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Abstract: As global warming exacerbates and urbanization accelerates, extreme climatic events
occur frequently. Urban waterlogging is seriously spreading in China, resulting in a high level of
vulnerability in urban societies and economies. It has been urgent for regional sustainable devel-
opment to effectively identify and analyze the risk factors behind urban waterlogging. A novel
model incorporating satellite image semantic segmentation into extreme gradient boosting (XGBoost)
is employed for identifying and forecasting the urban waterlogging risk factors. Ground object
features of waterlogging points are extracted by the satellite image semantic segmentation, and
XGBoost is employed to predict waterlogging points and identify the primary factors affecting urban
waterlogging. This paper selects the coastal cities of Haikou, Xiamen, Shanghai, and Qingdao as
research areas, and obtains data from social media. According to the comprehensive performance
evaluation of the semantic segmentation and XGBoost models, the semantic segmentation model
could effectively identify and extract water bodies, roads, and green spaces in satellite images, and
the XGBoost model is more accurate and reliable than other common machine learning methods in
prediction performance and precision. Among all waterlogging risk factors, elevation is the main
factor affecting waterlogging in the research areas. For Shanghai and Qingdao, the secondary factor
affecting waterlogging is roads. Water bodies are the secondary factor affecting urban waterlogging
in Haikou. For Xiamen, the four indicators other than the elevation are equally significant, which
could all be regarded as secondary factors affecting urban waterlogging.

Keywords: satellite images; urban waterlogging; semantic segmentation; XGBoost

1. Introduction

As the impermeable surface expands significantly in urban areas due to accelerating
urbanization, combined with frequent extreme rainstorms and the increasingly marked heat
island effect, cities have witnessed recurring waterlogging. According to statistics, since
2010, an average of more than 180 cities in China have been affected by waterlogging every
year, which has caused direct economic losses of more than CNY 100 billion [1]. Urban
waterlogging has gravely threatened the life and property of urban residents and affected
the safe operations and sustainable development of cities. In the past two years, China has
issued the New Urbanization Implementation Plan during the 14th Five-Year Plan Period
and the Implementation Opinions on Strengthening Urban Waterlogging Control, in which
it is clearly stated that controlling urban waterlogging is a major project concerning both
the people’s livelihood and development, and it is necessary to intensify waterlogging
control for remarkable results by 2025. Therefore, assessing and identifying risk factors
behind urban waterlogging can lead to building an early warning mechanism for urban
waterlogging and developing urban waterlogging prevention measures.

The recent studies have focused on urban waterlogging risk assessment primarily
based on the mathematical statistics of historical disaster data [2], scenario analysis [3],
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remote sensing and GIS analysis [4], and indicator system analysis [5,6]. Methodologies
based on mathematical statistics of historical disaster data rely on historical documents,
disaster databases, or field survey data, in which the problem of data sparsity may distort
the assessment results. Scenario analysis-based methodologies are demanding in regard to
time scale, accuracy, and simulation modeling of data [7,8]. Methodologies based on the
combination of remote sensing technologies and GIS are challenged by the difficulty in
accurately expanding the indicator data to space, excessively large research scale, and low
mapping accuracy [9–11]. In addition, for the methodologies based on indicator system
assessment, the selection of indicators and the determination of weights are subjective,
which affects the accuracy of assessment [12].

Identifying ground object features of waterlogging points is the premise and founda-
tion of urban waterlogging assessment. The existing literature paid little attention to it. The
current recognition methods of ground object features in satellite images primarily rely on
manual encoding [13] and machine learning [14]. However, for extremely complex texture
features and ground object classification in satellite images, manual encoding requires
designing dedicated algorithms for texture recognition, while machine learning requires
automatic learning and updating of parameters according to the correspondence between
texture features of known samples and ground objects, resulting in inaccurate extraction
of data. With the advancement of deep learning techniques [15], classic semantic segmen-
tation network models such as fully convolutional network(FCN) [16] and U-net [17] are
applied in the recognition of ground object features in satellite images. These models can
directly acquire different categories of ground objects, raster data for vectorization, and
other features in images, which considerably reduces the processing cost of geographic
information data. More importantly, with accuracy comparable to that of human eyes, they
have become a common methodology for ground object feature recognition in satellite
images. However, the U-net semantic segmentation network is more advantageous than
FCN in regard to integrating more underlying features [18]. Therefore, a satellite image
U-net semantic segmentation model was developed to automatically identify the categories
of waterlogging points’ ground objects, such as water bodies, roads, and green spaces, and
extract the ground objects’ features utilized by the urban waterlogging risk assessment. As
an improved machine learning model, the extreme gradient boosting (XGBoost) model,
which is capable of effectively eliminating the heterogeneity of source data distribution and
ensuring high accuracy in prediction and fast model operations, has been applied in urban
waterlogging risk assessment.

Based on the above analysis, this paper proposes an integrated model by combining
satellite image semantic segmentation and XGBoost to assess satellite imagery-based urban
waterlogging risk. Four coastal cities, Haikou, Xiamen, Shanghai, and Qingdao, are the
research areas, and urban waterlogging sample data of these cities are obtained from social
media. The semantic segmentation model is used to extract the ground object features of
waterlogging points from satellite images, which are taken as the waterlogging risk factors.
On this basis, the XGBoost is used to predict and analyze waterlogging points and identify
the primary factor affecting urban waterlogging, thus providing a scientific basis for the
effective prevention of urban waterlogging.

The remainder of this paper is organized as follows: The study area is presented in
Section 2. Section 3 describes the data and methodologies adopted in this study, including
the data acquisition, U-net semantic segmentation and XGBoost model. The results of
the proposed methodologies’ performance evaluation and influencing factors of urban
waterlogging are reported and discussed in Section 4. Finally, the derived conclusions and
policy implications are described in Section 5.

2. Research Areas

Due to the combined effects of geographical location, topography, and the monsoon
climate, China’s coastal region has become one of the disaster-prone areas most frequently
and widely confronted by waterlogging in China [19]. Coastal cities share some common
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features in waterlogging. First, located in the fragile and sensitive zone where sea and
land interact, coastal cities have huge areas exposed to disasters. Affected by land–sea
compound disasters, they are more vulnerable to major urban waterlogging in the context
of climate change. Second, the monsoon climate results in uneven seasonal distribution of
precipitation, and there are many typhoons and heavy rainfall in summer. Heavy rainfall
occurs more frequently in coastal cities during the rainy season every year. Waterlogging
will affect a wide range and last for a long time, causing serious impacts on local production
and life. Third, coastal cities are key regions and strategic centers for population agglomera-
tion, where waterlogging can cause extraordinary losses. For example, Typhoon Meranti in
2016 and Typhoon Mangkhut in 2018 both caused serious waterlogging on Xiamen Island,
affecting the normal operations of the city [20]. Therefore, the study on urban waterlogging
risks in coastal areas is typical and representative.

To select representative research areas among coastal cities while taking into account
the data availability, in this paper, four cities from south to north along the coastline, i.e.,
Haikou, Xiamen, Shanghai and Qingdao, are selected as research areas for the investigation
of risk factors behind waterlogging.

3. Data and Methodologies

The technical roadmap of the methodologies is shown in Figure 1. Firstly, Weibo posts
about urban waterlogging in 2017 and 2018 are collected by calling the Sina Weibo API, and
based on these posts, waterlogging points are located, and corresponding satellite images
and elevation data are obtained. Secondly, satellite image semantic segmentation is used to
identify ground objects and extract various features from the satellite images, which are
then integrated with the extracted elevation data. Then, the XGBoost is used for training
and prediction, and the primary factors affecting waterlogging in coastal cities are obtained
according to their weights. Finally, performance evaluation is conducted on the model
results to further verify their reliability.

Figure 1. Technical roadmap of the methodologies.

3.1. Data Acquisition

Ground objects such as water bodies, roads, and green spaces in the satellite RS images
as well as elevation data are selected in this study to investigate the risk factors behind
waterlogging in coastal cities. Therefore, the research objects of this paper include the data
of waterlogging points, satellite image data of waterlogging points, and elevation data.

3.1.1. Data of Waterlogging Points

The data of waterlogging points are mostly acquired from Weibo texts. Weibo posts
about urban waterlogging in 2017 and 2018 are collected by calling the Sina Weibo API,
based on which over 70,000 entries of Weibo texts are obtained after removing the repeating
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data. To locate urban waterlogging points more accurately from the Weibo texts, a commu-
nity directory of 307 cities in China is downloaded in this study, in which community names,
geographical locations, floor area ratios, greening ratios, and other information is recorded
(source: the residential website https://www.anjuke.com/ (accessed on 10 May 2021)).
Terms about communities, roads, and directions are extracted from Sina Weibo texts and
then matched with those in the community directory to determine the geographical loca-
tions of waterlogging points reported on Weibo.

In order to facilitate the acquisition of satellite images and elevation data of these
waterlogging points, ArcGIS is next employed to obtain the longitudes and latitudes of
waterlogging points. We utilize ArcGIS geocoding to search for the location in the map by
matching the input address and feature attributes, and convert it into actual coordinates,
namely longitude and latitude.

With the acquired Weibo data processed, 439 waterlogging points are collected, in-
cluding 147 in Haikou, 62 in Xiamen, 186 in Shanghai, and 44 in Qingdao. A waterlogging
point is taken as a positive sample and marked as “1”. In the cities where positive samples
are located, the function of ArcGIS to generate random points is employed to generate the
same number of non-waterlogging points as negative samples, each marked as “0”. The
marks of positive and negative samples are then input to train the XGBoost model.

3.1.2. Satellite Images Data

In this study, ground objects in satellite images are the primary means to identify the
factors affecting the waterlogging in coastal cities. Therefore, the ground objects in the
satellite images of the sample points, such as roads, water bodies, and green spaces, are
recognized and extracted. Then the number of pixels of each object category is taken as
an indicator to measure the waterlogging risk factors and construct a feature dataset of
satellite images. By using the geocoding and reverse geocoding of Tianditu, a national
platform for common geospatial information services, satellite images with a resolution of
1024*1024 are captured with Tianditu according to the determined coordinates of positive
and negative sample points (each sample point is taken as the center for image capturing).
In some cases, as the waterlogging point in road waterlogging events cannot be determined,
the geometric center of the road is taken as the waterlogging point [21,22].

3.1.3. Elevation Data

Elevation is the most direct manifestation of floods. The frequency of waterlogging in
a region generally increases with decreases in elevation. Therefore, in this study, elevation
is selected as one of the factors affecting urban waterlogging, and most of the elevation
data are downloaded from the Geospatial Data Cloud (http://www.gscloud.cn/search
(accessed on 1 June 2021)). Specifically, after downloading the tif file of elevation from
the Cloud (with each sample point, either positive or negative, taken as the center), the
elevation data of each center point are extracted from the tif file using a program to obtain
the elevation value of each sample point.

As the coastal cities differed from each other with regard to the overall elevation,
relative elevation is adopted in this study as an extra risk factor for the urban waterlogging
to make the elevation data comparable among the coastal cities. The relative elevation is
obtained by subtracting the average elevation of the four vertices from the elevation value
of the center point calculated above.

3.2. Research Methods
3.2.1. U-Net Semantic Segmentation Model

The model structure with semantic segmentation plays a key role in ground object
classification algorithms, and the semantic segmentation model that incorporates the
underlying features has great advantages, so a U-shaped network structure has been
constructed on this basis so that the convolution results of each layer of the model are
involved in the final feature fusion. This U-shaped semantic segmentation network is

https://www.anjuke.com/
http://www.gscloud.cn/search
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known as the U-net [17]. In this study, an improved U-net semantic segmentation model
is employed to classify ground objects such as water bodies, roads, and green spaces in
satellite images. For each pixel in the input satellite image, the model determined the
category to which the pixel belonged, and finally outputted the prediction result. Specific
steps are as follows:

(1) Construct a training dataset

In the training for semantic segmentation of satellite images, the performance of the
model is inextricably linked to the quality of the training data. Generally speaking, the
training data fall into two categories, supervised and unsupervised learning, according
to whether the data have been manually annotated or not. The semantic segmentation
model used in this paper belonged to the supervised learning category, so a satellite image
dataset with manual annotation has to be constructed for the training of the semantic
segmentation model.

The annotation tool LabelMe is utilized in this paper to mark and annotate ground
objects such as water bodies, roads, and green spaces in satellite images, and the final
results are 200 satellite images and 200 annotated images. Data pair examples of the
training dataset are shown in Figure 2, and each data pair shows the satellite image on the
left and the manually annotated image on the right.

Figure 2. Examples of training dataset: (a) A satellite remote sensing image; (b) A manual tag map.

(2) Model training

The dataset used to train the model in this paper is a high-resolution satellite image
dataset created by us, which had to be preprocessed before the model could be trained.
The dataset is first normalized by subtracting the mean from each image and removing the
variance to ensure that images with too much data variation could have the same scale
of distribution. Then, in the course of training, the image data are processed in a random
manner, including image flipping, panning, and zooming, with the aim of improving the
robustness of the model and reducing overfitting of the model. Finally, the larger the batch
size is, the more representative of the overall distribution characteristics of the dataset.
However, due to the limitations of computer capabilities, the entire dataset could not be
loaded at once in a semantic segmentation task. In view of this, the batch size (batch) of the
input data is set to 8 with due regard to the hardware performance of the server.
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The learning rate is not only the iteration step size of a deep learning model, but also
one of the most important hyperparameters when training a model. If the learning rate
is set too small, the model usually converges too slowly and tends to converge to a local
optimum, while on the contrary, if the learning rate is too large, the model tends not to
converge. Therefore, the strategy for setting the learning rate is of paramount importance
in training a model. Compared to nonrandom algorithms, stochastic gradient descent
(SGD) utilizes information more effectively, especially when it is redundant, and has better
performance in early iterations. Moreover, SGD has an advantage over nonrandom algo-
rithms in computational complexity with large samples [23]. In this paper, the stochastic
gradient descent (SGD) algorithm is chosen as the strategy for parameter updating, and
the initial learning rate for training is set as 0.0001. In a semantic segmentation model, a
loss function is usually used to measure the training effect of the model and to perform
gradient optimization. The smaller the value of the loss function, the higher the accuracy
of the model and the better the training effect, so the selection of the loss function is of
prime importance to the model training. A properly selected loss function will lead to a
steady improvement in the predicted results of the model. In this paper, cross-entropy loss
and Dice loss are selected as the loss functions for investigation. The Dice coefficient is
a statistic used to gauge the similarity of two samples, indicating the degree of overlap
between the predicted results and the true results. Its possible values are in the interval
(0, 1), and the larger the value, the better. As such, Dice Loss = 1-Dice is taken as the loss
function for semantic segmentation. The calculation formula is as follows:

Dice Loss = 1− 2|X ∩Y|
|X|+ |Y| (1)

where X denotes the predicted results and Y denotes the true results.
Finally, the final output of the model is usually a convolution result with variable

value, while the result obtained from the semantic segmentation task is a probability value
representing the category to which the pixel belonged, so the output of the model has
to be normalized to a number between 0 and 1. In addition, the values of each pixel on
all channels should sum to 1, representing the sum of the probabilities of each pixel’s
overall output categories equaled 1. To this end, the output result of the softmax function
normalization model is selected in this paper:

yi =
xi

ΣC
k=1

xi
(2)

where xi denotes the output value of pixel, C denotes the number of channels, and yi
denotes the predicted probability.

(3) Model prediction

Since the original U-net semantic segmentation model is mainly used for the segmen-
tation of single-channel biomedical images, VGG-16 [24] is taken by the improved model
in this paper as the encoding network, with its network structure detailed in Table 1. In
this study, Conv1 to Conv5 are selected as the encoding structure of U-net, where each
Conv comprised two 3 × 3 convolutions and two ReLU activation functions. Each Conv is
followed by a max pooling layer, the main purpose of which is to extract important features
from the input of the upper layer and reduce the number of feature parameters, and the
operation principle is to select the extreme values on a fixed region from the input features
of the upper layer. The max pooling selected in this paper is 2 × 2 max pooling with a step
size of 2, i.e., the maximum in a 2 × 2 region is selected from the input vector matrix, and
the final output width and height are half the input features.
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Table 1. Network structure and parameters of VGG-16 model.

Name Output Channel Operation

Conv1
64 3 × 3 conv + ReLU
64 3 × 3 conv + ReLU

Pooling1 64 2 × 2 max pooling, stride = 2

Conv2
128 3 × 3 conv + ReLU
128 3 × 3 conv + ReLU

Pooling2 128 2 × 2 max pooling, stride = 2

Conv3
256 3 × 3 conv + ReLU
256 3 × 3 conv + ReLU
256 3 × 3 conv + ReLU

Pooling3 256 2 × 2 max pooling, stride = 2

Conv4
512 3 × 3 conv + ReLU
512 3 × 3 conv + ReLU
512 3 × 3 conv + ReLU

Pooling4 512 2 × 2 max pooling, stride = 2

Conv5
512 3 × 3 conv + ReLU
512 3 × 3 conv + ReLU
512 3 × 3 conv + ReLU

Pooling5 512 2 × 2 max pooling, stride = 2

Conv6 4096 7 × 7 conv + ReLU

Classifier
4096 fully connection + ReLU
1000 fully connection

In the decoding structure, to facilitate the construction of the network and for better
versatility, the U-net used in this paper superimposes the outputs of Conv1-Conv4 onto
2 times upsampled results of the output features of the decoder, thus obtaining a feature
layer with the height and width the same as those of the input image. The detailed structure
of U-net is shown in Figure 3.

3.2.2. Extreme Gradient Boosting (XGBoost) Model

The extreme gradient boosting (XGBoost) model is a decision tree-based integrated
machine learning algorithm proposed by CHEN [25], which is based on classification and
regression trees (CART) to classify and predict datasets. XGBoost is employed in this study
to train and predict integrated datasets, and its prediction process is as follows:

Step 1: Construct a dataset containing n samples and m features, |D| ={(x1, y1), (x2, y2),
. . . , (xn, yn)}, and the predicted output of the integrated model is expressed as:

ŷi = ∅(xi) =
K

∑
k=1

fk(xi) (3)

where xi denotes the ith sample, ŷi denotes the prediction value of the ith sample xi, fk
denotes the Kth regression tree, and K denotes the number of regression trees. Equation (2)
indicates that given an input xi, the output value is the sum of the predicted values of K
regression trees (i.e., the weights of the leaf nodes divided according to the decision rules
of corresponding regression trees).
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Figure 3. Model Structure of U-net.

Step 2: Define the objective function. The objective function of XGBoost is composed of
a loss function and a regularization term, and defining the objective function is to define the
loss function and the regularization term. The loss function is used to fit the training data,
while the regularization term is used to control the model complexity, and the equation is
as follows:

L(∅) =
n

∑
i=1

L(yi, ŷi) + ∑
k

Ω( fk) (4)

where L(∅) denotes the objective function, L(yi, ŷi) denotes the loss function, Ω( fk) is the
regularization term, and yi denotes the true value of the sample.

Step 3: Optimize the objective function. A forward distribution algorithm is used to
optimize the objective function. Supposing ŷ(t)i is the predicted value of the ith sample
after tth iteration (the tth tree), then:

ŷ(t)i = ŷ(t−1)
i + ft(xi) (5)

where ŷ(t)i denotes the predicted value of the ith sample after tth iterations, ŷ(t−1)
i denotes

the predicted value of the ith sample after t− 1 iteration, and ft(xi) denotes the predicted
value of the tth tree.

Therefore, the objective function can be expressed as:

L(∅) =
n

∑
i=1

L
(

yi, ŷ(t−1)
i + ft(xi)

)
+ ∑

k
Ω( fk) (6)

where L(∅) denotes the objective function, L
(

yi, ŷ(t−1)
i + ft(xi)

)
denotes the loss function,

Ω( fk) is the regularization term, and yi denotes the true value of the sample.



Sustainability 2023, 15, 6434 9 of 15

Step 4: Optimize the loss function in the objective function. The second-order Taylor
expansion is used to expand the loss function to approximate to the true value. Its equation
is as follows:

L
(

yi, ŷ(t−1)
i + ft(xi)

)
≈ L

(
yi, ŷ(t−1)

i

)
+ gi ft(xi) +

1
2

hi f 2
t (xi) (7)

where L
(

yi, ŷ(t−1)
i

)
denotes the loss value of the ith sample from the preceding t− 1 trees,

gi ft(xi) is the first-order partial derivative of ŷ(t−1)
i , and 1

2 hi f 2
t (xi) is the second-order

partial derivative of ŷ(t−1)
i .

Step 5: Obtain the final objective function, which is as follows:

L
(

yi, ŷ(t−1)
i + ft(xi)

)
≈ L

(
yi, ŷ(t−1)

i

)
+ gi ft(xi) +

1
2

hi f 2
t (xi) (8)

3.2.3. Performance Evaluation Metrics

(1) Confusion matrix:

A confusion matrix is an important tool for evaluating the performance of a classifica-
tion model, with each column representing the instances in a predicted class while each
row representing the instances in an actual class. The four metrics used in the analysis are
True Positive (TP), False Positive (FP), False Negative (FN) and True Negative (TN). The
confusion matrix is manifested by Table 2.

Table 2. Manifestation of the confusion matrix.

Confusion Matrix
Actual Classes

Positive Negative

Predicted Classes
Positive TP FP

Negative FN TN

(2) Performance metrics for the semantic segmentation model:

The semantic segmentation model is mainly evaluated using two metrics, Mean
Pixel Accuracy (MPA) and Mean Intersection over Union (mIoU), whose expressions are
as follows:

MPA =
1

k + 1

k

∑
i=0

TP + TN
TP + TN + FP + FN

(9)

mIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(10)

where k + 1 denotes k + 1 categories, and TP, TN, FP and FN denote correctly identified
positive sample, correctly identified negative sample, incorrectly identified positive sample,
and incorrectly identified negative sample, respectively.

(3) Performance metrics for the XGBoost model;

The XGBoost model is mainly evaluated using 4 metrics, accuracy (ACC), precision (P),
recall (R) and F-score (F1), all of which could be obtained by calculation from the confusion
matrix. F-score (F1) indicates the harmonic mean of precision and recall values [26]. It can
be calculated by the following formula:

ACC = (TP + TN)/(TP + FN + FP + TN) (11)

P = TP/(TP + FP) (12)
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R = TP/(TP + FN) (13)

F1 = 2(P× R)/(P + R) (14)

In addition, the receiver operating characteristic (ROC) curve is plotted to measure
the area under the ROC curve (AUC), which is then used to determine the accuracy of the
classification results of the binary classification model [27]. AUC < 0.6 indicates the model
has a poor predictive ability; 0.6 < AUC < 0.7 indicates the model has a moderate predictive
ability; 0.7 < AUC < 0.8 indicates the model’s predictive ability is good; and AUC > 0.8
indicates the model’s predictive ability is excellent.

4. Results
4.1. Performance Evaluation for the Semantic Segmentation Model

In designing the experiments, the program is designed using the PyTorch framework
with the learning rate set to the initial 0.0001, and the cross-entropy loss and Dice loss are
employed as the loss functions. Moreover, in order to improve the robustness of the model
and reduce the overfitting, the image data is processed in a random manner, including
image flipping, panning, and zooming, thus realizing data augmentation on the dataset.
Finally, the training dataset is randomly divided into a training dataset and a validation
dataset in the ratio of 9:1. The role of the validation dataset is to verify the predictive power
of the model and is not involved in the model training. After training, the training effect
and results of the model are judged by the prediction accuracy of the semantic segmentation
model on the training and validation datasets. The results are given in Table 3.

Table 3. Performance metrics for semantic segmentation model based on validation dataset.

Metric Water Bodies Roads Green Spaces Others Overall

mPA 87.94 66.21 82.92 90.49 81.89
mIoU 82.72 45.43 71.29 82.83 70.57

As can be seen from Table 3, the model achieves an overall mPA of 81.89% and an
mIoU of 70.57%, indicating the model could effectively recognize ground objects in satellite
images. However, the mPA and mIoU values for the category of roads are somewhat low.
The reason for this would be that the roads in the satellite images are so obscured by the
nearby buildings, trees, and their shadows in the sun that the model is unable to clearly
identify the obscured roads, resulting in low values.

Figure 4 shows the performance of the semantic segmentation model extracting ground
objects from the satellite images, indicating the model could accurately extract and distin-
guish among different feature categories such as water bodies, roads, and green spaces in
the satellite images. The images are rendered very clearly.

Figure 4. Example of semantic segmentation: (a) Satellite image to be predicted; (b) Annotated image;
(c) Prediction result.



Sustainability 2023, 15, 6434 11 of 15

4.2. Performance Evaluation for the XGBoost Model

Five-fold cross-verification [28] is employed in this paper to evaluate the model
performance during the experiment, and the average of the five results is used as the metric
for performance evaluation, as listed in Table 4.

Table 4. Five-fold cross-validation for performance evaluation of XGBoost model based on test dataset.

Metric ACC P R F1 AUC

1 0.82 0.80 0.88 0.84 0.89
2 0.83 0.82 0.83 0.82 0.91
3 0.79 0.75 0.88 0.81 0.85
4 0.79 0.71 0.89 0.79 0.87
5 0.83 0.83 0.86 0.84 0.90

Average 0.81 0.78 0.87 0.82 0.88

As can be seen from Table 4, the mean accuracy of the five cross-validations is 0.81,
indicating that 81% on average of the samples in the test dataset could be correctly identified.
The mean precision of the five cross-validations is 0.78, indicating that only a few non-
waterlogging points from the positive samples are incorrectly identified as waterlogging
points, which showed that the XGBoost has a good fitting over urban waterlogging points.
The mean F1 of the five cross-validations is 0.82, showing that the model performed well.
The mean AUC of the five cross-validations is 0.88, indicating the XGBoost has perfect
prediction accuracy. Random Forest (RF), Logistic Regression (LG) and Support Vector
Machine (SVM) are the common machine learning models in urban waterlogging. In order
to verify the effectiveness and reliability of the proposed model, the AUC of XGboost, RF,
LG, and SVW is shown in Table 5.

Table 5. Prediction accuracy of the XGBoost, RF, LG, and SVM model based on the test.

Model XGBoost RF LG SVM

AUC 0.88 0.83 0.86 0.84

As can be seen from Table 5, the prediction accuracy of the XGBoost is better than RF,
LG, and SVM.

Based on the results above, we conclude that the XGBoost can be further used in the
significance analysis and study of urban waterlogging factors.

4.3. Analysis of Influencing Factors of Urban Waterlogging

To further probe into the primary factors affecting urban waterlogging in the research
areas, the weight of each indicator is analyzed under the XGBoost model. For urban
waterlogging points, the significance of each indicator is shown in Table 6. It can be seen
from the table that there are significant differences among the factors affecting the urban
waterlogging in the research areas. Among them, elevation is the primary factor affecting
waterlogging in the four coastal cities, with a significance higher than 40%, which matches
with the conclusions of most scholars [29,30]. This is because low-lying areas are more likely
to become catchments than high-lying areas. Moreover, due to the increasing impermeable
pavements and little vegetation coverage in the main urban area of the cities, which narrow
the storm water infiltration area and cause increasing storm water runoff, stagnant water is
more likely to form in low-lying areas.
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Table 6. Significance of indicators of urban waterlogging points.

City Water Bodies Roads Green Spaces Elevation Others

Haikou 0.238 0.138 0.070 0.458 0.096
Xiamen 0.025 0.025 0.038 0.876 0.036

Shanghai 0.008 0.093 0.006 0.887 0.006
Qingdao 0.085 0.302 0.002 0.554 0.057

The significance values of urban waterlogging factors are shown in Figure 5. The
secondary factor affecting the waterlogging in both Shanghai and Qingdao is roads. As
an example of urban impermeable surfaces, many hard-surface roads not only cut off the
hydrological process between surface water and groundwater, but also change the original
runoff generation, pooling, and flow conditions of the urban surface, which in turn affects
the urban water circulation and increases the risk of waterlogging. For example, as of
2019, the land for roads and transport infrastructure in Shanghai accounts for more than
15% of the construction land, and the road network density in Huangpu and Hongkou
is even higher (>8 km/km2) [31]. High-density road construction significantly induces
waterlogging on roads in main urban areas.

Figure 5. Significance of waterlogging factors in each city under the XGBoost model.
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For Haikou, water bodies are the secondary factor affecting urban waterlogging. As
Haikou is a seaside city, the seawater level is higher than the river outlet level during heavy
rainfall or at high tide, resulting in the backflow of sea water into rivers. In this case, the
stagnant water in the city will be prevented from being discharged into the sea through
rivers and ditches, which will then worsen the waterlogging situation. Haikou is a typical
tropical coastal city established along a river. The city is impacted by typhoons and tropical
storms all year round, with a very high annual rainfall. These climate conditions would
have been more prone to waterlogging. However, the primary reason for waterlogging is
that as the city develops, many ponds and wetlands around and in the city have been filled
in for development, while the construction of supporting municipal facilities is lagging
severely behind. The loss of natural control and detention capacity causes waterlogging,
for example, in areas around Qiongshan Avenue.

For Xiamen, the four indicators other than the elevation are equally significant, which
could all be regarded as secondary factors affecting the urban waterlogging. Most of the
flood drainage systems on Xiamen Island are planned and constructed in 1980s. With the
changes of times and the development of the city, the underground flood drainage systems
have been damaged, the subsidence of land and pipe network has been aggravated, and
the urban green spaces have shrunk. All of these have enormously weakened Xiamen’s
overall flood carrying capacity.

5. Conclusions and Policy Implications
5.1. Conclusions

The satellite image semantic segmentation model based on the U-net is capable of
effectively recognizing ground objects in satellite images, while accurately extracting and
distinguishing among different feature categories such as water bodies, roads, and green
spaces in satellite images. The XGBoost model is capable of predicting the waterlogging
points from the samples with high prediction accuracy and of analyzing the urban water-
logging risk factors by weighing each indicator. Moreover, the AUC of XGBoost model is
0.88 and larger the other common machined learning model, indicating the XGBoost has
perfect prediction accuracy. Integrating the satellite image semantic segmentation model
and XGBoost model provides a brand-new perspective to evaluate the urban waterlogging
risk. Regarding the urban waterlogging predication, more attention should be paid to the
elevation, which is the primary factor affecting the urban waterlogging.

It should be mentioned that more satellite image datasets should be collected and
created, and more categories of ground objects and features that affect the urban waterlog-
ging risk should be selected to improve the training accuracy of the semantic segmentation
model and the recognition accuracy in satellite images. At the same time, other deep
learning models should be considered to further integrate satellite images and the data
from social networks to probe into urban waterlogging risk factors.

5.2. Policy Implications

Based on the assessment results of urban waterlogging risk factors in the research
areas, the following countermeasures and recommendations are put forward in this paper
for early warning, prevention, and control of urban waterlogging in the research areas:

Firstly, the four coastal cities, Haikou, Xiamen, Shanghai, and Qingdao, differ from
each other in regard to the significance of the influence factors. Therefore, in urban water-
logging control, it is necessary to strengthen engineering measures and build a systematic
urban drainage and waterlogging prevention system according to local conditions. In
addition, it is necessary to improve the city’s overall drainage capacity with reference to
the construction experience of “sponge city” to reduce waterlogging.

Second, due to the high risk of waterlogging in the coastal cities with dense river
networks, it is necessary to in real time monitor the changes in the water level of lakes and
rivers and clean up and dredge the waterways in time to protect the lake water systems in
cities and improve the water detention and flood control capacity of urban water systems.
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Moreover, the proportion of urban green spaces should be increased to enhance the surface
water circulation and reduce the flood control pressure on urban rivers.

Thirdly, the government should comprehensively improve its emergency management
for drainage and waterlogging prevention and improve and optimize the contingency plans
concerning urban drainage and waterlogging prevention. The inspection, maintenance,
and potential hazard identification system for urban drainage and waterlogging prevention
facilities as well as safe operation procedures should be implemented strictly as required. It
should be ensured that potential hazards are fully investigated, identified, and eliminated
before the flood season. In addition, more effort should be put into routine maintenance on
drainage facilities. Moreover, the government may launch catastrophe insurance, social
assistance, and other safeguard mechanisms to improve the resilience of residents and
enterprises against disasters.
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