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Abstract: Cover crops (CCs) are a promising strategy for maintaining and enhancing agroecosystem
sustainability, yet CCs’ effects on the subsequent crop yield are highly variable. To quantitatively
synthesize the effects of CCs on subsequent crop yield, a meta-analysis of 672 observations collected
from 63 recent studies (2015 to 2021) in temperate climates was conducted. Legume CC species
increased subsequent crop yield significantly more than grass (by 14%), nonlegume broadleaves (by
7%), and mixtures (by 2%). Incorporation of CC residue into soil increased crop yield by approx. 15%
compared to leaving the CC residue on the soil surface. Relative to the no-CC control, the adoption
of grass and legume CC species in non-organic vegetable cropping systems enhanced crop yield by
14% and 19%, respectively. Likewise, crop yield with legume CCs in coarse and medium textured
soil, and under high precipitation conditions (>700 mm), was significantly greater than the no-CC
control by 18%, 4%, and 11%, respectively. Cover crops significantly increased vegetable crop yields
and decreased the silage corn yield; however, grain corn, soybean, and winter wheat yield did not
decrease with CC. Adoption of CC in no-tillage and plow tillage systems contributed to an increase in
crop yield compared to the no-CC control. Our meta-analysis highlights that crop yield response to
CC might become more robust when pedo-climatic conditions and agronomic factors are considered.

Keywords: catch crop; grain crop production; tillage; service crop; sustainable land management;
vegetable production; best management practice

1. Introduction

Global food security is one of the biggest challenges facing agriculture today. This
challenge is further intensified because food production should focus not only on safe and
high-quality food, but products must also be produced sustainably. Intensive conventional
agricultural practices might contribute to enhancing crop productivity, yet a degradation
in soil and environmental quality is observed with the use of heavy machinery, limited
rotational diversity, and excessive inputs of agricultural chemicals [1,2]. Therefore, land
management practices which sustain and improve crop productivity while minimizing the
negative impacts on the environment are needed.

Cover crops (CCs), usually grown after the main crop harvest in summer/fall (Figure 1),
are a land management strategy which provides numerous ecosystem services. Some of
the beneficial services provided by CC are an increase in soil organic C [3], increase in soil
N availability [4], increase in soil biodiversity [5], increase in soil aggregate stability [5–7],
decrease in insect and disease infestation [8], and reduction in weed pressure [9]. Cover
crops are also a promising option for enhancing the subsequent crop yield [3,4,10,11], which
is a major factor driving farmers’ decision making regarding CC adoption into cropping
systems [9]. Cover crops impart benefits to subsequent crop yield via numerous mechanisms,
such as increased availability of nutrients in the following growing season, reduced losses of
N through immobilization, increased soil microbial activity, and a reduction in weeds [12,13].
Leguminous CC species, for instance, can biologically fix atmospheric N, thereby enhancing
plant-available N and crop yield [14–16]. Likewise, a review by Blanco-Canqui et al. [5] and a
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meta-analysis by Bourgeois et al. [16] reported increases in crop yield with leguminous CC
due to the positive impacts of legumes on soil N availability. Cover crop mixtures have also
been recommended as a valuable strategy for increasing subsequent crop yields [15].
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In contrast, several studies have reported either neutral or negative effects of CCs on 
crop yield [14,16–19]. Yield uncertainty with respect to CC use suggests that crop yield 
response to CCs varies across CCs (e.g., species type, termination time, amount of above-
ground biomass, residue management), main crop (e.g., species, production system, till-
age, amount of N inputs), and pedo-climatic conditions [9,14,18]. For instance, a meta-
analysis by Alvarez et al. [17] reported that corn (Zea mays L.) grain yield decreased by 8% 
following the use of non-leguminous CC species, whereas soybean (Glycine max L.) yield 
was not impacted by CCs. Cover crop termination time impacts the subsequent crop yield 
response because timely termination of CC results in better synchronization between CC 
residue mineralization and crop nutrient uptake than early or late CC termination [9]. 
Additionally, the use of CC in reduced tillage (minimum and no-tillage) systems contrib-
utes to enhancing crop yield, possibly due to the decrease in disturbance of the soil and 
the increase in soil quality [20,21]. The enhanced soil quality found in reduced tillage sys-
tems is mainly attributed to addition of C inputs from crop residue, which increase soil 

Figure 1. Comparison of cover crops planted in mid-August (foreground) and mid-September
(mid-ground) with grain corn in the background at the Ontario Crops Research Centre—Ridgetown,
Ontario, Canada. Photo taken on 29 October 2020 by Dr. Laura L. Van Eerd.

In contrast, several studies have reported either neutral or negative effects of CCs
on crop yield [14,16–19]. Yield uncertainty with respect to CC use suggests that crop
yield response to CCs varies across CCs (e.g., species type, termination time, amount of
aboveground biomass, residue management), main crop (e.g., species, production system,
tillage, amount of N inputs), and pedo-climatic conditions [9,14,18]. For instance, a meta-
analysis by Alvarez et al. [17] reported that corn (Zea mays L.) grain yield decreased by
8% following the use of non-leguminous CC species, whereas soybean (Glycine max L.)
yield was not impacted by CCs. Cover crop termination time impacts the subsequent crop
yield response because timely termination of CC results in better synchronization between
CC residue mineralization and crop nutrient uptake than early or late CC termination [9].
Additionally, the use of CC in reduced tillage (minimum and no-tillage) systems contributes
to enhancing crop yield, possibly due to the decrease in disturbance of the soil and the
increase in soil quality [20,21]. The enhanced soil quality found in reduced tillage systems
is mainly attributed to addition of C inputs from crop residue, which increase soil microbial
activity and community dynamics [20,21]. It has been reported that crop yield uncertainty
following CC is one of the major challenges restricting CC adoption by growers [18].
Therefore, to accurately estimate the CC-induced effects on crop yield and to better inform
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decision making related to CC adoption, the impact of management factors contributing to
yield uncertainty must be considered.

A meta-analysis was conducted to quantitatively assess crop yield response to CC in
temperate climates. Meta-analysis is a powerful statistical method used to quantitatively
summarize the results from multiple independent studies, evaluate the heterogeneity in the
dataset, identify the potential sources of variability in the response parameter, and assess
the magnitude of the effect size [22]. Cover crops’ effects on crop yield in temperate climates
have been reviewed previously [5,23,24], yet a handful of meta-analyses have compared
the effects of CCs between crops, which might have provided meaningful insights into
adoption strategies [9,13,17,18]. To our knowledge, very few meta-analyses have assessed
the impacts of CC management practices on various main crops grown under different
production systems or the potential interactions of agronomic practices (applied to CCs
and main crops) with pedo-climatic factors. The previously published CC meta-analyses
and reviews identified the learning curve involved in adopting CCs and provided valuable
information to improve CC management. Concomitantly, CC research has expanded, and
studies with new CC varieties and approaches evaluating CC-induced effects on crop
yield and other ecosystem services are continually being published. Consistently with
Challinor et al. [25], Marcillo and Miguez [18], and Ponisio et al. [26], this study contributes
to building knowledge, improving the robustness of study results, and comparing the
results of recent CC research with the previously published meta-analyses.

Herein, the recent literature on CC research (from January 2015 to April 2021) was
used to synthesize a quantitative analysis to better understand the crop (main crop and
CC) management practices, their interactions with environmental factors, and their effects
on subsequent crop yield in temperate climates. The major objectives of the study were
(a) to determine the crop yield response with and without CC; and (b) to evaluate the
effect of CC management (e.g., CC species type, timing of CC termination, and CC residue
incorporation), main crop management (species/type, production system, tillage, and N
fertilizer application to main crop), and environmental variables (soil texture and mean
annual precipitation) on crop yield response. Quantitative summarization of CC research
will identify management and cropping systems that impact crop yield, leading to improved
CC recommendations for growers’ decision making and potentially enhancing CC adoption
in temperate climates.

2. Materials and Methods
2.1. Data Collection

The database for the meta-analysis was prepared by conducting a comprehensive
literature search of peer-reviewed articles published from January 2015 to April 2021 using
Google Scholar, CAB abstracts, and Web of Science search engines, as well as University of
Guelph theses and dissertation collection. The literature was searched by using keywords
in the search string “cover crop or winter cover crop or green manure crop or catch crop or
intermediate crop or service crop and crop yield or crop productivity”. Due to the limited
number of CC studies conducted in Europe (only 6 studies), this meta-analysis focused
on studies conducted exclusively in North America. To be included in the database and
to ensure that the effects on subsequent crop yield were solely due to CC treatments,
the following criteria were used: (a) study had a control treatment (no CC or fallow);
(b) treatments had at least 3 replicates; (c) study was conducted in the field in a temperate
climate, i.e., studies were performed under climate class C based on Koppen–Gieger
classification [27] to represent the temperate climate; (d) study was conducted in North
America; (e) subsequent crop yield data was reported; (f) study did not include CCs grown
as green manure crops for an entire growing season without any main crop; and (g) CCs
were planted and terminated prior to planting the main crop. Using the aforementioned
criteria, 50 studies published in peer-reviewed journals and 13 unpublished studies (grower
reports, theses, and dissertations) were selected for the meta-analysis (Table 1). Data were
extracted directly from the tables and text from the published peer-reviewed articles and
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unpublished studies. Additionally, to extract the data reported in the figures, WebPlot
Digitizer (version 4.3) [28] was used.

Table 1. Summary of the articles included in the meta-analysis. z OSCIA = Ontario Soil and Crop
Improvement Association.

Reference Year Main Crop Cover Crop Type Study Location Peer-Reviewed
Journal

1 Kaspar and Bakker [29] 2015 Grain corn Non-legume Iowa, USA X

2 Pantoja et al. [30] 2015 Grain corn and
soybean Non-legume Iowa, USA X

3 Cicek et al. [31] 2015 Spring wheat Non-legume Manitoba, Canada X

4 Thilakarathna et al. [32] 2015 Grain corn Legume and
non-legume Ontario, Canada X

5 Bulan et al. [33] 2015 Cabbage Non-legume Wisconsin, USA X

6 Lance Ouellette [34] 2015 Squash Mixture and
non-legume Ontario, Canada 7

7 Sara Alford [35] 2015 Grain corn
and soybean

Mixture and
non-legume Indiana, USA 7

8 Welch et al. [36] 2016 Soybean and
grain corn

Mixture and
non-legume Illinois, USA X

9 Belfry and Van Eerd [37] 2016 Seed corn Mixture, legume,
and non-legume Ontario, Canada X

10 Gieske et al. [38] 2016 Grain corn Non-legume Minnesota, USA X

11 Mehring et al. [39] 2016 Potato Mixture, legume,
and non-legume North Dakota, USA X

12 Bietila et al. [40] 2016 Pepper, snap bean,
and potato Non-legume Wisconsin, USA X

13 Evans et al. [41] 2016 Dry bean Non-legume Manitoba, Canada X
14 Ashworth et al. [42] 2016 Grain corn Legume Tennessee, USA X

15 Seth Appelgate [43] 2016 Grain corn Mixture and
non-legume Iowa, USA 7

16 Ryan Haden [44] 2016 Grain corn Legume and
non-legume Ohio, USA 7

17 Coombs et al. [45] 2017 Grain corn Legume Ontario, Canada X

18 Jahanzad et al. [46] 2017 Potato Legume and
non-legume Massachusetts, USA X

19 Chu et al. [47] 2017 Soybean Mixture and
non-legume Tennessee, USA X

20 Belfry et al. [48] 2017 Processing tomato Mixture and
non-legume Ontario, Canada X

21 Thomas et al. [49] 2017 Spring wheat Non-legume Alberta, Canada X

22 John Hampton
Krzton-Presson [50] 2017 Muskmelon Mixture and

non-legume Iowa, USA 7

23 Heather Darby [51] 2017 Soybean Mixture Vermont, USA 7

24 Liebman et al. [52] 2018 Grain corn Legume North Carolina, USA X
25 Chalise et al. [53] 2018 Soybean Mixture South Dakota, USA X

26 Chahal and Van Eerd [3] 2018 Processing tomato Non-legume and
mixture Ontario, Canada X

27 Cholette et al. [54] 2018 Grain corn Mixture, legume,
and non-legume Ontario, Canada X

28 Van Eerd [4] 2018 Processing sweet
corn and fresh bean

Legume and
non-legume Ontario, Canada X

29 Nunes et al. [55] 2018 Grain corn Mixture New York, USA X

30 Jaclyn Clark [56] 2018
Grain corn,

soybean, and
silage corn

Mixture, legume,
and non-legume Ontario, Canada 7
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Table 1. Cont.

Reference Year Main Crop Cover Crop Type Study Location Peer-Reviewed
Journal

31 Heather Darby [57] 2018 Sweet corn Mixture and
non-legume Vermont, USA 7

32 Hunter et al. [58] 2019 Silage corn Mixture, legume,
and non-legume Pennsylvania, USA X

33 Adeli et al. [59] 2019 Grain corn Non-legume Mississippi, USA X

34 Larkin [60] 2019
Green bean, sweet

pepper, and
yellow squash

Mixture and
non-legume Maine, USA X

35 Wang et al. [61] 2019 Silage corn Non-legume Maryland, USA X

36 Kaye et al. [62] 2019 Silage corn Mixture, legume,
and non-legume Pennsylvania, USA X

37 Yang et al. [63] 2019 Grain corn Legume Ontario, Canada X
38 Flood and Entz [64] 2019 Dry bean Non-legume Manitoba, Canada X

39 Yang et al. [65] 2019 Soybean and grain
corn Non-legume Mississippi, USA X

40–
41 OSCIA z report [66,67] 2019 Soybean Non-legume Ontario, Canada 7

42 Aaron Patrick Brooker
[68] 2019 Grain corn Mixture, legume,

and non-legume Michigan, USA 7

43 Cameron Ogilvie [69] 2019 Grain corn Mixture and
non-legume Ontario, Canada 7

44 Matthew Stewart [70] 2019 Grain corn Mixture, legume,
and non-legume Ontario, Canada 7

45 Luna et al. [71] 2020 Broccoli Mixture, legume,
and non-legume Oregon, USA X

46 Acharya et al. [72] 2020 Soybean Non-legume Iowa, USA X

47 Adler et al. [73] 2020 Grain corn and
soybean Mixture Missouri, USA X

48 Tobin et al. [74] 2020 Grain corn Mixture South Dakota, USA X
49 Adeyemi et al. [75] 2020 Grain corn Non-legume Illinois, USA X

50 Brooker et al. [76] 2020 Grain corn Legume and
non-legume Michigan, USA X

51 Mohammed et al. [77] 2020 Grain corn Non-legume Iowa, USA X
52 Behnke et al. [78] 2020 Grain corn Non-legume Illinois, USA X
53 Agomoh et al. [79] 2020 Winter wheat Legume Ontario, Canada X
54 Andersen et al. [80] 2020 Grain corn Legume North Dakota, USA X

55 Zhou et al. [81] 2020 Cucumber Legume and
non-legume Ontario, Canada X

56 Wauters et al. [82] 2021 Broccoli Mixture and
non-legume Minnesota, USA X

57 Kandel et al. [83] 2021 Soybean and wheat Non-legume South Dakota, USA X

58 Hunter et al. [84] 2021 Grain corn Mixture, legume,
and non-legume Pennsylvania, USA X

59 Sigdel et al. [85] 2021 Sugarbeet Legume and
non-legume Minnesota, USA X

60 Rahman et al. [86] 2021 Tomato Non-legume West Virginia, USA X
61 Hirsh et al. [87] 2021 Grain corn Non-legume Mid-Atlantic, USA X

62 Langelier et al. [88] 2021 Winter wheat Legume and
non-legume Quebec, Canada X

63 Farzadfar et al. [89] 2021 Root crops, sweet
corn, and broccoli Non-legume Saskatchewan,

Canada X

In addition to CC, co-varying factors which might have had a potential effect on crop
yield were included in the database. The co-varying factors selected in the meta-analysis
were consistent with the previously published meta-analyses and were found to have
the greatest influence on the subsequent crop yield [13,17,18]. The factors were broadly
categorized into CC management, main crop management, and environment. Cover crop
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factors consisted of type of CC (legume, grass, nonlegume broadleaf, or a mixture), amount
of dry aboveground CC biomass at or near termination (low, ≤1 Mg ha−1; medium, >1 and
≤3 Mg ha−1; high, >3 and ≤5 Mg ha−1; and very high, >5 Mg ha−1), time of CC termination
(spring or winter), and CC residue incorporation (yes or no; Table 2). The main aspects of
crop management were classified into different categories, such as the type of production
system (certified organic field crops, certified organic vegetables, non-organic field crops,
or non-organic vegetables), tillage (no-tillage, minimum-tillage, or plow-tillage), type
of crop (field or vegetable crops), and N fertilizer inputs to the main crop (yes or no).
Field crops were categorized into 5 groups (dry bean (Phaseolus vulgaris L.), winter wheat
(Triticum aestivum L.), silage corn, grain corn, and soybean). The environment variable was
classified into soil texture (coarse, medium, or fine [90]) and mean annual precipitation at
the study sites (>700 mm, 500 to 700 mm, or <500 mm; Table 2). Cover crop aboveground
biomass and precipitation data were classified as categorical variables. As is consistent with
previously published reviews on CCs [5,91], aboveground CC biomass was categorized
in this study. Similarly to McClelland et al. [92], the lower, middle, and upper ranges
of the quartile were used to classify the mean annual precipitation. A description of the
variables along with the number of observations in each analysis is provided in Table 2.
To enhance the quantitative analysis and to reduce publication bias, the studies reporting
the effects of CC in combination with other management factors (e.g., tillage, fertilizer)
were considered as separate observations [9,93]. Likewise, if a study was conducted at
multiple locations and over different years, data from each year and location were treated
as independent observations due to potential differences in weather conditions, soil texture,
and crop rotation in different years and locations [94,95].

Table 2. Description of the variables included in the database, total heterogeneity (Qt), and p values to
evaluate the impact of soil and crop management factors on the crop yield response ratio. Dependent
variable was the natural log of the crop yield response ratio. z Bold font for p values < 0.05 indi-
cates significant heterogeneity or statistical effect in the crop yield response ratio according to the
tested variables.

Moderating Variable Variable
Description

Number of
Observations Heterogeneity Analysis Mixed Model Analysis

Qt p Value F Value p Value

Cover crop management
Cover crop type 672 59.1 <0.0001 z 9.65 <0.0001

Non legume
broadleaf 18.2 0.9485

Legume 8.41 0.0029
Grass 21.4 0.0005

Mixture 11.1 0.0041
Aboveground cover crop biomass

at termination 398 21.3 <0.0001 4.87 0.0024

Low 4.83 0.5719
Medium 10.3 0.5622

High 1.14 0.2293
Very high 5.03 0.0003

Time of cover crop termination 661 58.9 <0.0001 10.3 0.0014
Winter 3.66 0.0003
Spring 55.2 0.5077

Cover crop
residue incorporation 536 52.0 <0.0001 2.01 0.1569

Yes 50.8 0.9183
No 1.21 0.1562
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Table 2. Cont.

Moderating Variable Variable
Description

Number of
Observations Heterogeneity Analysis Mixed Model Analysis

Qt p Value F Value p Value

Main crop management
Crop production system 672 59.1 <0.0001 5.37 0.0012

Non-organic
field crops 13.1 0.3790

Non-organic
vegetables 19.9 0.0758

Certified organic
field crops 8.87 0.0101

Certified organic
vegetables 17.0 0.0160

Type of crops 672 59.1 <0.0001 0.63 0.4265
Vegetables 36.9 0.6490

Field 22.0 0.2939
Tillage 88 15.1 0.0467 0.38 0.6836

Plow 1.29 0.7435
Minimum 0.33 0.2825
No tillage 13.5 0.0280

N fertilizer input 98 14.1 <0.0001 1.07 0.3036
No 12.8 0.3882
Yes 1.25 0.4910

Environment
Soil texture 596 52.1 <0.0001 6.08 0.0024

Coarse 10.8 0.0005
Medium 39.4 0.9275

Fine 1.91 0.2327
Mean annual precipitation 551 43.0 <0.0001 6.49 0.0022

>700 mm 20.8 0.0001
500 to 700 mm 1.88 0.5085

<500 mm 20.2 0.3467

2.2. Data Analysis

To evaluate the effect of CCs on the subsequent crop yield, a response ratio (RR) was
calculated by dividing the main crop yield with CC treatment by that with no CC control
(Equation (1)).

RR =
Yieldcover crop

Yieldno cover crop
(1)

Response ratio is a dependent variable and has been widely used to assess the effects
of experiment factors [18,96]. The response ratio for each observation was transformed to a
natural logarithm scale (ln(RR)) primarily to linearize the metric between numerator and
denominator [97]. Additionally, ln(RR) is better suited for meta-analysis than RR due to a
more normal distribution of ln(RR) than RR [22,97]. Although ln(RR) values were used for
statistical analysis, the values were back-transformed to RR to facilitate the interpretation
of the study results [98,99].

To conduct a meta-analysis, treatment means and a measure of variability are generally
required to determine the within- and between-study variance [97,100]. However, only
20 out of 63 studies compiled in the present database reported measures of variability.
Therefore, to include all the studies in the analysis, an un-weighted meta-analysis using the
ln(RR) was conducted in SAS (SAS Institute, version 9.4, Cary, NC, USA) to calculate the
bootstrapped (with 9999 iterations) 95% confidence interval (CI) [94,95,98]. If the 95% CI
did not overlap 1, the effects of categorical variables on RR were considered significant at
p < 0.05 [94,98,99]. Furthermore, forest plots demonstrating the mean crop yield RR and
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95% CI for the different groups within each moderator variable were prepared in order to
analyze the trends in the crop yield response. A response ratio of 1 indicated no difference
in crop yield between the CC treatment and the no-CC control.

As described in Han et al. [98] and Tian et al. [101], the total heterogeneity (Qt) for
each group was tested using a Chi-square test to determine whether the effects of variables
on effect size were different across studies (Table 2). The total heterogeneity for each group
represented the sum of within- (Qw) and between-group (Qb) heterogeneity [97]. To further
investigate the main and interactive effects of the categorical variables on ln(RR), a mixed-
model analysis was conducted using PROC GLIMMIX in SAS, where the moderating
variables were the fixed effects while the study was the random effect. Consistently with
previous meta-analyses [9,102,103], and to maximize the number of observations used in
the statistical analysis, the crop yield response to each variable was analyzed separately.
Since CC performance and its effects on subsequent crop yield are largely dependent on
the type of CC species, the interaction of CC type with the remaining moderator variables
was assessed.

3. Results and Discussion
3.1. Overview of the Studies Included in the Analysis

Our dataset consisted of 672 observations collected from 63 studies conducted in
temperate climates exclusively in USA and Canada (Table 1). From the 63 studies we
collected, grain corn, soybean, and vegetable crops dominated the dataset (Table 1), with
326, 73, and 193 observations, respectively.

The test for total heterogeneity in the crop yield dataset was significant (Qt = 59.1,
p < 0.0001, n = 672), indicating that the crop yield ln(RR) among the observations was not
homogenous. Cover crops either decreased, increased, or had no effect on crop yield ln(RR)
in 42%, 51%, and 7%, respectively, of the total observations (data not shown). Therefore,
crop yields with CC were either equal to or greater than the control for 58% of the total
observations in our dataset. Within the group in which crop yield decreased with CC,
crop yield was 15% less than the control (data not shown). Despite the numerous benefits
provided by CC, the risk of a loss in crop yield with CC is one of the major challenges
deterring CCs’ adoption in cropping systems [104]. The exact mechanism through which
CC reduces or increases crop yield is highly complex and controlled by several co-varying
factors related to both CC and main crop management, as well as the environmental condi-
tions [3,5,9,13,18]. Therefore, in this study, the impact of the aforementioned moderating
variables on the crop yield response (i.e., ln(RR)) was investigated.

3.2. Impact of CC Management and Aboveground Biomass on Crop Yield Response
3.2.1. Type of CC

Cover crop types were categorized into legumes, grasses, nonlegume broadleaves, and
mixtures to investigate the crop yield RR (Table 2). Of the reviewed studies, leguminous CC
species primarily consisted of hairy vetch (Vicia villosa L.), red clover (Trifolium pratense L.),
and field pea (Pisum sativum L.). Among the grass CC species reviewed in our dataset
(Figure 2), cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum L.), and oat
(Avena sativa L.) had the greatest frequency. Ruis et al. [91] also reported that grass CCs,
such as cereal rye, were the most researched CC species in temperate climates. Brassica
had the greatest frequency among the nonlegume broadleaf CC species, whereas grass
and legume CC species dominated the dataset for the CC mixtures (Figure 2). The test for
heterogeneity (Qt = 59.1, p < 0.0001, n = 672; Table 2) and mixed model analysis (p < 0.0001)
for CC types was significant; hence, the CC type influenced the crop yield RR. Among the
CC types tested in our study, legume (RR = 1.11, n = 110) CC species were associated with
significantly greater crop yield RR than the no-CC control (Figure 3). The crop yield RR
for the remaining CC types (nonlegume broadleaves and mixtures) was greater, but not
significantly different, than the no-CC control (Figure 3). For instance, the mean crop yield
RR values for the nonlegume broadleaf CC species and mixtures were 1.04 (n = 122) and
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1.08 (n = 165), respectively (Figure 3). In contrast, grass CC species had lesser (RR = 0.96,
n = 275), but not significantly different, crop yields than the no-CC control (Figure 3). The
bootstrapped 95% CI for the grasses, nonlegume broadleaves, and mixtures overlapped
with 1, suggesting a similar effect of the CC and no-CC control on the subsequent crop
yield (Figure 3).
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Crops following leguminous CC had an 11% greater yield than the no-CC control. As
is similar to our findings, Daryanto et al. [9] and Marcillo and Miguez [18] reported an
increase in crop yield with leguminous CC, which might be primarily related to increased
soil N availability. Legume CC residues undergo rapid mineralization due to narrow
C:N (<25:1) at termination; thus, there is an increased potential for N availability to the
crops following legume CC in the rotation [62]. In addition, legume CC might provide
some non-N benefits, such as increasing soil moisture conservation, weed control, and
reducing pest and pathogen infestations [13,18,105], which might have contributed to
yield increases following legume CC. Our finding of decreased crop yields with grasses,
nonlegume broadleaves, and mixtures compared to leguminous CCs was consistent with
previous analyses conducted by Marcillo and Miguez [18], Miguez and Bollero [13], and
Daryanto et al. [9]. Grass CCs tend to have wide C:N at termination, which results in
N immobilization, a reduction in N supply for the next crop, and a potential decrease
in crop yield [106]. Furthermore, the release of allelopathic compounds by cereal rye
might negatively impact the main crop yield [107–109]. Despite no gain in crop yield
with grass CC, integration of grass CC in crop rotations is beneficial as it increases soil
health and soil organic C, while reducing soil mineral N losses [5,7,13,110]. Likewise, our
finding of a neutral effect of CC mixtures on subsequent crop yield was consistent with the
meta-analysis conducted by Florence and McGuire [15]. In our study, CC mixtures were
dominated by grass and legume CC species (Figure 2). As is consistent with our analysis, it
has been reported previously that mixing legumes with grass CC mitigated the negative
effects of grass CC on crop yield [62,106]; no yield decline with CC mixtures was observed
in our analysis (Figure 3). In contrast to our meta-analysis findings, several studies have
reported the positive influences of CC mixtures on subsequent crop yield [3,18,47,111]; these
were attributed to the high biomass production of CC mixtures, which may be associated
with high seeding rates [15,112]. However, the discrepancy in crop yield response following
the use of CC mixtures might be related to CC management strategies and the type of CCs
grown in the mixtures [113].

3.2.2. Cover Crop Aboveground Biomass at Termination

The amount of aboveground biomass produced by CC largely impacts the subsequent
crop yield [5,29,91,114]. In this study, the impact of aboveground biomass produced by
CC at or near the time of termination on the subsequent crop yield was evaluated. In
our meta-analysis, aboveground CC biomass was reported in 60% of the observations.
Despite the positive association between the amount of aboveground CC biomass and
ecosystem services (such as nutrient uptake, N availability, erosion control, soil moisture
conservation, and weed suppression) provided by CC [5,91], 40% of the observations in
our meta-analysis did not report the CC biomass which accumulated in either the fall
or spring seasons. Hence, future CC research must consider the quantity of CC biomass
produced as a critical factor to accurately discern and make informed decisions regarding
the CC-induced effects on crop productivity.

Our analysis revealed that the impacts of aboveground CC biomass on crop yield
vary with the type of CC species grown (i.e., highly species-specific). This was confirmed
by a significant interaction between the CC type and the CC aboveground biomass at
termination (p = 0.0039; Table 3). Thus, the effect of amount of aboveground CC biomass
on crop yield response was assessed separately for each CC type (grasses, legumes, mix-
tures, and nonlegume broadleaves) (Figure 4). Our results suggest that within grass CC
species, medium (RR = 0.95, n = 89), high (RR = 0.86, n = 14), and very high (RR = 0.81,
n = 20) aboveground CC biomass resulted in lesser, yet non-significant, crop yield with
CC than the no-CC control (Figure 4), whereas crop yield was statistically greater with CC
than the no-CC control when the CC aboveground biomass was low (RR = 1.09, n = 84;
Figure 4). Decreases in crop yield in high and very high biomass categories with grass
CCs might be related to (a) allelopathic effects of grass CCs (particularly cereal rye) and
(b) N immobilization during the spring season, which, perhaps, decreased N availability
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for the next crop. A similar effect of grass CC species on crop yield was reported in the
meta-analysis by Marcillo and Miguez [18]. Unlike grass CCs, legume CCs led to signifi-
cantly greater crop yield compared to the no-CC control in the groups with the medium
(RR = 1.16, n = 27; Figure 4) and high (RR = 1.14, n = 5) amounts of CC aboveground
biomass. Legume CCs have greater potential to supply N to the next crop than grasses and
nonlegume broadleaves; hence, increases in the leguminous CC biomass increased the CC
aboveground N content, which perhaps contributed to a yield increase in the next crop. The
crop yields between the CC groups and the no-CC control were not statistically different
in the aboveground biomass categories using mixtures and nonlegume broadleaf species
(Figure 4), suggesting the need for more research to further elucidate the interactive effects
between CC aboveground biomass and species type on crop yield. There were very few
observations in the high (n = 3) and very high (n = 3) biomass categories with nonlegume
broadleaf CC species (Figure 4), which limited the ability of this study to derive conclusions
related to crop yield.
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Table 3. Mixed model analysis for test of significance of two-way interactions between cover crop
type and moderating variables and their effects on crop yield response ratio. Dependent variable was
natural log of crop yield response ratio. z Bold font for p values < 0.05 indicates significant statistical
interaction in crop yield response ratio due to the tested variables.

Moderating Variable Pr > F

CC type x CC aboveground biomass 0.0039 z

CC type x time of CC termination 0.8114
CC type x CC residue incorporation 0.5073
CC type x crop production system <0.0001

CC type x type of crop 0.0061
CC type x tillage 0.1067

CC type x N fertilizer inputs 0.0759
CC type x soil texture 0.0037

CC type x mean annual precipitation 0.0123

The test for heterogeneity (Qt = 21.3, p < 0.0001, n = 398) and the mixed model
analysis (p = 0.0024; Table 2) for CC aboveground biomass were significant, suggesting that
subsequent crop yield varied among the CC aboveground biomass sub-groups. Despite the
significant heterogeneity in the dataset, the mean crop yield among the CC aboveground
biomass categories (low (RR = 1.01, n = 173), medium (RR = 1.02, n = 154), high (RR = 0.96,
n = 30), and very high (RR = 0.87, n = 41)) was not significantly different between the CC
groups and the no-CC control (Figure S1). Unlike the positive effects of increasing CC
biomass on crop yield, which have been derived from several studies [5,18,114], our results
demonstrated that the effects of the amount of CC aboveground biomass on crop yield
are complex and depend on the type of CC grown. The complex effect of the amount of
CC biomass produced on crop productivity was further confirmed by the large crop yield
variability and lower crop yield RR with CCs compared to the no-CC control in high and
very high biomass categories, suggesting a potential risk to crop yield with an increase in
the amount of aboveground CC biomass.

3.2.3. Cover Crop Termination Time

The test for heterogeneity (Qt = 58.9, p < 0.0001, n = 661; Table 2) and mixed model
analysis (p = 0.0014; Table 2) were significant for CC termination timing, suggesting that CC
termination timing impacted the crop yield response. Consequently, crop yield RR between
the categories of winter and spring termination of CC was analyzed. The forest plot in
Figure 3 shows the effect of CC termination timing on crop yield RR. The bootstrapped
95% CI of the winter and spring (usually in May) termination timing group overlapped
by 1; thus, suggested that crop yield following winter (RR = 1.06, n = 113) and spring
(RR = 1.02, n = 548) termination of CC was not different between the CC groups and the
no-CC control (Figure 3). Between both CC termination groups, winter CC termination
led to a 48% greater variability than spring termination, mainly due to fewer observations
in the winter termination group (Figure 3). One potential reason for the low crop yield
response when CCs were terminated in spring might be associated with the allelopathic
effects of rye [107,108]. Numerous studies have confirmed that the allelopathic effects
of cereal rye on the main crop are more pronounced when cereal rye is terminated late,
closer to main crop planting than winter termination [30,109,115,116]. Unlike our study,
Marcillo and Miguez [18] reported a high crop yield when CCs were terminated in spring,
closer to main crop planting. Likewise, Wortman et al. [113,117] reported a greater corn
yield with CCs which were terminated late in the spring, primarily because of increased
CC biomass production and early-season weed suppression. As is consistent with our
results, a meta-analysis by Daryanto et al. [9] reported that winter termination of CC might
increase crop yield in dry, temperate climates, mainly due to conservation of soil moisture
for the next main crop. A study by Rosa et al. [118] in temperate climates found that spring
termination of CC stimulated N immobilization and reduced corn yield. Growing CC for
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an extended period in dry temperate climatic conditions is not a promising approach for
obtaining major crop yield benefits, mainly due to excessive water consumption by the
CC species.

Although there was no significant interaction between CC type and termination
time in our study (Table 3), the duration of the CC growing season largely impacts the
aboveground biomass produced; a long CC growing season results in high CC biomass
accumulation [91,114]. Furthermore, the termination timing of CC (winter vs. spring) is
largely a function of the CC species, as some CC species are winter-hardy while some are
winter-killed. The majority of the compiled studies in our analysis consisted of winter-
hardy CCs, such as cereal rye and hairy vetch (Figure 2), which was evident as there were
a greater number of observations within the spring termination group (n = 548) than the
winter group (n = 113). Cover crop species such as oat and radish (Raphanus sativus L.) are
winter-killed, whereas CCs such as cereal rye and red clover can overwinter and, therefore,
can be terminated in winter or spring. At spring sampling, winter-killed CC species will be
dead and somewhat decomposed, and, hence, would have less biomass remaining than the
winter-hardy species. Moreover, winter-killed CC species might accumulate less biomass
than winter-hardy species due to their shorter growing seasons. Similarly to the CC type,
the termination timing of CCs has direct implications on the quantity and quality of CC
residue [18,119], which is the major pathway for CC-induced effects on subsequent crop
yield. Therefore, CC management is a crucial factor for enhancing the main crop yield.

3.2.4. Cover Crop Residue Incorporation

The test for heterogeneity (Qt = 52.0, p < 0.0001, n = 536; Table 2) for CC residue
incorporation was significant; thus, the crop yield RR values from two sub-groups (i.e., CC
residues incorporated into soil or not) were further investigated. The mean crop yield
following incorporation of CC residues into soil was greater than 1 (RR = 1.17, n = 523).
The bootstrapped 95% CI for the sub-group did not overlap with 1, suggesting that the
incorporation of CC residues into the soil increased crop yield with CCs compared to the
no-CC control (Figure 3). It is possible that incorporating CC residues might have increased
soil microbial activity, soil aeration, and nutrient availability for the next crop [101], which
may have increased crop yield. It was also reported that the potential negative effects of
rye allelopathy on the main crop yield were significantly reduced with the incorporation
of CC residues, perhaps due to rapid decomposition of the residue by soil microbes upon
incorporation [109]. Additionally, a meta-analysis by Basche et al. [102] reported that
incorporating CC residues into soil during the spring season in temperate climates might
increase the availability of C-rich substrates for microbial growth and, depending on the
amount of decomposition, may increase the potential for N loss in the environment, which
may have a negative impact on the subsequent crop yield. Likewise, meta-analyses by
Daryanto et al. [9] and Zuber and Villamil [103] highlighted that the incorporation of CC
residues into soil with tillage might disturb the soil microenvironment and negatively
impact the fungal colonization, microbial biomass, and crop yield.

Unlike CC residue incorporation, leaving the CC residues on the soil surface increased
crop yield (RR = 1.02, n = 13), but the crop yield was not significantly different between the
CC group and the no-CC control (Figure 3). Several studies have reported inconsistent crop
yield effects when CC residues are left on the soil surface [9,110,120]. Additionally, as it
relates to CC residue incorporation (n = 523), there were very few observations in which CC
residues were left on the soil surface (n = 13). The low number of observations resulted in a
very high variability in crop yield when CC residues were not incorporated into the soil. In
agreement with the literature, results from this study suggest the need for future research
to better elucidate strategies to manage CC residues, such as precision incorporation.
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3.3. Impact of Main Crop Management on Crop Yield Response to Cover Crops
3.3.1. Type of Production System and Main Crop Type

In our analysis, a significant interaction (p < 0.0001; Table 3) between the CC type
and the crop production system was observed, suggesting that the crop yield response
to CC depended on the type of CC grown under different production systems. Our
results suggested that the crop yields with grass (RR = 1.14, n = 51) and leguminous
(RR = 1.19, n = 23) CC species were greater than the no-CC control with the use of non-
organic vegetable production systems (Figure 5). However, grass CC species decreased the
crop yield with non-organic field crops, certified organic field crops, and certified organic
vegetable crops (Figure 5). Nonlegume broadleaf and mixture CCs had no effect on crop
yield under any of the tested production systems (Figure 5). Mixtures and nonlegume
broadleaves in certified organic field crops and legume CCs in certified organic vegetable
production systems led to very large variability in crop yields, mainly due to a lack of
observations. Relative to non-organic field crops, non-organic vegetable production systems
showed either significantly greater or similar crop yields with CCs compared to the no-CC
control, thus confirming the better suitability of CC species for vegetables than for field
crop production systems in temperate climates. When the crop yield data were pooled
across CC types, the results suggested that CC usage in non-organic vegetable systems
significantly increased the subsequent crop yield (RR = 1.12, n = 125; Figure S2). However,
no yield increase with CC was observed in certified organic vegetable production systems
(RR = 0.96, n = 80; Figure S2). Similarly, studies by Chahal and Van Eerd [7], Brennan [121],
and Buchanan et al. [122] found yield benefits with CCs in non-organic vegetables.
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Furthermore, a significant interaction between the type of main crop and CC (p = 0.0061;
Table 3) revealed that there were no yield penalties with CC in vegetable crops (Figure 6),
whereas grass CCs in field crops significantly decreased the crop yield (Figure 6). Cover
crops significantly increased the yield (RR = 1.06, n = 193) of vegetable crops (Solanaceae,
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Brassicaceae, Fabaceae, Gramineae, and Cucurbitaceae; Figure S2). As is consistent with
our findings, several studies have reported yield enhancements in vegetable crops following
CCs [3,4,48,123–125]. Relative to field crops, vegetables have a shorter growing season. For
instance, in temperate climates, vegetable crops are usually harvested in late August to early
September. This allows for timely planting and good establishment, growth, and aboveground
biomass accumulation of CC, which contribute to positive effects on soil health and following
crop yield. Among the field crops, grain corn (RR = 1.03, n = 326), soybean (RR = 1.06, n = 109),
and winter wheat (RR = 1.01, n = 23) showed greater, yet non-significant, crop yields with
CCs than the no-CC control (Figure S2). In contrast, dry bean (RR = 0.94, n = 16) and silage
corn (RR = 0.90, n = 41) had lesser crop yields with CCs than the no-CC control (Figure S2).
Furthermore, on average, grain corn yield was 14% greater than that of silage corn in our
study. Similar results related to a decrease in silage corn yield following CC were reported in
a meta-analysis by Marcillo and Miguez [18]. The potential causes of silage corn yield loss
are not exclusively attributed to CCs, but might be related to an extensive removal of crop
residue from silage corn fields, an increased potential for erosion, and a loss of nitrate from
soil [18]. Less crop yield response to CC in field crop systems represents a major challenge for
CC adoption by these growers in temperate climates; hence, further research is needed that
focuses on CC management in field crop systems.
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3.3.2. Type of Tillage System

Tillage is another agronomic management variable which impacts the CC-induced
effects on subsequent crop yield. Therefore, the crop yield response to CCs was evaluated
under three types of tillage system (no-tillage, minimum tillage, and plow). The test of
heterogeneity (Qt = 15.1, p = 0.0467, n = 88) for tillage systems was significant; thus, the
sub-groups (no-tillage, minimum tillage, and plow) were further investigated. The crop
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yield was significantly greater with CC than the no-CC control for the no-tillage (RR = 1.21,
n = 67) and plow tillage systems (RR = 1.1, n = 13; Figure 7). In contrast, the crop yield
with CC under minimum tillage (RR = 0.94, n = 8; Figure 7) was lesser, yet non-significant,
compared to the no-CC control. Relative to minimum and plow tillage, CCs increased crop
yield in no-tillage systems. The crop yield from CC adoption in the no-tillage system was
28% greater than in the minimum tillage group and 10% greater than in the plow tillage
group. As is consistent with our results, several studies and meta-analyses have reported
the positive effects of no-tillage on soil properties, soil microbial activities, soil structure,
and organic matter stabilization [103,126,127]. No-tillage combined with CCs, therefore,
has positive implications for subsequent crop yield. Our result of a greater crop yield with
no-tillage than with plow tillage in addition to CCs was in agreement with Marcillo and
Miguez [18] and Mitchell et al. [128]. The significant variability in crop yield with no-tillage
systems indicated that (a) the management of crop residues and main crop seeding, as well
as their establishment to increase crop yield, in no-tillage systems are complex; and (b) there
were differences in agronomic management (type of CC and main crop species, time of
CC termination) in the evaluated studies. Several studies have reported negative effects
of no-tillage on crop yield in temperate climates [129–132], primarily due to excessive soil
moisture at the time of planting, resulting in water-logging, poor crop establishment [133],
and the immobilization of nutrients [129,130]. Despite the inconsistent effects of no-tillage
on crop yield which were observed in the literature, our results suggest that the combination
of no-tillage with CCs improves crop yield and might be more consistent in improving
soil [126] and crop [128] characteristics than no-tillage alone.
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for calculating the response ratio.

In our study, the large crop yield variability under minimum tillage was attributed to a
smaller number of observations than no-tillage (Figure 7). Our result of high crop yield with
CC under plow tillage contrasted with previous studies [128]. For instance, a meta-analysis
by Zuber and Villamil [103] found a decline in soil microbial properties with conventional
tillage. Similarly, meta-analyses by Norris and Congreves [21] and Roper et al. [134] found
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an increase in soil total N and soil respiration with minimum tillage than with conventional
tillage; hence, plow tillage negatively impacted the subsequent crop yield. Considering
these previous findings, it is possible that the negative effects of plow tillage on soil and
crop attributes might have been alleviated by integrating CC in crop rotations. That is, the
positive impacts of plow tillage on crop yield observed in this study might be related to
the interactive effects of tillage and CCs. Another possible explanation is that soil organic
matter mineralization is stimulated under plow tillage, which might release and increase N
supply for the subsequent crops and increase crop yield.

3.3.3. Fertilizer N Inputs to Main Crops

The application of fertilizers, especially synthetic N fertilizers, to main crops is a
common practice and critical factor for sustaining crop yield. Therefore, CCs’ effects
on the main crop yield with and without the application of synthetic N fertilizers were
evaluated. The test of heterogeneity for N inputs was significant (Qt = 14.1, p < 0.0001,
n = 98; Table 2), confirming the need to assess the effects of sub-groups on crop yield.
Although not significantly different between the CC groups and the no-CC control, crop
yield was greater with N inputs (RR = 1.09, n = 49; Figure 7), but decreased when no N
fertilizer inputs were applied to the main crop (RR = 0.99, n = 49; Figure 7). In comparison
to that without N fertilizer application, the crop yield following CC was 10% greater with
N. Crop yield variability without N fertilizer application was larger than with N fertilizer
(Figure 7). As is consistent with our findings, Tonnito et al. [14] reported no significant
differences in crop yield following CC with and without the application of N fertilizer to
the main crop. Moreover, our result of no differences in crop yield following CC between
N fertility treatments suggests that CC did not decrease the crop yield in the absence of N
fertilizer inputs, indicating system resiliency with N management. Although not significant,
a trend (p < 0.10) was observed for the interaction between CC type and N fertilizer input
(Table 3). Overall, the results suggest that the use of CCs may provide an opportunity to
reduce the N fertilizer application to the main crop. Therefore, CC adoption might be an
effective option for maintaining soil N supply and availability to the main crop, especially
in low-input agriculture, where agronomic management strategies focusing on reducing
the application of N fertilizers are desirable [9,14,18].

3.4. Impact of Environmental Variables on Crop Yield Response to Cover Crops
3.4.1. Soil Texture

The results of the mixed model analysis suggested a significant interaction (p = 0.0037;
Table 3) between CC type and soil texture, suggesting that the effect of CC species on crop
yield depended on the soil texture. All tested CC types had either increased or similar crop
yields as the no-CC control with coarse textured soil (Figure 8). Likewise, when the effects
of the soil texture on crop yield were pooled across the CC types, crop yield with CC was
significantly greater than the no-CC control in coarse textured soils (RR = 1.08, n = 192;
Figure S3). However, no significant differences in crop yield between the CC groups and the
no-CC control were observed for medium and fine textured soils (Figure S3). Fine textured
soils have high water-holding capacity and cation exchange capacity [103], which might
have positive implications on soil microbial activity, nutrient availability, and subsequent
crop yield; however, our results suggest that the adoption of CCs in fine textured soils does
not benefit the subsequent crop. Coarse textured soils, on the other hand, resulted in better
CC growth and establishment than medium and fine textured soils, mainly due to good
aeration, soil structure, and less clay content [103]. Unlike medium and fine textured soils,
coarse textured soils did not decrease crop yield with grass CC, suggesting that coarse
textured soils helped to mitigate the negative effects of grass CC on the main crop yield.
Legumes significantly increased crop yield compared to the no-CC control with coarse
(RR = 1.18, n = 46) and medium (RR = 1.045, n = 54; Figure 8) textured soil. The negative
effects of poor aeration, high clay content, and the delayed drying during the spring season
associated with fine textured soils on the main crop yield were not observed for the legumes
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and mixtures (which primarily consisted of grass and legumes) in this study; thus, legume
CCs’ effects on the main crop yield led to a high resilience to variation in soil conditions.
However, legume and mixture CC species led to significant variability in crop yield under
fine textured soils due to a lack of observations. Based on our study results, further research
is required to investigate the processes related to CCs’ performance and its effects on crop
yield in various soil textural classes, particularly fine-textured soils.
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3.4.2. Mean Annual Precipitation

Our results demonstrated that the crop yield response to CCs under varying precipita-
tion conditions was dependent on the CC type (legume vs. non-legume CCs), as confirmed
by a significant interaction between precipitation and CC type (p = 0.0123; Table 3). For
instance, with >700 mm precipitation, legume CCs led to a significantly greater crop yield
than the no-CC control (Figure 9). It is possible that with >700 mm precipitation conditions,
legume CC biomass increased, which increased the N content of aboveground CC biomass,
the N availability to the next crop, and the next crop yield. In contrast with our results, a
meta-analysis by Basche et al. [102] reported that CCs, under high precipitation conditions,
increase the loss of N in the environment during the spring season, depending on the
amount of decomposition, and may result in a reduction in N availability to the next crop,
and, thus, might have negative implications for the subsequent crop yield.
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Impact of legume cover crops under the 500 to 700 mm precipitation condition was not evaluated
due to the low number of observations.

Grasses, on the other hand, led to lesser crop yields than the no-CC control in all
precipitation conditions (Figure 9). Relative to legumes, grass CC species compete more
with the main crop for soil water, mainly due to the rapid root growth and high root
biomass of grass CCs [5,23]. Therefore, grasses contributed to a decrease in crop yield even
under high precipitation conditions (>700 mm; Figure 9). Crop yield with non-legume
broadleaf CCs and mixtures was not different than that with the no-CC control under
all tested precipitation conditions. It is possible that in mixes, grasses outperformed the
legume CCs in terms of growth and biomass production when precipitation conditions
were >700 mm and 500 to 700 mm; thus, crop yield differences were not observed (Figure 9).
Further investigation is, therefore, required to discern the mechanisms responsible for
differences in crop yield with different CC types under variable precipitation conditions.

The test for homogeneity (Qt = 43.0, p < 0.0001, n = 551) and mixed model analysis
(p = 0.0022; Table 2) were significant; consequently, the sub-groups were assessed in order
to understand the CC-induced effects on crop yield. Our results suggest that the crop yield
was significantly greater in the CC group than in the no-CC control group when the mean
annual precipitation was >700 mm (RR = 1.06, n = 395; Figure S3). With >700 mm of annual
precipitation, there would be fewer issues related to competition for soil water between
CCs and the main crop. Adequate rainfall conditions favor CCs’ growth and biomass
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accumulation, and, thus, contribute to increasing the subsequent crop yield. A decline
in crop yield was observed with CC when the mean annual precipitation fell into the
categories of 500 to 700 mm (RR = 0.99, n = 63) and <500 mm (RR = 0.98, n = 93; Figure S3).
As is consistent with our results, studies by Blanco-Canqui et al. [5], Daryanto et al. [9], and
Rusinamhodzi et al. [135] found that CC-induced effects on subsequent crop yield decreased
with a decrease in total precipitation. Cover crops uptake water from the soil, which may
result in loss of soil moisture via transpiration during the CC growing season [14,136].
Therefore, the use of CCs is not considered to be a promising agronomic management
strategy in dry temperate climates.

4. Conclusions

Our meta-analysis compiled recent data on crop yields following CC application
from 63 recent studies conducted in temperate climates, and evaluated the effects of ten
moderator variables on the main crop yield. The results of our meta-analysis revealed that
the interactions of different CC types with pedo-climatic variables and management factors
are important to better understand the CC-induced effects on subsequent crop yield. These
interactive effects also confirm the need to focus research efforts on CC types to optimize
crop productivity. Our results suggest that the crop yield following the use of legume
and mixture CCs was either greater than or equal to that of the no-CC control under the
conditions of fine textured soil and low precipitation. The mixture CCs evaluated in this
study consisted primarily of legumes and grasses. It is possible that the benefits of legume
CCs masked the negative effects of grass CCs on crop yield under conditions that limited
the CCs’ performance. The crop yield did not decrease with the use of legume CCs under
fine textured soil and low precipitation conditions, suggesting that the effects of legume
CCs were more resilient to changes in pedo-climatic conditions than the remaining CC
types tested in this study. Even though the crop yield was not significantly larger than
that of the no-CC control for three (field crops, CC aboveground biomass, and N fertilizer
application) out of ten moderator variables, the crop yield RR > 1 suggests a net benefit of
including CCs in crop rotations, and supports the hypothesis that the integration of CCs
in cropping systems is an effective approach for maintaining agroecosystem productivity.
Our study results identified opportunities for further research to optimize management,
which might improve the adoption of CCs in production systems. Although one would
expect greater effects of CCs on crop attributes to be observed in the long term (≥10 years),
the majority (70%) of the available studies compiled in our database were not long-term.
Therefore, more research on CCs in the long term is needed to comprehensively assess the
main crop yield benefits of CCs and to better reflect farmers’ commitment to CC use.

Additional research evaluating the economic returns from CCs in various production
systems is needed. Although crop yield response following CCs is a major parameter
determining the adoption of CCs within a cropping system, future research elucidating
the benefits of CCs on soil attributes such as soil microbial activity and diversity, nutrient
cycling, and soil C and N storage, which might be valuable for increasing the adoption of
CCs in agricultural systems.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/su15086517/s1. Figure S1. Mean crop yield response ratio (ratio between
crop yield following cover crops and no cover crop control) and 95% confidence interval for the cover
crop aboveground biomass investigated in the meta-analysis. n represents the number of observations.
Figure S2. Mean crop yield response ratio (ratio between crop yield following cover crops and no
cover crop control) and 95% confidence interval for main crop management factors investigated in the
meta-analysis. n represents the number of observations used for calculating the response ratio. Figure
S3. Mean crop yield response ratio (ratio between crop yield following cover crops and no cover crop
control) and 95% confidence interval for soil texture and mean annual precipitation investigated in the
meta-analysis. n represents the number of observations used for calculating the response ratio.
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