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Abstract: The steel industry has been forced to switch from the traditional blast furnace to the
electric arc furnace (EAF) process to reduce carbon emissions. However, EAF still relies entirely
on the operators’ proficiency to determine the electrical power input. This study aims to enhance
the efficiency of the EAF process by predicting the tap temperature in real time through a data-
driven approach and by applying a system that automatically sets the input amount of power to
the production site. We developed a tap temperature prediction model (TTPM) with a machine
learning (ML)-based support vector regression (SVR) algorithm. The operation data of the stainless
EAF, where the actual production work was carried out, were extracted, and the models using
six ML algorithms were trained. The model validation results show that the model with an SVR
radial basis function (RBF) algorithm resulted in the best performance with a root mean square error
(RMSE) of 20.14. The SVR algorithm performed better than the others for features such as noise.
As a result of a five-month analysis of the operating performance of the developed TTPM for the
stainless EAF, the tap temperature deviation decreased by 17% and the average power consumption
decreased by 282 kWh/heat compared with the operation that depended on the operator’s skill. In
the results of the economic evaluation of the facility investment, the economic feasibility was found
to be sufficient, with an internal rate of return (IRR) of 35.8%. Applying the developed TTPM to the
stainless EAF and successfully operating it for ten months verified the system’s reliability. In terms of
the increasing proportion of EAF production used to decarbonize the steel industry, it is expected that
various studies will be conducted more actively to improve the efficiency of the EAF process in the
future. This study contributes to the improvement of steel companies’ manufacturing competitiveness
and the carbon neutrality of the steel industry by achieving the energy and production efficiency
improvements associated with the EAF process.

Keywords: machine learning; steel manufacturing industry; carbon neutral; electric arc furnace;
stainless steel; temperature prediction; power consumption; support vector regression

1. Introduction
1.1. Background of Study

In 2015, the Paris Climate Agreement was established to reduce greenhouse gases
and prevent global warming, declaring a long-term international goal of suppressing
global average temperature rises to below 2 ◦C and trying not to exceed 1.5 ◦C [1]. Car-
bon dioxide emissions must be reduced by more than 45% by 2030 compared with 2010,
and global carbon neutrality is to be achieved by 2050 [2]. With the goal of 2050 carbon
neutrality, many countries, including developed countries, such as those of the European
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Union (EU), the US, and Japan, have set nationally determined contributions (NDC)
suitable for each country’s situation. Carbon neutrality at the national level is important
for responding to climate change and suppressing the increase in the earth’s average
temperature in the future. International standards, such as carbon neutrality and cli-
mate response, strengthening environmental requirements for clients, and rising carbon
emission prices, are rapidly changing. The steel industry, which accounts for 7% of total
industrial carbon dioxide emissions and 8% of energy consumption, is facing increasing
demands from clients for low-carbon steel, such as scrap, and eco-friendly energy. Ac-
cordingly, a new technical approach is needed to transform the process paradigm beyond
the carbon-based furnace [3,4]. Various technologies have been attracting attention as
reducing carbon in the steel industry. Among these, the electric arc furnace (EAF) process
using direct reduced iron (DRI) or completely reduced scrap has received particular
attention. An EAF with DRI uses raw steel materials that has had some carbon removed
prior to its processing instead of using the traditional blast furnace process. As a result,
it has the advantage of lower carbon emissions. Accordingly, the proportion of EAF
process production is expected to increase. Technical progress and continuous research
of electric furnace processes are required to secure competitiveness [5].

Company P, a Korean steel maker, produces steel products at two integrated steel-
works, with a total crude steel production of 40 million tons and a stainless-steel production
of two million tons. Company P has two EAFs, each of which are stainless steel [6]. This
study mainly aimed to improve the productivity of stainless-steel Type B EAF, an alternat-
ing current type EAF used by Company P. After the raw material is loaded, the operator
inputs the amount of electrical power to be put into the charge (Ch’), via the power schedule
setting screen of the human–machine interface (HMI) in the operating room, prior to the
melting operation. HMI is a computer system for controlling the processes at a steel plant
site. The HMI screen displays various elements that operators can manipulate, such as
facility diagrams, input buttons, texts, numbers, input fields, alarm pop-ups, and more.

The overall operation schedule is automatically controlled based on this process.
In the situation of an EAF operation, any measuring device to measure the operation
status cannot be placed inside the furnace because a high-voltage current over 500 V and
40 kA is energized through the electrode. Therefore, the operator refers to the operating
conditions, such as raw material input components, input amount, and previous Ch’
operation results, to determine the required electrical power input before the operation
starts through subjective prediction based on their operational experience. The working
guideline of Company P specifies that the operator should make power supply decisions
based on their empirical judgment and the current site situation. However, this dependence
on the individual operator’s subjective judgment causes the operation quality to fluctuate
according to the operator’s capability, resulting in inefficiencies of the process.

This study developed an EAF tap temperature prediction model (TTPM) and an AI
automatic operation system based on machine learning (ML) to solve these problems.
TTPM was developed to predict tap temperature in real time using only those features that
can be secured during operation, thus ensuring that it can be applied to an EAF site where
actual production work is performed. In addition, an AI automatic operation system was
developed to automatically control the operation, without the intervention of an operator,
based on the tapping temperature predicted by TTPM. The developed system is currently
still being applied to the field production site to assist in its operation. It will be a reference
for other studies in that the effects of reduced power consumption and fixed costs have
been verified.

The overall composition and details of this study are as follows. The introduction
consists of Sections 1–3. Section 1 describes the background and necessity of the study,
derives improvement opportunities according to the current EAF operation method and
explains the study’s goal. Section 2 reviews previous studies, examining the trends of ML
research targeting the steel industry and their differences with this study. In Section 3, the
problems of the existing EAF operation methods are derived, and the research methodology
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is discussed. Sections 4–6 are the cores of this paper; Section 4 explains the data collection
and preprocessing method, and Section 5 describes the theoretical background of the ML
algorithm, model training, the developed model’s verification, performance evaluation,
and the procedure for selecting the optimal model by TTPM. Section 6 explains the de-
veloped model’s field application, system configuration, and the development method of
the tapping temperature prediction system (TTPS) and analyzes the developed TTPS field
application results. Section 6 summarizes the issues to be discussed in future research and
the overall findings.

1.2. Literature Review

Previous studies have been reviewed in consideration of two aspects. First, with regard
to the application of ML technology in the steel industry, various studies were investigated
with keywords combining ML, AI, and terms related to the steel process. Second, the
authors reviewed prior studies that applied ML technology to EAF and collected literature
using keywords combining EAF, arc furnace, tap temperature, and ML or AI. Through this,
the authors reviewed the approaches of similar research models and explored their limits.

1.2.1. Machine Learning Application in the Steel Industry

Previous studies that applied ML technology in the steel industry were reviewed.
There were a number of studies on the prediction of iron ore prices using the ML
technique. Lee et al. [7] developed a prediction model for Chinese iron ore prices by
applying the long short-term memory (LSTM) algorithm. Their model used the volumes
of steel exported from Korea, China, and Japan; the demand and supply volumes of
Chinese steel; and scrap raw material prices as the variables. Their model’s mean
absolute percent error (MAPE) was 5.96%. Most of the studies that applied ML were
related to the steel manufacturing process. Liu et al. [8] studied a support vector machine
(SVM)-based model that determines whether the operation is abnormal through the
interpretation of 14 factors and 1600 training data that were obtained via measurements
taken during the operation of the blast furnace. They also verified its feasibility and
effectiveness with 800 test data. Liu et al. [9] developed a model for calculating the
optimal raw material mixing ratio in the sintering process and applied it to actual
operation to verify the effect of reducing raw material costs by 4.63 USD/ton (3.8%).

Predicting a precise endpoint of the converter process to remove impurities from
pig iron is vital for productivity and quality. Jo et al. [10] predicted the oxygen-blowing
amount, which is a factor that determines the endpoint, using existing operation data.
Schlueter et al. [11] produced the data by attaching a sensor to measure off-gas com-
position and used these data for training. Bae et al. [12] sought to predict the final
temperature and composition ratio of carbon and phosphorus under current operating
conditions. Tian et al. [13] developed a hybrid model that predicted the optimal pa-
rameters of the thermal model previously used in the ladle furnace (LF) process. They
improved the prediction performance within ±5 ◦C of the temperature deviation of
molten steel. Laha et al. [14] developed a crude steel yield prediction model using ran-
dom forest (RF), artificial neural network (ANN), and support vector regression (SVR)
algorithms. They verified that SVR performed better than RF and ANN algorithms.
Santos et al. [15] calculated the distance between the operation data of 645 regular prod-
ucts and 244 defective products to determine whether or not the ultra-tensile strength
products were from the iron casting process. They achieved a detection success rate of
78%. Previous studies seeking to predict the clogging of a submerged entry nozzle (SEN),
a chronic problem in the continuous casting process, were also reviewed. Wang et al. [16]
developed an LSTM model that detects the time series change of the clogging index
data for three minutes using the calculation method presented in previous studies. The
clogging index after 36 s was predicted, and the coefficient of determination performance
was 0.971.
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Several studies were found on the application of ML to the prediction of strip quality
in the rolling process. Ghorai et al. [17] developed an image recognition model capable of
detecting 24 defects in real time by training 1432 strip surface images taken in hot rolling
processes. However, their model worked only at 5 m/second or less and under an ideal
environment without vibration and noise. Ding et al. [18] predicted the camber of the
product caused by the asymmetry of the roll pressing control in the plate process based on
SVM. They also conducted a study wherein they were able to control camber generation
within ±6% in conjunction with roll tilt controls.

Studies on the application of AI and ML technologies for digitalization and carbon
emission reduction in the steel industry were also reviewed. Colla et al. [19] proposed
various ML models and theories for digitalization that can improve carbon neutrality in
steel manufacturing processes by using AI and ML technologies. However, their study
was limited due to the absence of an attempt to apply their results to an actual industrial
site. Stavropoulos et al. [20] developed a framework utilizing big data techniques to
reduce carbon dioxide emissions in the steel manufacturing industry. Their study proposed
different metrics from the perspectives of carbon emissions and cost. Zhou et al. [21]
suggested optimizing manufacturing processes using simulation, visualization, and ML for
digitalization in the manufacturing industry.

1.2.2. Machine Learning Model for Electric Arc Furnace

Previous studies that applied ML to the EAF process were reviewed. The literature
review results regarding the prediction of the amount of power input are discussed in this
section. Reimann et al. [22] developed a model applying three ML algorithms, including
an artificial neural network (ANN), using over 21,000 operational data extracted from five
EAF locations. As a result of the performance evaluation, the gaussian process regression
(GPR) model performed best among the three ML algorithms. Their newly developed
model was superior to the empirical (Köhle) model. However, their study had a limitation
as it was only a theoretical study and it was thus difficult to use in actual operation through
the application of a tapping amount factor that could not be obtained. In addition, several
studies have used factors that cannot be obtained during operation. Kovačič et al. [23]
developed a model by training 25 factors, such as input raw material information and
operation waiting time. However, there was a limitation in that, due to the subjective
intervention of the operator, unoptimized power input performance data were involved.
Carlsson et al. [24] conducted a theoretical study on whether an operation can be statistically
modeled using the tap-to-tap time (T-T) and discharging time of molten steel. However, it
was similarly limited in its application to the actual operation site.

The prior studies on EAF tap temperature prediction are as follows. Li et al. [25]
developed a model that predicts tapping temperature with 95% accuracy within ±20 ◦C by
applying LSTM. However, it was unclear what factors were used and whether predictions
could be made in real time by applying them to actual operations. Blažič et al. [26] sought to
predict the molten metal temperature in real time during the melting operation. However,
electricity supply must be stopped, and the roof must be opened to measure the molten
metal temperature during operation. This means that the study suffered from a limitation
wherein production time delays of longer than 1 min occur. As a result, their approach
cannot be applied to an actual EAF process because productivity and power efficiency
would be seriously degraded.

As a result of reviewing the previous studies above, it was found that various studies
that applied ML technology to the steel industry were implemented under the rapid
development of ML applications and computing power. The authors focused on the studies
that applied ML or deep learning (DL) techniques to accumulate operation data regarding
the prediction of electrical power input or the tap temperature of EAF, which are closely
related to this study. Firstly, the electric power input is a factor that includes the operator’s
subjective judgment. Therefore, it is possible to imitate the inefficient operator’s manual
operation when an ML model is trained with the existing data. Accordingly, this study
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aimed to predict the tapping temperature, which is an objective indicator. Previous studies
that did not produce satisfactory performance were benchmarked, though less than ten
factors were used, and the maximum achievable factors were secured and applied to model
development. Because this study aimed to develop a sustainable system that can be applied
to actual EAF sites even after the research is complete, the model was developed using only
features that can be ensured during operation.

Moreover, the operator’s workload was reduced by developing an AI operation
system that automatically controls the operation based on the tap temperature predicted
by TTPM and applying it to the site. The system that was developed as a result of this
study verified the effect of a reduction in electrical power and costs by analyzing the
operational data for 49 days during a field application test of five months. In addition, it
can be differentiated from other studies in that it can be applied to the actual production
site and assist the operator.

2. Problem Statements and Model Development
2.1. Problems of Electric Arc Furnace Operation

This study analyzed the electrical power input results among the operation data for
4598 Ch’ produced from February to September 2021 from the operation DB stored in the
process computer (PC) of Company P’s stainless steel Type B EAF. Although the facility
installed on the site can precisely control the electrical power input in units of 50 kWh,
the operator conventionally adjusts the electrical power input at 500-kWh increments
during operation [6]. Figure 1 shows the electrical power input described above, and
the X-axis represents the amount of electrical power used to produce molten metal. The
Y-axis represents the number of Ch’. The value of the Y-axis exists at a high frequency
every 500 kWh of the X-axis in Figure 1.

Figure 1. Power consumption in the steelmaking factory EAF B (February to September 2021).

Next, the tap temperature data for steel type 304, which has the highest production
share from February to September 2021, were examined. The tapping temperature data
generally showed a normal distribution with a temperature distribution of 1420~1740 ◦C.
According to Company P’s work standards, the management standards were established so
that the tap temperature of the EAF was aimed at 1580± 20 ◦C [6]. As a result of calculating
the hit rate for tapping within the tap temperature range of the management standard, only
1715 Ch’ out of steel type 304’s total of 3105 Ch’ produced during the period satisfied the
tap temperature management standard. Hence, the hit rate of tap temperature showed an
insufficient result of 55.2%. The remaining 1390 Ch’, which accounted for 44.8%, did not
meet the operation management standards, and cases where the tap temperature standard
range was exceeded by more than two fold (404 ◦C or more) occupied 16.8% with 519 Ch’.
Additionally, the average tap temperature was 1570.14 ◦C, which is 9.94 ◦C lower than the
target tap temperature, and the standard deviation was 31.4 ◦C, which was a significant
value compared with the management standard deviation of ±20 ◦C. The power input and
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tap temperature data examined above directly show the inefficiency of the current EAF
operation. Accordingly, it was possible to indirectly predict that it would have a negative
impact on production costs in terms of energy consumption and production time.

Figure 2 illustrates the tap temperature of steel type 304 described above as the
X-axis and the number of Ch’ as the Y-axis. Table 1 lists the calculation results of the tap
temperature hit rate.
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Table 1. The heat counts of tap temperature deviation in EAF for steel type 304 (February to
September 2021).

Deviation of Tap Temp. Count (Heats) Rate (%)

±0~20 ◦C 1715 55.2
±21~40 ◦C 871 28.0
±41 ◦C~ 519 16.8

Total 3105 100

As discussed above, the current EAF is operated with the electrical power input
based on subjective judgment and prediction by the operator. Problems this can cause
include, firstly, the electrical power input deviation that occurs depending on the op-
erator’s experience and skill level; and secondly, the impossibility of fine-tuning the
tap temperature that derives from the practice of setting the electrical power input in
units of 500 kWh. For this reason, excessive thermal energy is supplied to hit the molten
metal to a high temperature when electrical power is over-input. Therefore, productivity
decreases, electrical power costs increase, electrode consumption increases due to an
increase in tap-to-tap time (T-T), and refractory wear increases due to hit load [27,28].
In addition, if the molten steel inside the EAF is maintained at a high temperature for a
long time at a level that exceeds the cooling system’s capacity, there is a possibility of
steam leakage due to damage to the cooling structure [29]. Conversely, when the proper
temperature of the molten metal cannot be maintained due to insufficient electrical
power input, undissolved residual scrap is generated inside the EAF, which impairs the
consistency of the next Ch’ operation. In addition, ferroalloy is added to supplement
the weight of molten steel produced during the argon oxygen decarburization (AOD)
operation, which is a post-operation process, and heating materials such as FeSi are
added to secure the temperature, adversely affecting productivity and cost [30].
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2.2. Model Development

Operational data such as weight, temperature, time, and electrical variables required
to develop the model were extracted from the PC and pre-processed to develop the training
dataset. Details about this are discussed in Section 4. Next, the data were divided into a
training (80%) and a test (20%) dataset by random sampling in the model development
stage. Six ML algorithms—linear regression, ridge, lasso, SVR-linear, polynomial and
radial basis function (RBF)—were trained with a training dataset. At this time, the model
parameters were optimized by k-fold cross-validation to prevent overfitting. After that,
the error function of the model was calculated with the test dataset to check the model’s
performance, and then TTPM for the optimal tapping temperature prediction was selected.
This process is discussed in detail in Section 5. The predictive performance was evaluated
by comparing the standard deviation of the tapping temperature of the operation results
when the AI automatic function was turned off during the site test with the operation
performance when it was turned on. The economic effect was compared in terms of power
cost and production by calculating the amount of power input set by the operator and
the amount of power input the existing system could save. Section 6 describes the system
development process, including hardware and software and field application plans, and
then discusses the performance of TTPM, improvement effects, and implications analyzed
as a result of site application. The detailed procedure for model development in this study
is shown in Figure 3.
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3. Data Preparation

EAF operational data were collected for this study. Because operational data are
collected at each operation stage of the EAF, it is first necessary to explain the EAF operation
process. In EAF, a high-current arc is energized to scrape through a carbon-component
electrode fixed to an electrode arm, and the raw material is heated and melted with arc
thermal energy [31]. As the dissolution progresses, the arc is maintained in synchronization
with the lowering height of the raw material, and the electrode arm cylinder (hydraulic
electrode elevating device) moves up and down to adjust the gap between the raw material
and the electrode to input power efficiently. The gap between the raw material and the
electrode acts as a resistance, which determines the arc’s current. The current balance
between the three phases and the power input speed according to the operation stage is
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adjusted. In addition, as the voltage can be changed without downtime even though power
is being applied through the on-line tap changer (OLTC) installed in the transformer, the
voltage is differentiated according to the operating stage and scrap melting situation to
input power efficiently.

The general EAF operation sequence and its purpose is explained step by step as
follows. The raw material charging operation is the operation of inputting the raw material
according to the required components of the molten metal in an optimal schedule. The
melting operation aims to produce stable tapping components and tapping amounts
through a rapid and efficient dissolution of raw materials. Scrap used as the primary raw
material is solid with an unspecified shape, and the volume decreases sharply during
dissolution. As a result it is generally the case that, after the raw materials charging and
melting process is performed twice, the heating operation, which is the final melting task of
adjusting the tapping temperature with low voltage and short arc, is performed. In addition,
oxygen is also injected as an auxiliary heat source into a pipe-shaped lance through a front
work tool across the secondary melting and heating device. This task is an operation for
stirring molten metal and solving the dissolution imbalance that arises as a result of using
the oxidation heats of C (carbon) and Si (silicon). After that, the molten metal is transferred
from the EAF to the ladle for post-process transfer. The thermometer is immersed in the
molten steel ladle to measure the tapping temperature after tapping. The measured data are
matched with other operation data and are stored in the operation database (DB). Figure 4
demonstrates the detailed process of EAF operation. Completing one cycle of this process
is referred to as one heat. One heat may involve charging the raw materials twice or three
times, and, typically, operations involve charging raw materials twice.
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Data were collected for each stage of EAF operation, and the definitions and char-
acteristics of each set of data were clarified. Next, the collected operation data were
preprocessed to ensure better performance in the modeling process. The overall process of
the data preprocessing can be confirmed in detail in Figure 5 below.
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3.1. Data Collection

For this study, the EAF operation data of Company P’s STS-B steel plant were collected
and stored in a high-performance data analysis server to develop a model. The data are
information of 4598 heats from 19 February 2021 to 13 September 2021. They consist of a
total of 53 variables, and each variable was measured, collected, and stored at each stage
of operation. The description of each variable is detailed in Section 4.2.2. The computer’s
DB uses Microsoft structured query language (MS-SQL), and the data analysis server uses
python and pymssql libraries to extract operational data with SQL statements. The data
collected for each operation stage were stored in four DB tables and extracted as individual
files, and the heat number was merged into a key to form a single file and used. The data
collected by the operation stage are as follows.

First, in the raw material charging stage, there are 32 variables related to the weight of
the raw material and the production goal. Variables include the total weight of charged
raw materials, weight by element (Si, C, Mn, P, S, Cr, Ni, Mo, Cu, FeCr), weight by origin
(self-supply, import, domestic) of scrap, and weight by steel species (300 series, 400 series).
There is a percentage of scrap in the total weight and a production target for steel type. Next,
12 variables exist in the melting stage. These variables include oxygen input, power input,
power efficiency, water cooled panel (WCP) temperature, furnace bottom temperature, and
waiting time before work. In the heating step, two variables of oxygen input and power
input are stored, and tapping temperature is used as the Y feature in the tapping step.

In the charging stage into the AOD, which is the following process of EAF, six variables
are stored, including EAF residual hot water, hot water, slag, chemical basicity, and hot
water error rate. All six variables used in this step are information needed to predict the
next Ch’ operation. The time of use differentiates the data that derive from the charging
to tapping stages. In other words, performance information generated during the AOD
charging of Ch’ produced just prior to the current operation is used to predict the tapping
temperature of the Ch’ currently operating. It is, therefore, a simulation of the operating
know-how of the operators. Because the information on the molten metal currently charged
in the AOD indirectly reflects the condition of the electricity at the time the molten metal
was discharged from the electric furnace, it can be an excellent indicator for the prediction
of the following hot water temperature. Details of the feature types used at each stage of
the operation can be found in Table 2 below.

Table 2. Collected data from the database.

Stage Attributes

Weight Volume Power Temperature Time Etc.

Charging
(32 Variables)

Total weight,
weight by

element, weight
by scrap type

Steel type,
scrap ratio

Melting
(12 Variables)

Oxygen
injection amount

Power amount,
power factor

WCP temp’,
bottom temp’ Wait time

Refining
(2 Variables)

Oxygen
injection amount Power amount

Tapping
(1 Variable)

Tap temperature
(Y Feature)

AOD
charging

(6 Variables)

(Previous Ch’)
Remain weight,

tap weight,
slag weight

(Previous Ch’)
Tap temperature

(Previous Ch’)
Basicity,

yield of tapping
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3.2. Data Preprocessing

Data preprocessing is a necessary process that affects model performance. This study
secured data reliability through data cleansing and through the integration of variables
with various scales through normalization [32]. It further secured data reliability through
data cleansing, filtering through condition settings, the generation of derivatives reflecting
operational knowledge, and the removal of missing values and outliers. After that, the
cleaned data were normalized to ensure the model’s performance as much as possible.
Data preprocessing used python programming languages and the basic libraries for data
handling were NumPy and Pandas [33,34]. It was also conducted that the data analysis
server should use the scikit-learn library for normalization [35].

3.2.1. Data Cleansing

Data cleansing aims to prevent the deterioration of a model that results from its
training with unnecessary data by selecting only valuable data from that which has
been collected [36].

The data used for this study were structured data extracted from the sensors in the
EAF facility, though some missing values and outliers exist due to the data characteristics.
Therefore, in this study, data cleansing processes such as filtering, missing value removal,
and outlier removal were performed using a data distribution-based approach [37].

First, the collected data were filtered only in cases where steel type 304 was produced,
and where the data were produced through two operations of raw material charging. The
EAF process of the B steel plant produces various types of steel, such as STS 304, 316,
430, 321, and 410. However, steel types 316, 430, 321 and 410 do not have enough data
to develop ML models. Therefore, only steel type 304, which occupies more than 70% of
production, was selected. In addition, the number of raw materials charging per heat was
generally doubled. However, when using scrap, which takes up more volume, the EAF
roof cannot be closed. In this case, to maximize productivity, one more scrap charging
action is executed and, thus, the operation must be carried out by charging the raw material
three times. Unlike general operations where raw materials are input twice, in the case of
atypical operations, such as the charging of raw materials three times, the charging data
constitute approximately 7% of the collected data.

Due to the increase in the number of charging times, a relatively long operation time
is required, which additionally causes a temperature drop. This was excluded from the
dataset because of the characteristics of its development as a separate model from the
case in which raw material is charged twice. After the data filtering, generation of the
variables reflecting the domain knowledge of the operation was undertaken. The demand
for electricity and oxygen is proportional to the mass of charged raw materials [38,39], so a
derivative variable was generated to convert variables related to power and oxygen input
that act as an energy source for EAF into energy per unit mass. The derivatives created
were named ‘Power per weight’ and ‘Oxygen per weight’.

Next, missing values that might distort the model training process, significantly de-
grading performance or making smooth training impossible, were identified and removed.
There is a possibility that a missing value may exist due to communication errors or sensor
failures during the operation. In fact, as a result of checking the data, there were many
cases where the data were omitted due to a failure of the tap temperature sensor.

Outlier means a very small or large value far outside the observed data range [40].
Traditionally, outliers have been removed by applying the interquartile range (IQR), a
convenient method commonly used to detect outliers [41]. IQR refers to the difference
between Q3, which means the top 75% point of the quartile, and Q1, which is the bottom
25% point and is expressed as Q3 − Q1. In applying the IQR, the parameter was per-
formed by applying the most commonly used 1.5 IQR. The range from Q1 − 1.5 × IQR
to Q3 + 1.5 × IQR was set as the normal range, and data with values outside this range
were removed.
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The initially collected data represented 4598 heats, but 45.1% of the data was removed
while filtering, missing value removal, and outlier removal were performed, finally securing
data representing 2523 heats. The step-by-step details of the data-cleaning task are described
and the data loss rate can be comprehensively confirmed in Table 3.

Table 3. Data loss during data cleansing.

Filter Condition Number of Heats Data Loss (%)

Raw Data 4598 -

Filtering Steel type = 304 3230 29.8
Number of charing = 2 3003 7.0

Missing Value Removal 2937 2.2

Outlierremoval

Tap temperature (before heat) 2795 4.8
Power per weight 2666 4.6

Water cooled panel (WCP) temperature 2654 0.5
tap temperature (Y feature) 2523 4.9

Total data loss (%) 45.1

3.2.2. Data Normalization

Data normalization was conducted to maximize training performance. Data normal-
ization is a process of unifying different scales between variables [42]. It has been proved
through prior studies that the ML algorithm can secure better performance through nor-
malization. Feature scaling using MinMaxScaler was confirmed to have relatively good
performance in the regression model [43]. MinMaxScaler is a technique for converting data
while assuming that the minimum value of each feature is 0.0 and the maximum value is
1.0 and is calculated by Equation (1).

xi
′ =

xi −min(x)
max(x)−min(x)

(1)

Table 4 comprehensively presents each variable’s minimum, maximum, and range
before MinMaxScaler. Table 5 explains the main variables and their definitions.

Table 4. Overview of data normalization.

Stage Variable Min Max Range Stage Variable Min Max Range

First charge
and melt

AvgTempBot 34 244 210

Second charge
and melt

Oxygen_per_Weight 0.57 7.81 7.24
AvgTempWCP 27 40 13 CConsCon 1.34 2.64 1.30
MaxTempBot 55 280 225 CrConsCon 14.70 21.77 7.07

MaxTempWCP 34 84 50 CuConsCon 0.11 0.32 0.21
Power_per_Weight 149.49 260.50 111.01 FeCr_Conscon 0.00 0.55 0.55

CConsCon 0.00 3.11 3.11 MnConsCon 0.31 1.10 0.79
CrConsCon 0.00 25.83 25.83 MoConsCon 0.05 0.18 0.13
CuConsCon 0.00 0.34 0.34 NiConsCon 4.21 8.05 3.84

FeCr_Conscon 0.04 0.29 0.25 PConsCon 0.02 0.03 0.01
MnConsCon 0.00 1.10 1.10 SConsCon 0.02 0.51 0.49
MoConsCon 0.00 0.22 0.22 SiConsCon 0.68 1.78 1.10
NiConsCon 0.00 9.88 9.88 SI300WGT 0 30,250 30,250
PConsCon 0.00 0.03 0.03 SK300WGT 0 28,050 28,050
SConsCon 0.00 0.83 0.83 SP300WGT 0 11,893 11,893
SiConsCon 0.00 1.80 1.80 SP400WGT 0 2678 2678
SI300WGT 0 29,960 29,960 SPGENWGT 0 7880 7880
SK300WGT 0 27,740 27,740 Waittime 147 2964 2817

SK400WGT 0 6390 6390
Refine

Oxygen_per_Weight 0.68 5.94 5.25

SP300WGT 0 19,265 19,265 Power_per_Weight 34.92 93.03 58.11

SP400WGT 0 6580 6800 Tapping Tap_Temperature 1501 1633 132SPGENWGT 0 9560 9560

Waittime 157 2501 2344

AOD charging
(previous ch’)

Basicity 1.1 2.5 1.4

Second charge
and melt

AvgTempBot 34 242 208 Remain_Weight 0 13,300 13,300
AvgTempWCP 26 39 13 Slag Weight 0 19,300 19,300
MaxTempBot 56 277 221 Tap_Weight Rate 76.6 145.2 68.6

MaxTempWCP 33 88 55 Tap_Temperature 1432 1663 231
Power_per_Weight 67.96 191.98 124.02 Tap_Weight 70,200 104,800 34,600
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Table 5. Meaning of each variable.

Variable Definition

AvgTempBot Average temperature (◦C) measured with a thermometer
installed on the floor of the EAF

AvgTempWCP Average temperature (◦C) measured in water cooled
panel (installed on the EAF side)

Power_per_Weight Electricity input per ton of scrap (kWh)

* ConsCon * Ratio (%) of elements included in scrap
(calculated by scrap sampling)

SI300WGT 300 series imported scrap weight (kg)
SK300WGT 300 series domestic scrap weight (kg)
SK400WGT 400 series domestic scrap weight (kg)
SP300WGT 300 Series Company P recycled scrap weight (kg)
SP400WGT 400 Series Company P recycled scrap weight (kg)

SPGENWGT Other types of recycled scrap weight (kg) by P Company
Waittime Waiting time before operation (sec)

Oxygen_per_Weight Oxygen input per ton of scrap (Nm3)
Basicity slag basicity

Remain_Weight Remaining weight of hot water (kg)
Slag Weight Amount of slag (kg)

Tap_Weight Rate Tapping error rate = tapping amount/scrap weight (%)
Tap_Weight Tap amount (kg)

* ConsCon: Constituent Condition.

4. Tap Temperature Prediction Model (TTPM)
4.1. Modeling

Modeling includes the task of training an appropriate ML algorithm based on prepro-
cessed data and selecting the optimal model by evaluating test data. This study applied six
ML algorithms—linear regression, ridge, lasso, SVR-linear, polynomial, and radial basis
function (RBF)—to predict the tapping temperature in real time during EAF operation. This
study comprises one dependent variable, y, and two or more independent variables, making
regression models appropriate. The authors selected the most basic linear regression model
to compare performance with other models [44]. In addition, since there is a possibility of
multicollinearity between variables, the ridge and lasso models were adopted [45]. Due to
uncertainty as to whether the correlation between variables is linear or non-linear, sensor
data affected by noise should be primarily be used, as a result SVR-linear, polynomial, and
RBF were adopted [46].

Linear regression is a simple model that expresses a continuous dependent variable as
a function of one or more independent variables [47,48]. Ridge is a model used to analyze
multiple regression data with multicollinearity. Lasso is suitable for simple and sparse
models with fewer variables because it processes linear regression through the selection
of variables [47,48]. In other words, unlike ridge, lasso makes some coefficients (β) zero
during the training process, so it can also play a role in the selection of key features to
make the model more manageable and more concise to interpret [49]. SVR is an algorithm
that applies an SVM to a regression problem. SVM is an algorithm that finds the optimal
hyperplane for classifying two or more groups, and nonlinear properties can be given
by introducing a kernel that maps data. It is with SVR that the regression equation was
constructed by introducing a loss function into this SVM. SVR is characterized by high
performance when removing or mitigating the effects of noise or outliers [50]. SVR could
introduce a kernel as a mapping function to express nonlinear regression equations and
general linear functions [51]. Typical nonlinear SVR algorithms include polynomial and
radial basis functions.

For modeling, first, a preprocessed dataset was randomly sampled and separated
into a training dataset and a test dataset at a ratio of 8:2. Second, the model was trained
by exploring the optimal model parameters using k-fold cross-validation. In this study,
k values were set to be 5, 10, and 20. Third, the performance of the training model was
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derived by applying the test data, and the optimal model was selected. Python’s scikit-learn
and gridsearchcv libraries were used for modeling and model parameter optimization
on the data analysis server. In addition, for data visualization, mat-plotlib and seaborn
libraries were used. Figure 6 illustrates the overall flow of modeling.
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4.2. Model Training with Parameter Optimization
4.2.1. Parameter Optimization

Model parameter optimization using k-fold cross-validation was performed to
overcome the statistical dependence problem between the training and test datasets and
prevent overfitting [52,53]. Though there is no theoretically established procedure for
calculating the optimal value of k [51], in this study, the authors set k = 5, k = 10, and
k = 20 to train and optimize the parameters. In the case of k = 5, the MAE value is 0.120789
for ridge, 0.120765 for lasso, 0.122903 for SVR linear, 0.120078 for SVR polynomial, and
0.119452 for SVR RBF. The MAE values for each model with k = 10 are 0.120892 for ridge,
0.120812 for lasso, and 0.123187 for SVR linear. The SVR polynomial is 0.120125, and
the SVR RBF is 0.119812. The MAE values for each of the five models for k = 20 are
0.121354, 0.121265, 0.123843, 0.120228, and 0.120013, respectively. The training results
for the five algorithms showed an optimal performance at k = 5. Table 6 presents the
results of parameter optimization for k = 5, k = 10, and k = 20. Throughout this paper, the
results of parameter optimization in the case of k = 5 are shown graphically.

Table 6. Parameter optimization results for various values of k.

k-Fold Ridge Lasso SVR Linear SVR Polynomial SVR RBF

k = 5 0.120789 0.120765 0.122903 0.120078 0.119452
k = 10 0.120892 0.120812 0.123187 0.120125 0.119812
k = 20 0.121354 0.121265 0.123843 0.120228 0.120013
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The k-fold cross-validation proceeded as follows. First, the entire dataset was divided
into training datasets and test datasets. In this study, the dataset was divided at a ratio of 8:2.
Next, the training dataset was separated into k folds to be used for training and validation
purposes. After that, the first fold was set as a validation dataset and the remaining folds
as a training dataset. After the model training, the mean absolute error (MAE) was applied
as the first validation. Denormalization was not conducted since the purpose of the MAE
calculated here is to make a relative comparison between models. After that, the same
process using the next fold as a validation dataset was repeated k times. The average
of k MAEs calculated after repeated progress is taken and determined by the model’s
performance. It is k-fold cross-validation that repeats this entire process while changing
the parameters of the ML algorithm and finding the parameters in which the MAE records
the lowest value. The parameter optimization operation of each model was performed
using the k-fold cross-validation described above. The linear regression (LR) algorithm is a
simple algorithm that learns to minimize errors within the training dataset and does not
have any separate parameters. Therefore, the parameters were optimized for the model to
which the remaining five algorithms were applied.

Figure 7a below displays the results of parameter optimization for the model to which
the ridge algorithm was applied. The Y-axis represents the MAE, and the X-axis is the
algorithm parameter α. Ridge calculates the error through Equation (2), which reduces the
complexity of the model and prevents overfitting by adding the square of each coefficient
(β) to the error to reduce the coefficient [54]. This method is L2 regularization. As a result
of parameter optimization, α = 0.25 showed the minimum value. Figure 7b shows the
parameter optimization result for the lasso algorithm model. Likewise, the Y-axis represents
the MAE, and the X-axis is the algorithm parameter α. Lasso calculates the error through
Equation (3), and the difference from ridge is that it reduces the coefficient by adding the
absolute value of each coefficient (β) to the error. Unlike ridge, lasso prevents overfitting
through L1 regularization [40]. The parameter optimization result confirmed that the MAE
showed the minimum value at α = 3 × 10−5.

Errorridge =
1
M∑M

i=1(yi − ŷi)
2 + α∑n

j=0 β j
2 (2)

Errorlasso =
1
M∑M

i=1(yi − ŷi)
2 + α∑n

j=0

∣∣β j
∣∣ (3)
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Equation (4) and Figure 8 present the ε intensive loss function, which is a loss function
widely used in SVR algorithms. The ε intensive loss function forms a vertical section in
the range of 2ε (−ε, ε) of the predicted value. The error is ignored if there is an actual
value within the interval, although it differs from the predicted value. C represents the cost
parameter of the SVR model. If there is an actual value outside the interval, the error is
calculated by the multiplier of C. Through this process, SVR assumes that noise is included
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in the data and therefore does not aim to predict the actual value, including noise, perfectly.
In other words, by allowing the difference between the actual value and the predicted value
within the appropriate range (2ε), the model’s performance can be improved [55].

ErrorSVR =
1
2∑n

j=0 β j
2 + C∑M

i=1

(
ξi + ξ*

i

)
(4)

s.t(ŷi − yi) ≤ ε + ξi, (ŷi − yi) ≤ ε + ξ*
i , ξi ≥ 0, ξi ≥ 0,ξ*

i ≥ 0

Sustainability 2023, 15, x FOR PEER REVIEW 16 of 32 
 

𝐸𝑟𝑟𝑜𝑟 = 12 𝛽 + 𝐶 𝜉 + 𝜉∗  (4)

𝑠. 𝑡 𝑦 − 𝑦   𝜀 + 𝜉 , 𝑦 − 𝑦   𝜀 + 𝜉∗, 𝜉 0, 𝜉 0, 𝜉∗ 0 

 
Figure 8. ε intensive loss function in SVR. Red dots: train data with zero error. Green dots: train data 
with an error greater than zero. The red line: the trained model. The pink area: data area where the 
error is calculated as zero. The green line: error due to the difference between predicted y and actual 
y。. 

Figure 9 is the result of parameter optimization for the model to which the SVR linear 
algorithm is applied. As a result of parameter optimization, it was confirmed that the 
MAE showed the minimum value at C = 0.3. 

 
Figure 9. The result of model parameter optimization in SVR linear. 

SVR polynomial and RBF are algorithms that use a nonlinear kernel, and, unlike lin-
ear, the user must additionally set the gamma parameter. This parameter sets the distance 
at which one data sample exerts an influence, with the larger the gamma, the smaller the 
influence exerted by the data sample. In other words, the curvature of the crystal bound-
ary can become complicated or simple depending on the gamma. Like C, if it is too large, 
there is a risk of overfitting, and if it is too small, under-fitting may occur. Therefore, the 
user has to empirically find the optimal parameter by applying various ranges of values, 
not only for C but also for gamma. In this study, the gridsearchcv library of python was 
used. 

Figure 10a is a diagram expressing the result of the parameter optimization for the 
SVR polynomial model as a heatmap. The parameters C and gamma of the model are set 
to Y-axis and X-axis, respectively and MAE (score), calculated by applying k-fold cross-
validation in the corresponding parameter, is recorded. As a result of parameter optimi-
zation, the MAE was the minimum at C = 0.5 and gamma = 0.1 (degree = 3, ε = 0.01). 
Similarly, Figure 10b is the result of parameter optimization for the model to which the 
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Figure 9 is the result of parameter optimization for the model to which the SVR linear
algorithm is applied. As a result of parameter optimization, it was confirmed that the MAE
showed the minimum value at C = 0.3.
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SVR polynomial and RBF are algorithms that use a nonlinear kernel, and, unlike linear,
the user must additionally set the gamma parameter. This parameter sets the distance at
which one data sample exerts an influence, with the larger the gamma, the smaller the
influence exerted by the data sample. In other words, the curvature of the crystal boundary
can become complicated or simple depending on the gamma. Like C, if it is too large, there
is a risk of overfitting, and if it is too small, under-fitting may occur. Therefore, the user has
to empirically find the optimal parameter by applying various ranges of values, not only
for C but also for gamma. In this study, the gridsearchcv library of python was used.

Figure 10a is a diagram expressing the result of the parameter optimization for the
SVR polynomial model as a heatmap. The parameters C and gamma of the model are
set to Y-axis and X-axis, respectively and MAE (score), calculated by applying k-fold
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cross-validation in the corresponding parameter, is recorded. As a result of parameter
optimization, the MAE was the minimum at C = 0.5 and gamma = 0.1 (degree = 3, ε = 0.01).
Similarly, Figure 10b is the result of parameter optimization for the model to which the
SVR RBF algorithm was applied. The parameter optimization resulted in an MAE showing
a minimum value at C = 5.0 and gamma = 0.05 (degree = 3, ε = 0.01).
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The result of model parameter optimization is as follows. Ridge, lasso, and SVR linear
which are linear models, have α = 0.25, 3 × 10−5, and C = 0.3 respectively. SVR polynomial,
a nonlinear model, showed C = 0.5 and gamma = 0.1, while SVR RBF showed C = 5.0 and
gamma = 0.05.

4.2.2. Model Training

To confirm that the model training was correctly performed, each model’s prediction
results using six ML algorithms were synthesized to calculate error functions such as root
mean square error (RMSE), MAE, and R2. The training data used 2019 heats randomly
sampled among 80% of the 2523 heats for which preprocessing was completed.

As a result, the model using the SVR RBF algorithm was derived with the best training
performance with RMSE 18.99, MAE 14.46, and R2 0.334. There was no significant per-
formance difference between linear regression, ridge, and lasso. In addition, the models
using the SVR presented excellent performance as a whole, with the polynomial and the
RBF using a nonlinear kernel performing relatively excellently. The performance of the
nonlinear model was derived better than the linear model’s performance. In model training,
the higher the complexity of the model, the more likely it is to exhibit superior performance.
Table 7 lists the model training results obtained by parallel parameter optimization.



Sustainability 2023, 15, 6393 17 of 31

Table 7. The performance result of model training with parameter optimization.

Error Functions Linear Ridge Lasso
SVR

Linear Polynomial RBF

RMSE 19.55 19.57 19.57 19.74 19.16 18.99
MAE 15.37 15.41 15.41 15.27 14.68 14.46

R2 0.294 0.292 0.293 0.280 0.322 0.334

4.3. Implementation and Validation of TTPM
4.3.1. Measurement

To verify the training model, an off-site and on-site test were implemented twice. The
off-site test involves selecting TTPM by testing six models and performance evaluation. The
on-site test applies TTPM to the actual production site to evaluate technical and financial
performance, and it will be explained in detail later in Section 6. First, the off-site test aimed
to select TTPM through performance comparison between training models. Therefore, the
model performance was confirmed by three error functions such as MAE, RMSE, and R2,
using the test dataset. The smaller the MAE and RMSE values, the better the performance.
In particular, since RMSE is a factor that can directly measure the performance when the
model is applied to the actual site by comparing it with the standard deviation of the
tapping temperature, TTPM was selected after checking the RMSE. In the on-site test, the
best model for the off-site test was selected as TTPM, applied to the production site, and the
evaluation was performed by checking the accumulated operation data. This process aimed
to compare the performance of the newly developed TTPM with the operating capability
of operators. Therefore, the quantitative effect of reducing the tap temperature deviation
of TTPM was confirmed by calculating the standard deviation and MAE of the tapping
temperature by classifying whether or not the AI automatic operation function was applied.
The detailed formulas used in the performance evaluation are shown in Table 8 below.

Table 8. Performance measurement metrics.

Section Metric Formula

Tap temperature
prediction model

(TTPM)

MAE 1
n

n
∑

i=1
|ŷi − yi|

RMSE
√

1
n

n
∑

i=1
(ŷi − yi)

2

R2 SST
SSE =

∑n
i=1

(
ŷi−

−
y
)2

∑n
i=1(yi−ŷi)

2

System development
and application

on production site
SD

√
∑n

i=1

(−
y−yi

)2

n

4.3.2. Performance Evaluation and Validation

The performances of six ML models were evaluated using a test dataset randomly
sampled at 20% from the entire dataset (504 heats). Among the six models, the SVR-RBF
model had the best performance with RMSE 20.14, MAE 16.05, and R2 0.308. Significant
differences between the linear regression, ridge, and lasso models were not found. Overall,
it was confirmed that the performance of SVR polynomial and SVR RBF using nonlinear
kernels was relatively superior to other models. In addition, the SVR linear model presented
low performance compared with the linear model. EAF operation is a process in which
various variables are combined. A model using a nonlinear algorithm shows a better
performance than a model using a linear algorithm. Table 9 shows the detailed performance
results of the six models.
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Table 9. The performance results of the model test.

Error Functions Linear Ridge Lasso
SVR

Linear Polynomial RBF

RMSE 20.57 20.62 20.59 20.73 20.35 20.14
MAE 16.51 16.62 16.60 16.66 16.27 16.05

R2 0.278 0.275 0.277 0.267 0.293 0.308

The SVR algorithm uses a loss function and ignores the error if the difference be-
tween the actual and predicted values exists within a certain range. It is assumed that
the data contain noise, so users cannot aim to predict the actual value, including noise,
perfectly. Due to the characteristics of the algorithm, the SVR can play a role in mitigating
the noise contained in the data [50]. EAF has an inferior field environment, one which
includes temperature and dust, so some noise around the sensors is inevitable. Weight
and temperature are representative physical quantities that cause noise depending on the
surrounding environment and the sensor’s lifespan. It is to be expected that relatively
excellent performance is achieved as the algorithm’s mechanism complements this part.

The operator proceeds with the operation by predicting and setting the amount of
electricity that can reach 1580 ◦C of tapping temperature based on subjective standards.
Therefore, the performance can be confirmed by directly comparing the standard deviation
of the actual tap temperature measured as an operational result and the RMSE of the
tap temperature predicted by the developed model. As a result of the analysis of the
operational data in which the operator manually set the amount of electricity, the standard
deviation of the tap temperature was 31.4. However, the model’s performance applying the
SVR RBF algorithm was measured at 20.14 for the predicted tap temperature RMSE. This is
analyzed because it is an improvement of more than 30% compared with manual operating.
It is expected that the deviation of the tapping temperature will be able to be reduced by
more than 30% compared with manual operating when the developed model is applied
to the site. In the test results, the SVR RBF model, which showed the best performance
in MAE and R2 as well as RMSE, was selected as the best model. A site application test
was implemented. Figure 11 is a graph drawn of the tap temperature performance and the
prediction of the SVR RBF model. Figure 11a represents the training dataset, and Figure 11b
the test dataset.

Figure 12a demonstrates the training results of the model applying the SVR RBF,
and Figure 12b shows the test results for predicting the tap temperature of the SVR RBF
model. In Figure 12b, the gap between actual and predicted values varies. The actual
temperature is the temperature of molten stainless steel measured after the operation’s
end (Y), and the expected temperature is the value predicted by the model (Y’) with
the corresponding data. Even if there is a significant difference between the predicted
and actual values, this difference can be meaningful. For example, suppose the actual
temperature is 1520 ◦C, and the predicted temperature is 1565 ◦C. When this model is
applied to the field, the power input would be stopped later than if the operator had
stopped the power supply. Additional power input is therefore required. In this case,
the actual temperature is predicted to be approximately 1520 + (1580 − 1565) = 1535 ◦C.
This shows better performance compared with the operator’s judgment. However, when
predicted at 1475 ◦C with the same temperature deviation of 45 ◦C, the actual temperature
shows a rather large error of 1520 + (1580 − 1475) = 1625 ◦C. Therefore, if the model can
predict the tap temperature between 1580 ◦C and the actual temperature, it is considered to
show better performance than the operator’s judgment.
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5. System Application and Performance on the Production Site
5.1. The Concept of System Application

In order to verify the effectiveness of the TTPM developed using the operational data
of Company P’s STS B steel mill EAF, an on-site test was applied. This process is organized
into four shifts, and production is carried out during two shifts each day. It is therefore
operated 24 h a day, except in cases of equipment failure or planned maintenance work.
When TTPM is applied to the site, an AI automatic operation function that automatically
controls production according to the tap temperature predicted by TTPM is developed. Its
goal is to minimize factors that decrease productivity and that may be caused by changes in
operating conditions and to remove factors that increase the operator’s workload. To this
end, hardware installation, communication between devices, and software were developed
and applied to the site. The developed TTPM operates as follows for each production stage.
The predicted value is 0 in the first charging and melting stage and the second charging
and melting stage because the data for predicting the tapping temperature is not prepared.
The tap temperature is predicted from the heating stage, where all features for prediction
are prepared. The predicted tapping temperature increases as power and oxygen are con-
tinuously input. When using the AI automatic operation function, if the predicted tapping
temperature exceeds 1580 degrees or the power-on operation is interrupted manually, the
predicted tapping temperature value stops changing. A detailed timing chart for each
operation stage is shown in Figure 13.
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In connection with the TTPM’s timing chart described above, the AI automatic opera-
tion function is applied to the production through the following process. The operator first
decides whether or not to use the AI automatic operation function. If the operator decides
to use the AI automatic operation function, they will click the button on the HMI to turn on
the function. The button then turns red and tells the operator that the function is working. If
the AI automatic operation function is not used, the operation proceeds based on the power
input amount set by the operator as before. When the operation enters the heating stage
and all the data needed for prediction are ready, the model begins to output the predicted
values. If there is a missing value or an outlier in the X factor, or if the steel type is different
from type 304, the tapping temperature cannot predict. Therefore, if the AI automatic
operation is turned on, it is ignored, and the operator proceeds with the existing manual
operation. As power and oxygen are supplied, the predicted tap temperature rises, and the
power-on operation is automatically terminated when the target tap temperature exceeds
1580 ◦C. After training, four groups of operators with more than 20 years of experience
tested the AI automatic function on the site for five months from 1 October 2022. Figure 14
presents the process of AI automatic operation function operation.
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5.2. Hardware Setup

The following hardware installation and software development work preceded on-site
application tests. A new model server for the execution of a model was installed in a
data center with PCs that store various operational data. In addition, the communication
interface was carried out between the model server, the PC, and the programmable logic
controller (PLC) installed on the site. As for the communication interface, SQL commands
were developed to access the DB of the PC in the model server and extract the operating
data stored in each stage. The command was written using the pymssql library of python.

Next, data that should be reflected in the TTPM in real time, such as power and
oxygen input, were transmitted from the PLC to the model server. Then the logic
was developed to receive the tap temperature predicted in the model. On the PLC
side, the manufacturer’s own programming tool, simatic manager, was used to create
transmission control protocol/internet protocol (TCP/IP) transmission and reception
programs. Additionally, communication programs were developed using python’s
socket library on the model server.

Whether the developed model correctly predicted the tap temperature was confirmed
as follows. First, the developed model was transplanted to the model server, and the
model was executed with operational data received through communication. The model
developed in the data analysis server was ported to the model server in the form of a
‘.pkl’ file through the pickle library of python. Prior to the completion of the secondary
melting step, no necessary operational data were prepared, so exceptions had to be made.
Additionally, outliers or missing values were excluded. Furthermore, a function to save the
predicted tapping temperature and the actual values of the features used for prediction in
log form was developed using python in order to facilitate analysis of future test results.

A new user interface (UI) was developed on the HMI to interface with the operator in
providing information predicted by the model to the operator and so that they may receive
input on whether to use the AI automatic operation function. The information provided to
the HMI is the tapping temperature predicted by the model and the amount of power input
required to reach 1580 ◦C. The power input was calculated using Equation (5) to estimate
the approximate end of the operation. The specific heat was calculated using the average
value of 0.26, which was determined by applying the training data.

(1580—predicted tap temperature) (◦C) × total weight (ton) × average of specific heat (kW/ton·◦C) (5)

A command button was created that allows the operator to input whether or not to use
the AI automatic operation function with a mouse. As a result, the function can be turned
on and off at any time during operation. Unexpected situations can occur at any time during
production work, and it is necessary to maintain productivity according to the operational
situation of the subsequent process, rather than according to any one single process, so the
AI automatic function was designed to respect the operator’s decision as much as possible.
The PLC’s existing operation control program was modified to automatically terminate the
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operation according to the predicted tap temperature when the corresponding button was
turned on.

The overall system configuration and data flow reflecting the hardware installation,
communication establishment, and system improvement work described above are as
follows. First, a data analysis server for model development is installed in the office,
and the operation data for analysis is extracted from the operation DB of the PC. After
completion of TTPM development through model training and testing, it is implanted into
the model server. The model server is a server that runs TTPM and was newly installed in
the data center for this study. The model server periodically extracts Ch’s data currently
in operation from the PC’s operation DB. It receives the changing electricity and oxygen
input amount in real time from the PLC that controls the overall process. After merging
the received data, the TTPM predicts the tap temperature and sends it to the PLC along
with the calculated power input using the average specific heat. The HMI searches the data
of the PLC and provides the predicted tap temperature and power input information to
the operator. The operator turns the AI automatic operation function on or off through the
HMI, and the PLC controls the endpoint of the operation by reflecting this. The hierarchy
and data flow of the whole system are detailed in Figure 15.

Figure 15. The hierarchy of the tap temperature predict system.

The training and testing of TTPM used the Windows 10 operating system and
python 3.8.1. The model server was developed using python in the Linux operating
system. The PLC for process control installed on site is a Siemens’ S7 400 model. The
communication program development and EAF control program improvement were
carried out using the simatic manager program to open communication and implement
AI automatic operation function. The detailed specifications and uses of the facilities
constituting the system are shown in Table 10.

Table 10. System specification and usage.

PLC Model Server Data Analyzer Server Software

Siemens S7 416-2 CPU
Work memory 8 MB
1st interface MPI/DP

2nd interface PROFIBUS DP

CPU: Intel Core i7 3.0 GHz
RAM: 8 GB

HDD: 1TB + 4 TB
OS: Linux (Redhat)

CPU: Intel Core i7 3.2 GHz
RAM: 16 GB
HDD: 1 TB

GPU: GeForce GTX 1070
OS: Windows 10

Language: Python 3.8.1
Libraries: pandas 1.3.4,

matplotlib 3.4.3,
numpy 1.20.3,

scikit-learn 0.24.2,
seaborn 0.11.2

Jupyter Lab 3.2.1
Jupyter Notebook 6.5.1

process control model execution
(new installation) model development
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5.3. System Performance on Site

This section describes the on-site application test results of TTPM. The on-site applica-
tion test results were conducted for five months from 1 October 2021 to 28 February 2022.
Quantitative analysis was conducted by matching the operation data stored in the PC with
the log data stored in the model server.

First, the test results in terms of performance using the error function are as follows.
Since both manual operation and AI automatic operation were the results of operating
at a target tapping temperature of 1580 ◦C, the MAE was calculated based on this when
calculating the error function. In other words, the average was calculated by setting the
amount that the actual tap temperature exceeded or fell below 1580 ◦C as an error. A
total of 2599 Ch’ was produced during that period. Among these, a total of 1388 Ch’ were
produced in predictable cases, excluding cases that were not of steel type 304, outliers, or
unpredictable missing values. Of the 1388 Ch’, 613 Ch’ used the AI automatic operation
function, and the remaining 775 Ch’ operated manually, recording a prediction model
application rate of 44.2%. Looking at the error function, first, MAE presented a total of
19.9, while the manual operation was 21.1, and AI automatic operation recorded 18.4, an
improvement of 13%. The standard deviation was 25.9 overall, and the manual operation
recorded 27.9, but the AI automatic operation recorded 23.1, an improvement of 17%. The
average tap temperature was 1575.2 ◦C for AI automatic operation, 0.7 ◦C lower than
1575.9 ◦C for manual operation, and there was no significant difference. In conclusion,
the molten metal temperature tapped after automatic operation using the tap temperature
that was predicted based on the operation data was relatively superior in both deviation
and standard deviation compared with the target temperature derived from the manual
operation based on subjective judgment. Detailed data can be found in Table 11.

Table 11. The performance result of on-site implementation.

Metrics Total
Operation Types

Manual AI

Heats (Ch’) 1388 775 613
Average Tap Temperature 1575.6 1575.9 1575.2

MAE 19.9 21.1 18.4 (413%)
SD (σ) 25.9 27.9 23.1 (417%)

There are many operating ratios in manual operation with a significant temperature
deviation, with the tapping temperature measured above 1610 ◦C or below 1530 ◦C. In the
AI automatic operation, as the hot water temperature standard deviation was improved by
17% and the MAE by 13%, the frequency of such cases was drastically reduced.

TTPM based on the SVR RBF algorithm used in the on-site test recorded MAE 16.05
and RMSE 20.14, but the result applied to the actual operation derived an error function
10% to 15% lower than this. This seems to be because the model trained using the February
to September 2021 operation data was applied for five months from October 2021, so
process variables that changed over time were not reflected. However, this problem is
expected to be mitigated if periodic model retraining is performed using the latest data that
reflect changing facility conditions over time. Figure 16 shows the distribution of tapping
temperature in units of 10 ◦C by dividing AI automatic operation and manual operation,
and the effect of reducing the tap temperature deviation can be visually confirmed.
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5.4. Economic Effects and Economic Analysis

This section calculates the economic effect of the on-site application of TTPM. First,
the system was improved so that the power input amount through the HMI was stored in
operation DB to calculate the quantitative effect. For 49 days after system improvement
(from 11 January 2022 to 28 February 2022), 153 Ch’ using the AI automatic operation
function were analyzed among 638 Ch’ operation data. Quantitative effects were calculated
for the improvement of AI automatic operation compared with manual operation.

The economic effect was calculated from electricity cost and fixed cost reduction.
First, by conducting AI automatic operation compared with the amount of power input
set by the operator during the period, it was possible to save 282 kWh/Ch’, a total of
43,250 kWh of electricity. Converting this to an annual basis is expected to reduce power
input by 328,880 kWh/year. When applying 0.065 USD/kWh, the power unit, as of
2021, is expected to save electricity costs by 21,013 USD/year. Suppose electricity is
not generated by renewable energy resources (e.g., thermal power, etc.), in that case,
this saving in power consumption brings environmental benefits in the long term by
reducing carbon emissions per unit of production. In the context of global efforts to
reduce energy consumption and carbon emissions in all industries, it is expected that
this study can contribute to carbon reduction.

The average tapping temperature of 638 Ch’ operated during the corresponding period
was 1577.1 ◦C and the average tapping temperature of 153 Ch’ operated by AI automatic
operation was 1577.5 ◦C. It was determined that it is possible to save the amount of
power input by reducing the deviation while maintaining the average tapping temperature.
Second, as the operating time was shortened due to the reduction in power input, we
calculated fixed costs that could be saved through additional production. According to
the 328,880 kWh/year mentioned above saving in power input, 482.4 min of additional
operation may be possible, which is the time to produce a further 7.4 Ch’. Accordingly, the
fixed cost of 66,663 USD/year is expected to be saved through an increase in production
of 654.9 tons. This reduction effect was calculated using the 2021 performance-based T-T,
fixed cost, speed of power input, and average output operation index. Detailed figures are
confidentially related to the company’s manufacturing cost, so they are not described in
this paper. In addition, as a qualitative effect, the operator’s workload can be reduced by
automating the power input setting task. It is also expected that the operation efficiency of
an unskilled operator can be increased.

Next, the authors analyzed the economic feasibility of this study. The economic
analysis assesses how much future cash flows expected from investment might contribute
to a company’s goal as it exceeds or falls short of the current investment [56]. This essentially
involves an assessment of costs and benefits. The assessment method is divided into the
non-discounted cash flow (non-DCF) and discounted cash flow (DCF) methods. Non-DCF
includes the payback period (PP) in Equation (6) and the average rate of return (ARR) in
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Equations (7) and (8), which do not take into account the time value of money by omitting
the discount procedure for calculating the present value of cash inflows or outflows.

PaybackPeriod(PP) =
Costo f Investmet

AnnualCashIn f lows
(6)

AverageRateofReturn(ARR) =
AverageAccountingPro f it

AverageInvestment
× 100 (7)

AverageInvestment =
Initial Investmet + SalvageValue

2
(8)

DCF techniques include the net present value (NPV) calculated in Equation (9), and
internal rate of return (IRR) in Equation (10). These are methods of considering the time
value of money by converting the capital cost of an investment into a present value through
a discount.

NetPresentValue(NPV) =
t

∑
t=1

Ct

(1 + r)t − C0 (9)

where
t: Time of the cash flow;
C0: Initial investment;
Ct: Net cash flow;
r: Discount rate.

InternalRateofReturn(IRR) : NPV = 0 =
t

∑
t=1

Ct

(1 + r)t − C0 (10)

PP calculates how many years it takes to retrieve investment costs, and the shorter
the payback period, the more liquidity the company can secure. However, there is a
disadvantage: the benefits incurred after the recovery period are not considered [57].
ARR divides the annual average profit expected from the investment by the average
annual investment and calculates the return based on the accounting–calculated profit.
It has the advantage that the calculation method is simple because it uses book profits,
but it has the disadvantage that it is not a cash flow-based method [58]. NPV applies a
discount rate to all cash flows arising from an investment, refers to the amount that limits
the initial investment costs, and determines that it is economical if it is greater than zero.
It has the advantage of considering cash flow, not accounting profit, and assuming that
the cost of capital is reinvested at the internal rate of return during the investment period.
A disadvantage is that it is difficult to estimate the cost of capital accurately. NPV is the
most widely used economic evaluation method for overcoming PP’s limitations [59]. IRR
is an indicator used to measure the profitability of an investment project, and refers to
the discount rate at which cash flows throughout the project are converted into present
values so that the sum is equal to investment expenditure. The higher the domestic
return, the greater the project’s profitability and the domestic return determines the
minimum return to make the project viable.

Based on the economic effects mentioned above, the IRR was found to be 35.8%
due to setting the standard for 15 years of equipment service life, 6.6% discount rate,
3% maintenance cost, 27.5% corporate tax, and one year of business period. This figure
exceeds 8% of the hurdle rate managed internally by Company P, and the economic effect is
considered sufficient. Suppose performance is not maintained through continuous training
of the predictive model, in that case, a lower effect may be calculated than the expected
effect, but the corresponding issue shall be excluded from this paper.
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5.5. Lessons Learned from the On-Site Test

The on-site application test is a task that cannot be performed without the operator’s
cooperation because the operator must approve whether or not the AI model is applied.
Therefore, the most challenging part of the on-site tests was persuading operators to
familiarize themselves with the existing operation method. About 20 operators in four
groups, each between 20 and 50 fifty years old, took pride in working for EAF, the leading
process for producing the highest quality stainless steel. Furthermore, their understanding
of the latest technology was not high, and due to the burden of productivity, they carried
out the operation with a conservative mind. In order to solve this problem, training on the
latest data analysis methodology, such as AI and big data, was conducted for each working
group to broaden their understanding. Additionally, the model’s reliability was secured by
introducing the model development process. In addition, participation in the on-site test
was encouraged by introducing the quantitative and qualitative economic effects as well
as the performance that results from applying the developed model to the site. It will not
be easy to overcome the operational method that has been in use for decades and give the
machine the right to operate. However, many operators could trust the tapping temperature
prediction system based on their understanding of the advanced technology. Eventually,
they actively used the AI automatic operation function. Therefore, the performance was
verified, and a positive effect was derived from the actual operation index. In a situation
where a significant part of the steelmaking process is being replaced by smart technology,
on-site tests for technology development must be performed. However, the developed
technology cannot be applied or used correctly on the site without operator training or
close cooperation. Other studies should consider this since it is not possible even to have
an opportunity to verify the effectiveness of the developed technology.

6. Conclusions and Future Works
6.1. Summary and Research Contributions

This study aims to optimize electrical power consumption by reducing the tap tem-
perature deviation in the stainless steel EAF process. The authors developed an automatic
operating system using the ML-based TTPM to predict the tap temperature in real-time
and automatically set the electrical power input. The operation data of 4598 heats stored in
the PC for about seven months were collected. Fifty-three variables were selected in the
operation stage, including the tap temperature as the prediction target. After preprocessing,
a prediction model was developed by applying six ML algorithms, and the parameters
were optimized through k-fold cross-validation. As a result, the prediction model based on
the SVR-RBF algorithm was selected as the best-fitting model.

After the model training, an RMSE of 20.14 was recorded as a result of evaluation
of the model’s performance and compared with the standard deviation of 31.4 of the tap
temperature observed in operations manually controlled by the operator, it recorded a
lower value by more than 30%. The deviation of the tapping temperature was reduced
when TTPM was applied to the EAF site.

TTPM, the performance of which has been proven, was applied to the actual operation
site of Company P’s stainless steel plant B EAF process for about five months to verify the
performance improvement.

First, the predictive performance was calculated by comparing the manual operation
result with the AI automatic operation system result. Consequently, the tapping tempera-
ture using AI automatic operation improved by 13% of MAE and 17% of RMSE, compared
with the operator’s manual operation.

The economic effect was presented by comparing the 648 Ch’ data operated for
49 days after improving the system to record the electrical power input set by the operator
on the PC. As a result, by reducing the total electrical power usage of 43,250 kWh and
282 kWh/heat, the electricity cost is expected to be reduced by 21,013 USD. It is also
expected to reduce operation costs by 66,663 USD/year by increasing production by
654.9 tons due to reduced operating hours. The average tapping temperature of 638 Ch’
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operated during the corresponding period was 1577.1 ◦C; of this, the average tapping
temperature of 153 Ch’ operated by AI automatic operation was calculated as 1577.5 ◦C.
Therefore, it was determined that, as the deviation of the tap temperature decreased, the
average tap temperature was maintained, and the amount of power input was also reduced.

Compared with previous studies, this study has the following differential contribu-
tions. First, a practical model applicable to the operation site was developed. By selecting
52 factors that can be obtained without interruption of operation under power-on conditions
and using them as inputs to the model, there is no problem with the on-site application.
Second, it contributes to the securing of higher performance by reflecting the operator’s
know-how in the model. In order to develop TTPM with high accuracy, the Ch’ data
produced immediately before tapping were used as the inputs for predicting the tapping
temperature. Third, an on-site application concept was applied considering the workload
of operators. By developing an AI automatic operation system with operators so that it
can be operated automatically based on the tap temperature predicted by TTPM, the AI
model can be applied to the site without increasing the operator’s workload. Fourth, the
sustainable system’s application performance was directly confirmed. The effect of reduc-
ing electricity and operation costs was verified by conducting an on-site application test in
actual production. In addition, even in September 2022, when ten months of application
had elapsed, the system’s reliability was verified as operators actively used the developed
system on-site in actual production. Lastly, as a result of the on-site application of the model
proposed in this study, it is considered that machine operation replacement is possible only
for the STS 304 used in this study. However, automation is expected to be achieved through
additional model development and performance improvement for the remaining 40% of
different steel types and non-routine tasks for STS 304.

The electric furnace process accounts for about 25% of the world’s steel production [60].
For the decarbonization of the steel industry by 2050, nearly half of the world’s steel
production is presumed to come from EAF [61]. Nevertheless, EAF’s production relies
heavily on the operators’ experience, resulting in inefficient operation.

This study excludes production that depends on qualitative factors, such as the
operator’s experience in the EAF process, which is expected to increase production share
in the future rapidly. Accordingly, the EAF process contributed to becoming a more
environmentally friendly steel manufacturing process by increasing overall operational
efficiency. In addition, this research method can be applied to the EAF and the LF
processes using liquid steel for refining in order to predict the temperature of molten
steel at the end of the operation. In particular, the operation data accumulated in the DB
can be used to install new facilities or devices at the production site without downtime.
In addition, it is of great significance that the AI technique can be applied at any time
during operation to improve the energy and production efficiency of the EAF process
and to achieve competitive advantages.

6.2. Limitations and Further Study

This section describes the limitations found in this study and the directions for further
studies to overcome these. First, there is a limitation in so far as it regarded only the scrap
type and weight information. As a result of calculating the amount of electrical power
input per 1 ton of scrap loading and 1 ◦C of tapping temperature during this study, it was
confirmed that the electrical power input was distributed in a range of 24 kWh/ton·◦C
to 28 kWh/ton·◦C. Thus, a difference of about 15% occurred for each Ch’. As a result of
visually checking the charged scrap at the site, it was confirmed that the shape and density
were very different. When it is operated for raw material scrap of the same steel grade and
the same weight when the current is energized, there is a big difference in the efficiency of
electrical power input depending on the surface area due to the difference in the physical
shapes of the scrap. Higher performance can be expected if quantified with the data and
reflected in the model.
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Second, only the factors related to non-standardized oxygen injection work were used
in this study. Oxygen, another energy source for EAF, is injected by depositing a lance
into the molten metal. As the operator manually operates the oxygen injection lance, the
position of the lance tip for each operator varies. Accordingly, even if the same amount of
oxygen is injected into the molten metal, the heat supplied to the raw material is different.
As a follow-up study, automation of the oxygen lance manipulation task is required in
advance in order to use the oxygen injection feature properly.

Third, the authors identified a problem in terms of the inability to respond to changes
in the process variables over time. The aging state of various facilities that constitute EAF,
such as sensors, actuators, and mechanical structures, contributes to the physicochemical
reactions during operation. Therefore, the predictive performance of TTPM is expected to
reduce over time and periodic retraining of models is required. It is necessary to develop
an automatic model retraining program that collects operation data, preprocesses it, and
then models it to solve this problem.

Fourth, it is difficult to increase the prediction performance due to the absence of a
feature that can reflect the state of the electrode rod, which is the passage of electrical power
input. In order to secure consistent performance of TTPM, it is necessary to undertake an
approach that reflects electrode rod makers as a new factor. It is also necessary to develop
separate TTPMs for each maker.

Fifth, steelmakers’ equipment or production-related data are corporate security matters
corresponding to confidential issues. As the importance of data increased in the recent
fourth industrial revolution, there are legal restrictions on the exposure of data to the
outside. Accordingly, obtaining EAF operation data from other companies is almost
impossible. However, if EAF operation data of other companies is obtained in the future or
if a similar study is published, it can be expanded to research that compares the results of
other studies.

Lastly, this study confirmed the development result by applying it to the production
site after developing a model, not at the PoC level. However, compared with other AI-
based models, there were limitations due to the lack of models studied under similar
conditions. Suppose more AI-related research is conducted in the steel industry, this
would be expected to contribute not only to the scalability of the research but also to the
performance improvement of the system developed through this study.
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Abbreviations
The following abbreviations and parameters are used in this paper:

ANN Artificial Neural Network
DB Data Base
DL Deep Learning
DRI Direct Reduced Iron
EAF Electric Arc Furnace
GPR Gaussian Process Regression
HMI Human-Machine Interface
IQR Interquartile Range
LiDAR Light Detection and Ranging
LSTM Long-Short Term Memory
MAE Mean Average Error
MAPE Mean Average Percent Error
ML Machine Learning
NDC Nationally Determined Contribution
PC Process Computer
PLC Programmable Logic Controller
RMSE Root Mean Squared Error
SD Standard Deviation
SSE Sum of Squared Error
TSS Total Sum of Squares
SVM Support Vector Machine
SVR Support Vector Regression
TCP/IP Transmission Control Protocol/Internet Protocol
T-T Tap to tap time
TTPM Tap Temperature Prediction Model
TTPS Tap Temperature Prediction System
WCP Water Cooled Panel
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