climate extremes.

Liu et al. [40], Song et al. [66] claimed that forests play a significant role in carbon
sequestration through photosynthesis. In a similar vein, the findings of this research showed
that the forest ecosystems in the north and northwest of Iran, with broad-leaved evergreen
trees, account for a large amount of carbon sequestration. In contrast, the ecosystems
containing deserts and salt marshes in central and southern Iran recorded the lowest
portion in carbon sequestration due to lack of vegetation. The results of trend analysis
revealed no statistically significant trend in more than two-thirds of the available pixels
studied in this research. Eastern Anatolian Mountain steppe and the Zagros Mountains
forest steppe registered the highest positive trend despite the fact that these ecosystems
are undergoing declining rainfall and increasing temperature. The upward trend in these
ecosystems, therefore, cannot be connected to climate factors; rather, as pointed out by
Wu et al. [67] and Chen et al. [68], the growing trend in carbon sequestration may be
attributed to human activities and expanding agriculture area, which play a substantial
role in increased vegetation. Our findings in this regard are in conflict with those of
Bejagam and Sharma’s [1]. The impact of human activities on the NPP rate depends on
the location where the activities occur; thus, destruction of vegetation in a particular place
may result in reduced NPP, while it may lead to higher NPP in another spot. The range
of NPP variations in Iran is estimated to be about 135 g/m2/year, representing severe
changes and photosynthesis instability. The highest standard deviation for change in carbon
sequestration was observed in the Hyrcanian coniferous forest ecosystem, which cannot
be explained solely in light of climatic variables. Indeed, destructive human activities in
this ecosystem (e.g., deforestation) have led to substantial decline in carbon sequestration.
On the other hand, climate change has resulted in rising photosynthesis and NPP rate.
Increasing trends can be attributed to climate change and human activities. In contrast,
radical decline trends in the short term can only be justified in light of deforestation caused
by human activities. At the global scale, greenhouse gas emissions (CH4 and CO2 in
particular) are largely responsible for the Earth’s warming [69,70]. Terrestrial habitats are
generally a sink for atmospheric carbon sequestration and greenhouse gas flux modulation.
Grossi et al. [71] proposed a comprehensive methodological approach to both quantitatively
and qualitatively estimating emission and sequestration of greenhouse gases by plants and
highlighted the potential of green spaces to mitigate climate change impacts. The results
of research revealed that highest weakened carbon sequestration occurs in the Zagros
Mountains Forest steppe ecosystem, indicating remarkable changes in the ecosystem NPP
values, and carbon sequestration and storage decreased owing to the loss of forest cover.
Liu et al. [72] in China and Sahu et al. [73] in India investigated the NPP changes in different
biomes, too, and suggested that forest and farming biomes accounted for the greatest NPP
fluctuations. In Iran, restoring forest ecosystems and preventing further damage or loss to
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them through compatible cropping patterns, avoiding deforestation, and fire management
planning could help rise carbon capture and sequestration and to some extent modulate
increasing climate change trend. Environmental degradation and land use alterations have
been driven by Iran’s economic growth which in turn considerably influenced ecological
processes, including carbon sequestration. However, the relationship between NPP and
the level of anthropogenic activities in Iran is very difficult to understand because most
of Iran’s production activities are concentrated in the central provinces such as Tehran
and Isfahan, while these provinces have high reliance of other regions on imports of raw
materials and do not exploit local natural resources.

Drought is a serious environmental threat across Iran, mainly due to the climate
change; however, its effects are exacerbated by rapid population growth, inappropriate
population distributions, land overharvesting, and poor water management [74]. The
results also showed that, at the 95% confidence level, only in 27.27% of the pixels the
correlation between NPP and VHI is statistically significant. Figure 7 shows the average
percentage of correlation between NPP and agricultural drought in different ecosystems.
Various values indicate that the effect of droughts on NPP depends on the ecosystem type.
These correlations could be associated with the differences in drought intensity, drought
duration and vegetation type. Pei et al. [75] and Yu et al. [76] discovered that the positive
correlation between NPP and SPEI was more robust in the ecosystems located in arid
and semi-arid climatic regions. Similarly, in the current study, the highest correlation
was observed in the Zagros Mountains forest steppe (Figure 7), an ecosystem located in a
semi-arid climate with the highest amount of rainfall in winter and spring. On the contrary,
the weakest correlation was spotted in the Registan–North Pakistan sandy desert with cold
desert climate. This ecosystem encompasses a small area in Iran; hence, caution must be
exercised in making claims based on the findings. Yu et al. [76] and Qi et al. [77] exploited
SPEI to examine the association between NPP and droughts. A problem with using SPEI is
that this index may overestimate the impact of droughts in arid and semi-arid regions [13].
This is especially undesirable in Iran, with over two thirds of its area being located in arid
and semi-arid climates. Liu et al. [78] also assert that soil moisture is more important than
drought stress in ecosystem production. This important variable, however, is not taken into
account by SPEI.
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5. Conclusions

In this study, satellite images were used to examine spatiotemporal variations in
Iran’s NPP in light of ecosystem boundaries. Findings showed that the share of carbon
sequestration in Iran constitutes 1.38 kg*C/m2/year and follows a clustered spatial pat-
tern. Larger NPP rates were recorded for ecosystems located in the north and northwest
of Iran. Furthermore, spatiotemporal variations were not aligned with the ecosystem
boundaries; in fact, a decreasing rate of spatial variations was observed in the southward
direction. The highest negative trend was detected in the north of Iran, especially in the
Caspian Hyrcanian mixed forest ecosystem. Substantially negative carbon sequestration
trends were observed in ecosystems with rich vegetation, which supports the idea that
measures taken to curb deforestation and natural plant destruction are ineffective. The
highest positive trend was spotted in the Azerbaijan shrub desert and steppe ecosystem.
This indicates that ecosystems frequently used by humans experience positive trends in
carbon sequestration due to agricultural activities. The findings also suggest that NPP
rate and agricultural drought have a strong correlation in the Zagros Mountains forest
steppe and a weak association in the Registan–North Pakistan sandy desert. However,
a significant positive correlation between NPP and agricultural drought was observed.
Various correlation coefficients obtained in this study indicate that, besides rainfall and
temperature fluctuations, other factors within the ecosystem influence NPP rates. Given the
extreme dynamics of climatic factors, it is suggested that future researchers use nonlinear
methods (e.g., cross-spectrum analysis of correlations) to identify the degree to which
climatic and non-climatic factors influence NPP variations. The findings of this study
showed that using remote sensing to monitor carbon sequestration in vast areas, which are
influenced by numerous factors, saves a lot of money and time. As such, remote sensing
can be used in environmental planning to implement constructive measures. Providing
precise information for decision-makers planning in order to balance between society’s
needs and the exploitation of ecosystems’ natural resources during drought periods could
contribute to help PNN decreasing. Local non-governmental organizations (NGOs) and
their participation in decision-making process, as well as information sharing via social
media during drought periods play vital roles in this respect.
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