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Abstract: The identification and delineation of urban functional zones (UFZs), which are the basic
units of urban organisms, are crucial for understanding complex urban systems and the rational
allocation and management of resources. Points of interest (POI) data are weak in identifying
UFZs in areas with low building density and sparse data, whereas remote sensing data lack the
necessary semantic information for functional zoning, and single-source data cannot perform a highly
comprehensive characterization of complex UFZs. To address these issues, this study proposes a
method for identifying UFZs by fusing multi-attribute features from multi-source data and introduces
nighttime light and land surface temperature (LST) indicators as functional zoning references, taking
the main urban area of Zhengzhou as an example. The experimental results show that the POI
data with integrated three-level semantic information can characterize the semantic information
of functional areas well, and the incorporation of multi-spectral, nighttime light, and LST data
can further improve the recognition accuracy by approximately 10.1% compared with the POI
single-source data. The final recognition accuracy and kappa coefficient reached 84.00% and 0.8162,
respectively, indicating that the method is largely consistent with the actual situation and is feasible.
The analysis showed that the main urban area of Zhengzhou as a whole is characterized by the
coordinated development of single and mixed functional areas, in which a distinct residential-
commercial-public complex is formed, and the urban functional areas on the block scale have diverse
attributes. This study can provide a decision-making reference for the future development planning
and management of Zhengzhou, China.

Keywords: functional zoning; multi-source data; POI; focal loss; LightGBM; urban spatial structure

1. Introduction

With rapid progress of the information age, sensing technologies and computing
environments have undergone profound advances and improvements. Consequently,
means of obtaining data, such as urban sensing, are becoming increasingly abundant. As
geographical products, cities form the core of economic and social development. Urban
functional zones (UFZs) are important geospatial attributes of urban land, a geographical
space where social resources are gathered and specific urban functions are effectively
performed [1]. UFZs are both relatively independent and interconnected, forming an
organic urban whole [2,3]. The accurate identification of UFZs and the elucidation of their
distribution patterns are essential for promoting modern urban construction management
and for optimizing urban industrial structures; however, the accurate identification of UFZs
is challenging owing to the complexity and comprehensiveness of urban functions [4].

Most traditional studies rely on existing land use information, field surveys, expert
evaluations, or thematic data for functional zoning, which are subjective, lack objective
tests, and are time-consuming and labor-intensive [5–7]. In recent years, high-quality very-
high-resolution remote sensing images, with their large coverage, rich image information,
and wide availability, have demonstrated certain advantages in representing UFZs [8].
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However, owing to the lack of semantic information on UFZs, their identification is limited
by certain factors [9]. For example, remotely sensed images comprise visual features of
functional partitions but cannot provide object information. Missing object information in
turn leads to both the object categories and spatial object patterns being ignored, which
may lead to inaccurate classification results. Data types have gradually diversified with
the development of information and perception technologies. The use of points of interest
(POI) [10], social media check-ins [11], floating vehicle ODs [12], and mobile phone sig-
naling data [13,14], which can characterize geographic location information and semantic
information related to human activities, yields better results for urban functional zon-
ing [15] or dynamic description [16] and can fill the gaps in missing semantic information
regarding the functional space of remote sensing images.

The combination of high-resolution remote sensing images and social perception data
is an effective way to identify urban functional areas quickly. However, only one type of
attribute can describe the characteristics of urban functional areas at a certain level. To
entirely reflect the characteristics of urban functional areas, multidimensional characteristic
information must be obtained from various sources. In contrast to daytime remote sensing,
nighttime remote sensing images record information on artificial lights, which can reflect
the distribution of human settlements and the intensity of socioeconomic activities [17],
which are strongly related to the spatial structure of cities [18]. Huang et al. [19] proved that
light information related to human activities captured by nighttime light remote sensing
data can provide additional useful information for urban functional zones interpretation.
However, the heterogeneity of urban areas is not only reflected in the heterogeneity of
spatial landscapes and the differentiation of socio-economic functions but is also related to
the imbalance of anthropogenic heat emissions in urban areas. As land surface temperature
(LST) is highly influenced by human social activities [20], studies have been conducted to
analyze the relationship between LST changes and the structural characteristics of different
functional areas [21]. Feng et al. [22] demonstrated that different urban functional area
types have different LST effects. Therefore, nighttime light and LST data provide a unique
perspective for identifying UFZs.

A city’s spatial structure and layout are concrete representations of its functional area.
The study of spatial structure can provide a scientific basis for the rational deployment
of resources in functional areas, urban spatial planning, and the promotion of urban
development [23]. The fusion of multi-source data is currently an effective method to
identify UFZs rapidly and accurately, providing an understanding of the spatial layouts
of cities. However, most studies use single-source POI data [24,25] for the identification
and analysis of UFZs, which often only express the socio-semantic characteristics of UFZs
at a single level and cannot comprehensively reflect their geovisual and socioeconomic
characteristics. To provide a comprehensive characterization of complex UFZs, Zhang [26]
and Chang [27] used random forest (RF) to fuse multi-spectral and social perception data
for functional zoning. However, the issue of spatial sparsity of social perception data
requires further exploration. Chen [28] used a light gradient boosting machine (LightGBM)
to fuse remote sensing images and user behavior data to identify UFZs; however, because
of the use of fragmented remote sensing images within the study, the results did not
directly reflect the distribution of different UFZ types in the city and their interrelationships.
Additionally, Huang [19] fused daytime and nighttime remote sensing data for functional
zoning, demonstrating that nighttime light features can effectively complement daytime
remote sensing data features. Li [29] used RF to fuse LST and urban morphological features
to classify UFZs, thereby demonstrating that LST can also be used to characterize different
UFZs. High-resolution remote sensing imagery can provide high-resolution and large-
scale descriptions of UFZs that can provide visual features, such as spectra, textures, and
geometries, which can aid in their identification. POI data and nighttime light imagery can
provide socio-economic features for the identification of urban functional areas, and LST
can be used to describe different UFZs. However, fully combining these data characteristics
and information to identify urban functional areas is challenging.



Sustainability 2023, 15, 6505 3 of 23

The recent and rapid increase in the use of machine learning (ML) techniques in digital
image processing applications has led to renewed interest in satellite image classifica-
tion [30]. Support vector machines (SVM) and ensemble classifiers, such as RF, have been
widely utilized for land use and land cover (LULC) classification owing to their ability to
handle high-dimensional data and to perform well with limited or unbalanced training
samples [31]. Furthermore, these previous studies have demonstrated that the utilization
of aggregated classifiers generally provides an improved classification performance com-
pared to individual weak classifiers [32]. Examples include canonical correlation forests
(CCF) [33], extreme gradient boosting (XGBoost) [34], LightGBM [28], and categorical
boosting (CatBoost) [35]. McCarty et al. [36] demonstrated the superiority of LightGBM
over popular ML algorithms such as RF and SVM in large-scale LULC classification studies.
In an evaluation study of crop classification, Ustuner et al. [37] reported that LightGBM
showed superior classification performance, and the required processing time was very
short compared to that of XGBoost. Colkesen [30] demonstrated that the LightGBM algo-
rithm had the highest classification performance for medium spatial resolution Sentinel-2
images. In light of the latter, the present study uses LightGBM and introduces the Focal
Loss (FL) function to construct the FL-LightGBM algorithm which fuses multimodal data
for UFZ classification. Additionally, the FL function is introduced to address the imbalance
problem that exists in functional area type samples.

Based on the above foundation and problems highlighted, this study fully combines
spatial visual, socioeconomic, and LST feature information, highlights the rich semantic
information contained in POI data, constructs three-level semantic indicators to express the
differences between different types of functional areas, and provides a comprehensive char-
acterization of complex UFZs. The FL-LightGBM algorithm was used to fuse multimodal
data for the UFZ classification. Subsequently, the classification results were reconstructed
at the block scale of the OpenStreetMap (OSM) road network segmentation to obtain the
distribution of functional areas in the block units, with a detailed delineation of single and
mixed functional areas. Finally, a spatial structure analysis method was used to further
analyze the distribution pattern characteristics of the UFZs. This study can be used as a
reference for identifying urban functional areas and for planning the functional layout
structures of the cities.

2. Study Area and Data Sources
2.1. Study Area

Zhengzhou, the capital city of Henan Province, is situated north-centrally at the
boundary between the middle and lower reaches of the Yellow River (112◦42′ E–114◦14′ E,
34◦16′ N–34◦58′ N). As a national central city in China, Zhengzhou has distinct location
advantages and is one of the key cities in “the Belt and Road” region; it is also an important
hub for national transportation, logistics, communication, and commercial trade, with an
important role in gathering and radiation. According to data published by the Statistics
Bureau of Zhengzhou (http://tjj.zhengzhou.gov.cn/ (accessed on 21 August 2022)), the
population of Zhengzhou will reach 12,742,000 by the end of 2021, and its gross domestic
product will reach USD 184,102 million. As this study focused on urban functional zones,
the main urban area within the Fourth Ring Road of Zhengzhou was selected as the study
area (Figure 1). The Fourth Ring Road of Zhengzhou is 93.3 km long, and its surrounding
area contains five administrative districts: Jinshui, Zhongyuan, Guancheng, Huiji, and Erqi.

2.2. Data Source and Processing
2.2.1. Sentinel-2 Data

The Sentinel-2 high-resolution multi-spectral imagery data covered 13 spectral bands
with a spatial resolution of up to 10 m. Level 1C products were downloaded from the official
website of the United States Geological Survey (USGS) (https://earthexplorer.usgs.gov/
(accessed on 14 July 2022)) for 7 April 2022. Images from early spring have low vegetation
shading but possess a certain degree of recognizability. These data were atmospherically

http://tjj.zhengzhou.gov.cn/
https://earthexplorer.usgs.gov/
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corrected using the Sen2cor tool, and the band with a spatial resolution of 20 m was re-
sampled to 10 m using the SNAP software. Images were then subjected to band fusion
and multi-scale segmentation using the eCognition software. The purpose of multi-scale
segmentation is to obtain patches of target features, obtain information on the various data
characteristics of the patches as a unit for the classification of urban functional areas, and
finally to reconstruct them at the block scale. This experiment primarily involved parame-
ters such as the segmentation scale, shape and compactness. After several experiments, we
found that the best results were obtained by setting the weight of each band to 1, the scale
to 60, the shape to 0.5, and the compactness to 0.4.

Version April 11, 2023 submitted to Journal Not Specified 3 of 18

Figure 1. This is a figure. Schemes follow the same formatting. If there are multiple panels, they
should be listed as: (a) Description of what is contained in the first panel. (b) Description of what is
contained in the second panel. Figures should be placed in the main text near to the first time they
are cited. A caption on a single line should be centered.

Figure 1. Extent of the study area. The data source of the remote sensing image base map is Sentinel-2.

2.2.2. NPP-VIIRS Nighttime Light Data

NPP-VIIRS nighttime light data were obtained from the National Oceanic and Atmo-
spheric Administration (NOAA), and the acquisition product was a monthly product for
April 2022 with a spatial resolution of 500 m. Information on the characteristics of these
data was obtained by counting the brightness values in the patch range (please refer to
Section 3.1 for specific characteristic information).

2.2.3. POI Data

The POI data for Zhengzhou were obtained from the AutoNavi Maps Open Platform
(https://lbs.amap.com/ (accessed on 14 May 2022)) and Baidu Maps Open Platform
(https://lbsyun.baidu.com/ (accessed on 14 May 2022)), with 222,801 items after cleaning
and deduplication. Each POI data record includes attribute information, such as a name,

https://lbs.amap.com/
https://lbsyun.baidu.com/
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address, category, latitude, and longitude. POI data have a wide range of classification
categories and their classification standards are inconsistent with those for urban land
use. Therefore, data with a low degree of public awareness were deleted and POI data
were reclassified according to the Code for Classification of Urban Land Use and Planning
Standards of Development Land (GB50137-2011) and the Baidu Maps/AutoNavi Maps POI
classification standard. The types of UFZs and reclassification of POIs are listed in Table 1.

Table 1. Types of urban functional zones (UFZs) and point of interest (POI) reclassification table.

Code Primary
Classification Secondary Classification Tertiary Classification

R Residential land Residential district Villas, communities, neighborhoods

B Commercial land

Catering services Restaurants, dessert shops, beverage shops
Shopping services Shopping malls, convenience stores, shopping streets

Accommodation services Hotels, guesthouses, accommodation services
Financial and

insurance services
Banks, ATMs, insurance companies, other financial and insurance

service providers
Commercial land Companies, business offices

Life services Information and consultation center, ticket offices, post offices,
and telecom business office

Other facility services Motorcycle service, automobile services, filling station, gas
station, charging station

M Industrial land Industrial land Factory, farming, forestry, animal husbandry, fishery base,
industrial park

A
Administration and
public services land

Science/culture and
education services

School, media organization, research institution, training
institution, museum, library, archives

Sports and recreation services Sports stadium, recreation center, recreation space
Medical services Hospital, clinic and medical and health care services

Governmental organizations
and social group

Governmental organization, social group, public security
organization and industrial and commercial taxation institution

Public facilities Newsstand, emergency shelter

S Transport land Transportation services Airport-related, railway station, coach station, toll gate, service
area, parking lot, subway station

G Scenic areas and
squares land Park squares Park, square, city plaza

E Other land Cultivated land, forest, grassland, non-construction land

2.2.4. Landsat 8-9 OLI/TIRS Data

Landsat 8-9 data were sourced from the USGS website (https://earthexplorer.usgs.
gov/ (accessed on 16 August 2022)). The acquired products comprised Landsat 8 and
Landsat 9 Collection 2 Level-2 surface temperature products with less than 10% cloud
cover from 1 April to 1 May 2022, with a total of three images. The temperature products
were converted to Celsius using the conversion formula, after which they were averaged to
obtain monthly data.

2.2.5. OSM Road Network Data

The road network vector data used in this study were derived from OSM (https:
//www.openstreetmap.org/ (accessed on 12 April 2022)), including motorway, primary,
secondary, tertiary, and unclassified (in mainland China, this classification may correspond
to a neighborhood road or village road in urban planning), and residential roads at multiple
levels, for a total of 11,169 roads.

2.2.6. Administrative Division Data

Administrative division data were downloaded from the National Geomatics Center
of China (NGCC) (http://www.ngcc.cn/ngcc/ (accessed on 14 May 2022)).

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
http://www.ngcc.cn/ngcc/
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The year of the data representations was 2022. For research and computational
purposes, the raster data used in this study were uniformly re-projected and resampled.

3. Methodology

The workflow of the method proposed in this study comprises four processes (Figure 2):
(1) multi-scale feature segmentation using Sentinel-2 data to obtain feature patches of dif-
ferent scale sizes; (2) feature extraction of Sentinel-2, POI, nighttime light, and Landsat
8-9 data at the feature patch scale; (3) using FL-LightGBM to fuse multiple source data
features for model training and learning to complete recognition and classification; and
(4) reconstruction of the identification results at the block scale, detailed division of the
functional urban land use, and the overall layout and analysis.

Version April 11, 2023 submitted to Journal Not Specified 4 of 18

Figure 2. This is a figure. Schemes follow the same formatting. If there are multiple panels, they
should be listed as: (a) Description of what is contained in the first panel. (b) Description of what is
contained in the second panel. Figures should be placed in the main text near to the first time they
are cited. A caption on a single line should be centered.

Figure 2. Flowchart for the study of the proposed method.

3.1. Multi-Feature Extraction for Multi-Source Data
3.1.1. Sentinel-2 Remote Sensing Image Feature Extraction

Image feature extraction includes the feature extraction of multi-scale segmented
objects, including spectral, textural, and shape feature information. The normalized differ-
ence built-up index (NDBI), normalized difference water index (NDWI), and normalized
difference vegetation index (NDVI) were obtained using band operations (Equations as
(1)–(3)). Other spectral, texture, and shape features were calculated using the eCognition
software, and the average value of each feature was obtained as the feature indicator.

NDBI =
B11− B8
B11 + B8

(1)

NDWI =
B3− B8
B3 + B8

(2)

NDVI =
B8− B4
B8 + B4

(3)
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3.1.2. POI Data Feature Extraction

As the number of POI data points varies considerably, and the semantic information
contained in each type of POI has a different degree of influence on the functional defini-
tion of urban land, the weights were determined for each type of POI data according to
the following reclassified three-level categories to accurately characterize the functional
semantic information represented by each POI.

Considering that the number of each POI type had a different degree of impact on the
functional zoning of the city, the primary weight values (W1) were determined using the
paired factor comparison method (Equation (4)).

Wi =
∑N

j=1 Wij

N
(4)

where N is the number of primary categories; Wij is the ratio of category i after two
comparisons between categories i and j; and Wi is the primary weight of category i.

The indicator of the public cognition degree [38] was cited as another influence factor
based on the significant cognition of various types of POIs, and secondary weight values
(W2) were determined with reference to the literature [38,39].

The POI as point data does not contain the area information of geographic entities,
and the areas of different geographic entities vary considerably. Considering the land-use
scale represented by each type of POI, the average area of the tertiary classification POI
was used to determine the tertiary weight values (W3) according to the national business
classification standard with reference to the relevant literature [40,41].

The three levels of category weights were combined to reflect the impact of the category
on the definition of the functional area clearly and to determine the final weights: Wi =
W1 ∗W2 ∗W3. Finally, the data were standardized to eliminate cases in which the total
score for a particular type of POI was minimal and to reduce the impact of distributional
differences on the model.

The average weighted kernel density values of the various types of POI and the total
POI data were calculated as the POI semantic features.

3.1.3. Nighttime Light Data Feature Extraction

The maximum value, standard deviation, average value, and difference between the
maximum and minimum intensity values of nighttime light were used as nighttime light
data feature indicators.

3.1.4. LST Feature Extraction

Processed Landsat 8-9 OLI/TIRS data were used to calculate the maximum value,
standard deviation, mean value, and difference between the maximum and minimum
values of LST as LST feature indicators.

A total of 43 features were extracted based on Sentinel-2, POI, nighttime light, and
Landsat 8-9 OLI/TIRS data, which are listed in Table 2.

The calculated individual data features are shown in Figure 3, which displays the
six statistical values for each of the 43 data features, namely the upper quartile, median,
mean, lower quartile, minimum, and maximum, after removing outliers, and showing the
variation and diversity in the visual, socioeconomic, and LST features of the urban space.
Most data features exhibit a relatively symmetrical median, indicating fluctuations within
a relatively stable range, and the presence of outliers supports the regional classification.
Certain data characteristics exhibited a trend with a minimum value of zero, resulting
in high outliers and indicating a large variation in such data characteristics between
regions. Therefore, these described data features can effectively characterize the visual,
socio-economic, and LST features of a city, and they can be used to classify different
urban functions.
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Table 2. Description of each type of extracted feature. NDWI, normalized difference water index;
NDVI, normalized difference vegetation index; NDBI, normalized difference built-up index; POI,
point of interest; LST, land surface temperature.

Data Sources Features Description of the Features Name of the Features

Sentinel-2

Spectral features

NDWI, NDVI, NDBI NDWI, NDVI, NDBI
Mean Blue2, Mean Green3, Mean
Red4, Mean NIR8, Mean SWIR11

Mean_B2, Mean_B3, Mean_B4,
Mean_B8, Mean_B11

Standard deviation Blue2,
Standard deviation Green3,
Standard deviation Red4,
Standard deviation NIR8,

Standard deviation SWIR11

St_B2, St_B3, St_B4, St_B8, St_B11

Skewness Blue2, Skewness
Green3, Skewness Red4, skewness

NIR8, skewness SWIR11
Sk_B2, Sk_B3, Sk_B4, Sk_B8, Sk_B11

Texture features

Gray-level co-occurrence matrix
(GLCM) mean, GLCM entropy,

GLCM contrast, GLCM
correlation, GLCM dissimilarity

GLCM_Mean, GLCM_Entropy,
GLCM_Contrast, GLCM_Correlation,

GLCM_Dissimilarity

Shape features
Length/width, density, mean

shape index, length and area of
the shape

Length/Width, Density, Shape_index,
Shape_Length, Shape_Area

POI POI features
Average weighted kernel density
values of the various types of POI

and the total POI

R_Kernel, B_Kernel, M_Kernel,
A_Kernel, S_Kernel, G_Kernel,

ALL_Kernel

NPP-VIIRS
nighttime light Nighttime light features

Maximum value, standard
deviation, average value and the
difference between the maximum

and minimum values of the
intensity values of nighttime light

DN_Max, DN_Std, DN_Avg,
DN_Range

Landsat 8-9
OLI/TIRS LST features

Maximum value, standard
deviation, mean value and

difference between the maximum
and minimum values of LST

LST_Max, LST_Std, LST_Avg,
LST_Range

3.2. Multi-Source Data Classification Based on FL-LightGBM

LightGBM, a distributed gradient boosting framework based on the decision tree
algorithm proposed by Microsoft in 2017, which is primarily based on the gradient boosting
decision tree (GBDT) algorithm, uses two algorithms that improve performance: gradient-
based one-side sampling (GOSS) and exclusive feature bundling, which is a more efficient
implementation of GBDT [42]. LightGBM is often used in machine learning and data
mining tasks [28,43] because it yields reliable results regarding classification, prediction,
and ranking with high accuracy and efficiency [42].

The FL function was proposed [44] to address the challenge of sample imbalance in
target detection. Additionally, it can be used at a later stage as a loss function in classification
algorithms to adjust the weights of difficult samples during training. This loss function
improves the classification performance of the algorithm by reducing the weight of the
majority samples and increasing the weight of the minority samples during training, based
on the standard cross-entropy loss function.
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Figure 3. This is a figure. Schemes follow the same formatting. If there are multiple panels, they
should be listed as: (a) Description of what is contained in the first panel. (b) Description of what is
contained in the second panel. Figures should be placed in the main text near to the first time they
are cited. A caption on a single line should be centered.

Figure 3. Box plot distribution of the 43 extracted data features (i.e., indicating the characteristics of
the distribution of values for each data feature within a certain range).

The FL-LightGBM algorithm replaces the default cross-entropy loss function in the
LightGBM algorithm with the FL function, enabling the LightGBM algorithm to place
additional focus on minority class samples and indistinguishable samples by adjusting the
category weighting factor α and the difficulty weighting factor γ. Here, FL was applied
to the multivariate classifier of LightGBM, and a binary classifier was trained for each
category C. Data from category C were treated as 1, and all other data were treated as 0.
This method improves the sample category imbalance problem and increases the accuracy
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of the classification model. The expression for the focal loss function after the introduction
of the category weighting factor α and the difficulty weighting factor γ is as follows:

Pi =

{
−α(1− y′)γlny′, y = 1

−(1− α)y′γln(1− y′), y = 0
(5)

where α is the category weighting factor, α ∈ (0, 1), γ is the difficulty weighting factor, y
denotes the label of the true sample, and y′ denotes the predicted value.

3.3. Division of Basic Research Units Based on OSM Road Network Data

Roads form the skeleton of a city, the backbone of all types of buildings and activity
spaces, and they play a guiding role in urban development. Heiden and Yu et al. [45,46]
were the first to propose the use of road network data to extract functional areas, as the
blocks divided by road networks form the basic units of urban morphological structure,
cognition, and management of urban functions, and they are widely used in urban analysis
with clear functional implications [47,48].

Road network data include many types of roads. Thus, when using road network data
to segment a study area, selecting an appropriate road category is necessary to construct
the road network. In this study, we utilized the block division method based on OSM road
network data [49] and combined it with the actual screening of roads to establish rules and
to delineate the basic study units. The specific method was as follows: (1) road information
was filtered, and redundant roads were removed; (2) the road centerline was extracted
using ArcGIS, and certain road areas were grouped into blocks; (3) road network topology
inspection and error modification were performed to create a complete and closed road
network; and (4) the road network was refined and blocks were constructed to better define
the edges of blocks in conjunction with elements such as rivers and other water bodies.

3.4. Determining UFZs Types Based on Block Units

The multimodal data classification results based on the FL-LightGBM were recon-
structed at the block scale to determine the nature of the UFZs by constructing a category
ratio (CR). The formula is as follows:

Ri =
Ai

∑7
i=1 Ai

× 100% (6)

where Ri represents the proportion of the area of type i classification results to the area of
all types in the cell, and Ai is the area of type i classification results in the cell.

When Ri ≥ α, the unit was determined to be a single functional area of type i. Based on
empirical and experimental analysis, α was set at 0.4 for commercial land (B) and transport
land (S), 0.5 for residential land (R), and 0.6 for industrial land (M), administrative and
public services land (A), scenic areas and squares land (G), and other types of land (E).
Otherwise, the unit was determined to be a mixed functional area, with the type of mix
depending on the two dominant functional types within the unit.

3.5. Block-Scale Accuracy Verification

In this study, the accuracy of the UFZ identification results at the block scale was
verified using an error matrix that included four main accuracy metrics: user accuracy,
identification accuracy, overall accuracy, and the kappa coefficient. The formulae are
as follows:

User accuracy = Xii/Xi+ (7)

Recognition accuracy = Xii/X+i (8)

Overall accuracy = ∑r
i=1 Xii/M× 100% (9)
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K = (M∑r
i=1 Xii −∑r

i=1 Xi+X+i)/(M2 −∑r
i=1 Xi+X+i) (10)

where K is the kappa coefficient; r is the number of rows in the error matrix; Xii is the value
of row i and column i; Xi+ and X+i are the sums of rows i and i, respectively; and M is the
total number of samples tested.

3.6. Methods of Spatial Structure Analysis
3.6.1. Location Entropy

Location entropy is an important indicator of the spatial distribution of factors in
a region and the degree of specialization in a particular sector [50]. In the study of the
spatial distribution of urban functions, the location entropy index was primarily used to
analyze the agglomeration of dominant functions in the region. The calculation function
was as follows:

LQij =
Sij/Sj

Si/S
(11)

where LQij denotes the location entropy of element j of unit i within the study area, Sij
denotes the area of functional element j in unit i, Sj denotes the area of functional element j
in all units, Si denotes the sum of the areas of all functional elements in unit i, and S denotes
the sum of the areas of all functional elements in all units. When LQij > 1.0, element j of
unit i has the advantage of agglomeration within the study area and forms a functional
area. Alternatively, when LQij > 1.5, element j of unit i has the advantage of significant
agglomeration within the study area and forms a specialized functional area.

3.6.2. Compound Degree

Based on the results of the location entropy calculation, the location entropy values
of the seven functional elements (R, B, M, A, S, G, and E) were reclassified and assigned
(if LQ > 1, value (compound degree) = 1; if LQ < 1, value (compound degree) = 0). A
superposition operation was performed to obtain the compound degree of the urban
functions of the block to determine the regional aggregation advantage of the functional
elements within the block.

4. Experiments and Analysis
4.1. Recognition Performance with Different Model Default Parameters

Six common classification models were selected: 10% of the data in the study area
was extracted for labelling to create the dataset, and the training and test sets were trained
and tested in a 7:3 ratio to compare their model accuracy and time spent with a 5-fold
cross-validation (other parameters were set at default). For the experimental environment,
Windows 10 (processor i5-8250U, 8 Gb RAM), Python 3.8, and Jupyter Notebook platforms
were used. The results are shown in Figure 4, which indicates that LightGBM is highly
efficient and accurate.

4.2. FL-LightGBM Based Classification Experiments
4.2.1. Prediction Accuracy of Various UFZ Types

In this study, we used Optuna [51] to tune hyperparameters to optimize Light-
GBM, and the corresponding main model parameters ‘n_estimators’, ‘learning_rate’,
‘num_leaves’, ‘feature_fraction’, and ‘max_depth’ were 2342, 0.047, 79, 0.586, and 8, respec-
tively. Additionally, we simultaneously finetuned α and γ to obtain a robust FL-LightGBM.
To evaluate the impact of α and γ values on the algorithm results, α was set to [0, 10]
and γ to [0, 5]. Different combinations of parameters were used to evaluate the prediction
accuracy of the final results. The results are shown in Figure 5a. The highest accuracy was
achieved when the values of (α, γ) were (0.15, 5), indicating that the parameter values at
this point have improved classification results for the FL-LightGBM algorithm.
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Figure 4. Comparison of the performance of different classification models.
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Figure 5. (a) Accuracy of the model for different values of α and γ, and (b) Prediction accuracy of the
FL-LightGBM mode for each type of Urban Functional Zone (UFZ).

Figure 5b shows the classification accuracy for various functional area types using
the FL-LightGBM algorithm, with an overall accuracy of 0.8253 and a recall of 0.7767. The
values for the individual grids were significantly higher on the diagonal than on the non-
diagonal grid, indicating that a much higher proportion of UFZs were correctly classified
than incorrectly classified. The values of M, A, and G were >0.8, indicating the highest
classification accuracy. In the non-diagonal section, E was misclassified as G, R as A, and S
as B at a high rate.

4.2.2. Comparison Test

Figure 6 shows a comparison of the overall classification accuracy and recall for
different combinations of data sources; the classification accuracy was lower for single-
source data when compared with combination data. Among the four types of data, the
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classification accuracy of POI was significantly higher than that of Sentinel-2, nighttime
light, and LST, and higher than that of any combination of the other three types of data.
Compared with the POI single-source data, the incorporation of Sentinel-2, nighttime light,
and LST data improved the recognition accuracy by 3.29%, 3.29%, and 3.39%, respectively.
The highest classification accuracy was achieved by fusing the four types of data, which
resulted in increases of 27.8%, 10.1%, 48.8%, and 48.5% compared with those achieved
using Sentinel-2, POI, nighttime light, and LST single-source data, respectively.
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Figure 6. Comparison of classification accuracy for different combinations of data sources. S2, P, V,
and L in the figure indicate Sentinel-2, point of interest (POI), NPP-VIIRS nighttime light, and land
surface temperature (LST) data sources, respectively.

The feature importance analysis under the combination of the four data sources
(Figure 7) shows that each data feature derived from the POI data has a high importance
score, indicating that the features that combine the semantic information of the three POI
levels can accurately express the characteristics of the UFZs. This analysis was followed by
data features derived from the LST (at the seventh and eleventh positions) and nighttime
light data (at the ninth and tenth positions). The importance scores of individual data
features derived from Sentinel-2 data (after the eleventh position) were lower than the
importance scores of individual data features derived from the first two positions, indicating
that individual data features derived from LST and nighttime light data had a higher
sensitivity in urban functional zoning than individual data features derived from Sentinel-2.
However, in terms of classification accuracy, after combining the four data types, the
improvement over Sentinel-2 data was higher than that over POI data. One possible reason
for this is the limited spatial resolution of the Sentinel-2 experiment in this study, such that
only a small amount of classification-identification information could be extracted. The
classification accuracy and feature importance scores after fusing nighttime light and LST
data showed that these data types could provide a unique perspective for identifying urban
functional areas.
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Figure 7. Ranking of feature importance for four combinations of data sources.

4.3. Classification Results Based on Block Reconfiguration
4.3.1. Classification Results

The multiscale object classification results based on the FL-LightGBM classification
model were reconstructed at the block scale to obtain the functional zoning results. First, we
performed a secondary partitioning of the object units using the block plot units obtained
in Section 3.3 to ensure that an object was within a block unit. We then determined the type
of urban functional area at the block scale by counting the proportion of different urban
functional areas within the block unit (i.e., the method described in Section 3.4) based on
the classification of the object. Road areas were visualized by assigning widths of 25, 20, 15,
10, and 5 m to motorway, primary, secondary, tertiary, and unclassified roads, respectively,
using OSM road network data. Rivers and waterways were also derived from the OSM
data. As shown in Figure 8, the spatial distribution of the different UFZs is evident, with
seven categories of single UFZs and one category of mixed UFZ identified (subdivided
into 19 categories of mixed UFZs in different combinations, as shown in Figure 9b). The
single UFZ was dominated by Residential land (R) (691 blocks in total, with a total area
of 87.95 km2, accounting for 15.57%) and Administration and public services land (A)
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(544 blocks in total, with a total area of 92.47 km2, accounting for 16.37%). A total of
452 blocks of Commercial land (B) (with a total area of 49.31 km2, accounting for 8.73%)
were identified, whereas few plots of Scenic areas and squares land (G) and Other land
(E) were identified but had a larger area, with a total area of 57.53 km2 and 39.17 km2,
respectively. Industrial land (M) had 72 blocks, with a total area of 10.57 km2, whereas
Transport land (S) had 42 blocks, with a total area of 4.02 km2. Mixed UFZ accounted for
the largest overall proportion, with 676 blocks and a total area of 223.79 km2, accounting
for 39.62%.

Version April 11, 2023 submitted to Journal Not Specified 10 of 18

Figure 8. This is a figure. Schemes follow the same formatting. If there are multiple panels, they
should be listed as: (a) Description of what is contained in the first panel. (b) Description of what is
contained in the second panel. Figures should be placed in the main text near to the first time they
are cited. A caption on a single line should be centered.

Figure 8. Graph of classification results. Mix indicates mixed urban functional zone.
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Figure 9. Distribution of urban functional zones (UFZs). Multi-mix indicates multi-mixed UFZ.

4.3.2. Block-Scale Accuracy Verification

To verify the accuracy of the UFZ identification results at the block scale, 225 blocks
were randomly selected and compared with AutoNavi Maps to determine the true attributes
of the UFZs. The accuracy of the results was verified using an error matrix to produce
accurate classification results (Table 3).
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Table 3. Error matrix for the validation of urban functional zones (UFZs).

Identified

Actual Residential
Land

Commercial
Land

Industrial
Land

Administration
and Public

Services Land
Transport

Land

Scenic Areas
and Squares

Land
Other
Land Mix Total

Recognition
Accuracy

Residential land 26 1 0 2 0 0 0 1 30 0.8667
Commercial land 2 25 1 1 0 0 0 1 30 0.8333

Industrial land 1 2 25 1 0 0 0 1 30 0.8333
Administration and
public services land 1 1 1 25 0 1 0 1 30 0.8333

Transport land 0 1 0 1 12 0 1 0 15 0.8000
Scenic areas and

squares land 1 1 0 0 0 26 0 2 30 0.8667

Other land 0 0 0 1 0 2 27 0 30 0.9000
Mix 1 1 1 1 0 2 1 23 30 0.7667
Total 32 32 28 32 12 31 29 29 225

User accuracy 0.8125 0.7813 0.8929 0.7813 1.000 0.8387 0.9310 0.7931

Overall accuracy = 84.00% kappa = 0.8162

Table 3 shows that the overall accuracy was 85.19% with a kappa coefficient of 0.8027,
indicating that the model identification results were highly consistent with the actual
situation, and they are therefore reliable.

4.4. Analysis of the Layout of UFZs in Zhengzhou
4.4.1. Spatial Distribution Characteristics of Single UFZs

A single UFZ was dominated by A (administration and public services land) and
R (residential land) (Figure 9a). A (administration and public services land) was mostly
distributed in areas with a high concentration of universities and showed a predominance
of government units and hospitals. In contrast, R (residential land) was mostly distributed
in the peripheral areas of the center and generally showed the layout characteristics of a
fan-shaped structure spreading outwards. B (commercial land) was characterized by a
“polycentric” cluster in the Erqi Square commercial area, the intersection of Longhai Road,
Zhongzhou Avenue, and Longhu Centre, as it is easy to create a commercial agglomeration
effect in areas of busy economic activity. M (industrial land) and S (transport land) were
small in area and single in distribution. M (industrial land) was mainly distributed in
the peripheral areas of the city, while S (transport land) mainly presented a double-center
structure dominated by Zhengzhou Railway Station and Zhengzhou East Railway Station.
G (scenic areas and squares land) and E (other land) were mainly distributed on the
periphery of the city and had a large average land area.

4.4.2. Spatial Distribution Characteristics of Mixed UFZs

The diversity of UFZs comprise a key component of urban complexity [52], with
diversity reflecting heterogeneous economic and socio-spatial structures [53]. As shown
in Figure 9b, mixed UFZs were predominantly prevalent within the study area, and the
complexity of the UFZ mix increased as the city continued to expand in size. Among
the mixed UFZs, R-A (residential land-administration and public services land) predom-
inated, followed by B-A (commercial land-administration and public services land) and
R-B (residential land-commercial land). Residential and commercial functions are inextri-
cably linked, as shown in Figure 9a, where the phenomenon of “residential-commercial
linkages” is prevalent. Residential land (R), Commercial land (B), and Administration
and public services land (A) form a linkage, indicating that the commercial and service
configuration of the residential community is currently increasing. By forming a linkage
with commercial and public services, the daily needs of residents can be met, forming a
complex characterized by the linkage of urban residential with commercial and public
services. The remaining mixed lands were extremely discrete in distribution and fewer
in number.

4.4.3. Analysis of the Compound Features of the Functional Space

The compounding of urban functions involves spatial aggregation of multiple in-
teracting functional elements. This study uses the block as the unit scale and introduces



Sustainability 2023, 15, 6505 17 of 23

location entropy, equilibrium, and compound degree indices to further study the compound
characteristics of functional areas within the urban unit.

Figure 10a–g shows the spatial distribution characteristics of the locational entropy
of different functional elements, with a relatively high number of units having significant
advantages in the R (residential land), B (commercial land), and A (administration and
public services land) functional elements, with 1275, 1041, and 1152 block units, respectively.
These values were followed by 624 units with significant advantages in the G (scenic areas
and squares land) category, while the M (industrial land) and E (other land) categories
accounted for a relatively small number of units and were mostly located in the periphery
of the city, with the lowest number of units (n = 191) retrieved from the S (transport
land) category.
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Figure 10. Calculated location entropy (a–g) and compound degree (h) of each functional element in
the study area.
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The geographical distribution of the different functional elements was further analyzed
by calculating the average locational entropy values of each functional element within the
different loop road areas, as shown in Table 4. The most advantageous type of functional
element R (residential land) was found in the second loop road area. This finding was
owing to the Erqi Square commercial area and Zhengzhou Station both being located in the
first-loop road area. Subsequently, the B (commercial land) and S (transport land) functions
in the first-loop road area are situated more advantageously, as the residential areas are
distributed outward from the city center. The advantages of A (administration and public
services land) are relatively even, indicating that the people’s livelihood infrastructure and
service organization system in the city are relatively complete, and that there is a high
level of scientific, educational, and cultural facility construction. The dominant areas of M
(industrial land) are clustered in the fourth loop road area, and the dominance of G (scenic
areas and squares land) was distributed between the third and fourth loop road areas. E
(other land) was lower overall, with the highly dominant areas being distributed along the
fourth loop road area.

Table 4. Average locational entropy values for each functional element within each loop road area.

Regional
Scope

Number
of Blocks

R (Residential
Land)

B
(Commercial

Land)

M
(Industrial

Land)

A
(Administration

and Public
Services Land)

S
(Transport

Land)

G (Scenic Areas
and Squares

Land)

E
(Other
Land)

First loop 149 1.091 3.638 0.000 0.720 2.372 0.381 0.000
Second

loop 454 1.949 1.908 0.203 0.939 0.245 0.231 0.000

Third loop 896 1.434 1.648 0.789 0.848 1.682 1.006 0.014
Fourth

loop 1297 0.984 0.915 1.342 1.151 1.228 0.821 0.813

The results of the zone locational entropy calculation were used to further analyze the
level of functional element compounding within the block units. As shown in Figure 10h,
single- and dual-functional compounds had the highest proportions of composites. We thus
counted the number of blocks with locational entropy values greater than one for a single
type of functional element and those with locational entropy values greater than one for
two or more functional elements. The results (Figure 11) showed that the number of blocks
with a single-functional element compound and a dual-functional element compound was
1142 and 1283, respectively, leaving a total of 371 blocks with multiple-functional element
compounds. This result indicated that the coordinated development of single- and dual-
functional compounds was the main form of block-scale expression. Statistical analyses
showed that the majority of single-functional compounds are dominated by R (residential
land), B (commercial land), and A (administration and public services land) blocks, followed
by G (scenic areas and squares land), and relatively few by M (industrial land), S (transport
land), and E (other land) blocks. Residential land administration and public services land
(R-A) and residential and commercial land (R-B) compounds predominated among the dual-
functional compounds, indicating strong spatial compatibility of the R (residential land), B
(commercial land), and A (administration and public services land) functions, resulting
in a strong degree of R (residential land), B (commercial land), and A (administration and
public services land) aggregation in most areas.

Overall, the development levels of various functional elements at the block scale varied
considerably. One block scale had distinct advantages for one functional element, and the
advantageous areas of each function showed a diversified and fragmented distribution
pattern at the block scale, indicating that the UFZ at the block microscale had a significant
diversification attribute.
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Figure 11. Statistics on compound types. (a) Compound types of urban functional areas; (b) Number
of compound types for each functional element; and (c) Compound of dual-functional.

5. Discussion

Data such as remote sensing images [54] and mobile phone signaling [55,56] perform
well in identifying urban functional areas; however, their description of urban functional
areas is not comprehensive, whereas POI data comprise the limitation of spatial sparsity.
This study fully considered the characteristics of each data feature and identified urban
functional areas by fusing the feature information from different data sources to analyze
the urban functional layout of the central city of Zhengzhou. First, in terms of data feature
fusion, the fusion of multiple sources of data can significantly improve the accuracy of
functional area recognition, with a maximum improvement of 48.8% when compared with
single-sourcedata (e.g., nighttime lights). The highest accuracy of 72.46% was achieved
using only single-source POI data compared with other single-source data, and the POI
data features performed the best in the ranking of importance of the experimental data
features, indicating that the POI three-level semantic index constructed in this study can
accurately characterize urban functional areas to a greater extent. This method addresses
the shortcomings of POI data in identifying urban functional areas without geographical
entity areas or influence ranges. However, when reconstructing the results at the block
scale, the proportion of individual functional areas influences the functional attributes
of the block. For example, most areas had a higher density of commercial facility points,
and their classification results were more likely to be classified as commercial functions
(however, the true attributes should comprise residential or other functions). Therefore, we
fine-tuned the setting of 50% as the threshold to improve this result (Section 3.4); however,
we did not perform a highly specific and detailed analysis, which should be accounted
for in future studies. Second, in terms of the selection of research scale units, this study
reconstructed multi-scale segmented patches at the block scale to complete the functional
area identification of the final block units with an accuracy of 84% in the final results.
Compared with using regular grid division [27,57] for functional zoning experiments, the
latter reconstruction not only represented the most basic unit scale of a city, but also better
expressed the functional nature of a unit parcel [25]. Using multilevel roads to construct
blocks as the basic unit of urban functional area division, this approach avoids grid size
determination and the impact of road segmentation, thereby effectively preserving the
integrity of the urban functional area at the block scale [55,58]. Finally, we proposed a new
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framework for the classification of urban functional areas based on multimodal data and
the FL-LightGBM algorithm. This proposal is based on the fusion of multi-source data
characteristics, considering the imbalance of samples, and it is capable of the rapid and
accurate identification of urban functional areas. In Zhengzhou City, the accuracy of the
experimental results of the data fusion method in this study was improved compared with
other methods prevalent in the literature [28,59]. Furthermore, the identification results of
the urban functional areas closely resembled that of reality and it has high practical value
for the rapid recognition of modern urban functional areas.

This study identified not only single-functional areas but also dual-functional mixed
and multifunctional mixed-use blocks, whose mixed functional areas are a key context
for urban complexity and a concrete manifestation of socio-economic-environmental in-
teractions [52]. Through the analysis of the urban spatial structure, understanding the
differentiation and locational advantages of urban functional areas helps city planners
adjust their policies in a timely manner, account for the advantages of regional location
and renewable resources, promote reasonable flow and efficient concentration of various
factors, and form a regional economic layout of diversified industries, which is of great sig-
nificance in integrating effective urban resources and promoting balanced and sustainable
urban development.

Although the method of fusing multiple sources of data features in this study achieved
the expected results and provided a basis for the rapid and accurate identification of urban
functional areas, certain limitations remain. First, the spatial resolution of the Sentinel-2
multi-spectral remote sensing imagery used in this study was 10 m, which caused bias
in the extraction of target feature patches. In the future, very-high-resolution (VHR)
images can be used to segment and extract fine feature patches in combination with light
detection and ranging (LiDAR) data to extract three-dimensional urban information to
obtain large amounts of feature information for urban functional zone recognition. Second,
a certain deviation was present in the use of POI and nighttime light imagery to characterize
socioeconomic characteristics in urban functional zones because POI majorly exists in areas
with high building density, and nighttime light imagery can only record the economic
activities of the human society at night. The nighttime light imagery used in this study had
a low spatial resolution, for which higher resolutions could be used in the future to improve
the method’s contribution to urban functional zone recognition. In addition, according to
relevant studies [28,56], time information features also make important contributions to
the identification of urban functional zones, whereas the present study does not use data
with time-series characteristics (e.g., Time-Series User Behavior Data and mobile phone
signaling data). Therefore, future research should consider the temporal characteristics of
urban functional zones to fully explore the temporal and spatial characteristics of urban
functional zones.

6. Conclusions

This study proposes a method for classifying UFZs based on the FL-LightGBM algo-
rithm fusing multi-source data to spatially identify the four-ring area of Zhengzhou and to
analyze the distribution characteristics of different UFZs within the city.

The main findings are summarized as follows.

(1) This study used FL-LightGBM to fuse multi-source data features for model training
and prediction based on the multi-scale segmentation of remote sensing images with
an accuracy rate of 0.8253, which can effectively identify the types of UFZs at multiple
scales. By examining the reconstruction results at the block scale, the classification
accuracy of urban functional areas reached 84%, and the kappa coefficient reached
0.8162, indicating that the recognition results of the method were highly consistent
with the actual situation, and are therefore feasible.

(2) The integrated semantic information of the three POI levels could better characterize
the semantic information of UFZs. The incorporation of multi-spectral, nighttime
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light, and LST data further improved the recognition accuracy by approximately
10.1% compared within single-source POI data.

(3) The overall layout of the main urban area of Zhengzhou showed the coordinated de-
velopment of single and mixed UFZs, in which a more distinct R-B-A complex feature
was formed, and the UFZs at the microscopic scale of the block had diverse attributes.

The identification of UFZs is fundamental for understanding spatial patterns within a
city. In response to the problems of POI data being weak in identifying UFZs in areas with
low building density and sparse data, remote sensing data lacking the necessary semantic
information for functional zoning, and single-source data being unsuitable for performing
a more comprehensive characterization of complex UFZs, this study combined remote
sensing images, POI, nighttime light, and LST multi-source data for functional partitioning
and achieved improved results. By combining multiple features from multiple sources
of heterogeneous data, highly accurate and comprehensive characterizations of complex
urban functional areas can be achieved, which is important for the rapid and accurate
identification of urban functional areas. This result aids in mapping urban land cover
and functional areas and is important for urban surveys and management. Although the
complementary advantages of various types of geographical data can improve the accuracy
of identifying functional urban areas, cities are highly heterogeneous and complex systems,
and the functionality of their blocks may change over time. The issue of deeper mining
of the dynamics of structural functions within the city and the interaction of space and
function needs to be explored further in conjunction with other multi-source sensory data
(e.g., mobile phone signaling data and taxi tracking data).
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