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Abstract: The increase in population has increased the need for agricultural and food products, and 

thus agricultural production should be increased. This goal may cause increases in emissions and 

environmental impacts by increasing the consumption of agricultural inputs. The prediction of en-

vironmental impacts plays an important role in evaluating pollutant emissions in crop production. 

This study employed two artificial intelligence (AI) methods: the adaptive neuro-fuzzy inference 

system–fuzzy c-means (ANFIS–FCM) algorithm as a novel computational method, and an artificial 

neural network (ANN) as a conventional computational method to predict the environmental im-

pacts of soybean production in different scenarios (i.e., soybean cultivation after rapeseed (R-S), 

wheat (W-S), and fallow (F-S)). The life cycle of soybean production was assessed in terms of envi-

ronmental impacts through the IMPACT2002+ method in SimaPro. In the present study, the pro-

duction of one ton of soybeans was considered the functional unit, and the boundary of the system 

was considered the gate of the field. According to the results, the production of each ton of soybean 

in the defined scenarios resulted in 0.0009 to 0.0016 DALY, 5476.18 to 8799.80 MJ primary, 1033.68 

to 1840.70 PDF × m2 × yr, and 563.55 to 880.61 kg CO2-eq damage to human health, resources, eco-

system quality, and climate change, respectively. Moreover, the weighted analysis indicated that 

various soybean production scenarios led to 293.87–503.73 mPt damage to the environment, in 

which the R-S scenario had the best environmental performance. According to the results, the AN-

FIS–FCM algorithm acted as the best prediction model of environmental indicators for soybean cul-

tivation in all cases related to the ANN. The range of calculated R2 for the ANFIS-FCM and ANN 

models were between 0.9967 to 0.9989 and 0.9269 to 0.9870, respectively. It can be concluded that 

the proposed ANFIS–FCM model is an efficient technique for obtaining accurate environmental 

prediction parameters of soybean cultivation. 

Keywords: ANFIS-FCM algorithm; climate change; environmental damage; human health; LCA; 

soybean; sustainable systems engineering 

 

1. Introduction 

The most important factor for good management of agricultural products, such as 

soybean, is good decision-making. The decision-making process can be undertaken using 

current conditions and expected future conditions. Hence, there exists a need for a model 
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to predict various parameters of soybean cultivation. Several models may be available for 

this type of prediction. However, since there is not a clear and specific relationship be-

tween inputs and outputs in soybean cultivation, the applied model should ideally have 

high precision, be fast and computationally inexpensive, and have the ability to solve 

these issues. Artificial neural networks (ANNs) and ANFIS-FCM are well-known compu-

tational systems and methods used to predict the output of complex systems and solve 

multifaceted nonlinear problems with high accuracy. The  methods of machine learning 

(ML) or artificial intelligence (AI) have been recently considered in the fields of biomass, 

food, and agriculture by many researchers; therefore, progress in this field is rapidly being 

made [1–3]. Consequently, it is indispensable to predict environmental impacts for vari-

ous types of agricultural production and identify appropriate means to reduce emissions 

and pollutant gases [4]. 

The agricultural sector directly accounts for around 10–15% of the world’s GHG 

emissions, which rises to about 30% if adding emissions from deforestation and land-use 

changes [5]. Additionally, based on a special report from the IPCC in 2019, forestry, agri-

culture, and other land-use sectors had a 23% share of total anthropogenic GHG from 

2007–2016 [6]. Iran, with approximately 616,741 million tons of CO2-equivalent emissions, 

is not exempt from this rule. It is the country most responsible for global warming (GW) 

in the Middle East and the seventh most responsible country in the world [7]. Significant 

population growth, along with the reduction of water resources and productive land area 

in the country [8], has led Iran’s agriculture to compress rapidly over the past few decades. 

This has led to increasing yield production from existing farmland, which naturally re-

quires more energy, materials, and water to ensure food security for the growing popula-

tions. As these inputs (resources) and intensive farming practices increase, GHG emis-

sions, as well as the emission of other harmful gases, increase, which causes various envi-

ronmental hazards, such as damage to ecosystem quality, human health, and the climate 

change phenomenon and its related consequences, e.g., reduced agricultural productivity 

[9]. 

Currently, various concepts and methods exist for environmental, economic, and/or 

social assessments of processes, products, or specific activities [10]. Each of these devel-

oped tools has the desired characteristics as accompanied by its limitations. As a compre-

hensive scientific and internationally standardized tool to achieve sustainable production 

and consumption, the life-cycle assessment (LCA) approach makes it possible to analyze 

eco-efficiency and optimize agro-systems [11,12]. LCA is a methodology used to deter-

mine environmental burdens, considering the usage of resources and the emissions 

throughout a product’s lifetime, i.e., from the stage of material extraction, manufacturing, 

and utilization, to waste management phases [13]. This method evaluates and quantifies 

the environmental burdens of a product or process within the scope defined, i.e., system 

boundary [14]. Accordingly, it can compare the various systems’ environmental impacts 

[15].  

LCA enables the diagnosis of environmental problems before damages occur, focus-

ing on agricultural practices and identifying the most critical environmental hotspots [12]. 

Moreover, this powerful tool can cover a broad range of other environmental issues, such 

as the effects of eco-toxic from metals, aquatic eutrophication, non-renewable resources 

depletion, toxic impacts on human health, and climate change [15].  

Various researchers have focused on using combined ML and LCA methods to pre-

dict output energy and environmental impacts of agricultural products. Elhami et al. [16] 

used a combination of artificial neural network (ANN) and LCA methods to assess the 

model yield and environmental emissions from lentil cultivation. Their studies showed 

that an ANN model with the structure of 9-10-6-11 is the most suitable network for pre-

dicting yield and environmental effects in lentil cultivation.  

The combined application of LCA and an adaptive neural fuzzy inference system 

(ANFIS) for energy modeling and environmental emissions of oilseeds was performed by 

Mousavi-Avval et al. [17]. They also used artificial neural networks (ANNs) to compare 
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the multi-level ANFIS in their research. They concluded that multilevel ANFIS can be 

used as a useful tool in predicting the energy, economic, and environmental indicators of 

agricultural production systems in different regions. Their evaluations also showed that 

the multilevel ANFIS model was able to more accurately predict the energy, economic, 

and environmental outputs of canola compared to the ANNs. 

Nabavi-Pelesaraei et al. [2] predicted the energy and environmental impacts of 

paddy production using a combination of AI methods (ANNs and ANFIS) and LCA. The 

results showed that the ANFIS model based on a hybrid learning algorithm with a corre-

lation coefficient (R) was used to predict output energy of 0.860 and environmental im-

pacts of 0.997. Additionally, an ANN model with a 12-6-8-1 structure predicted energy 

and environmental impacts with a correlation coefficient (R) of 0.524 and 0.999, respec-

tively.  

To predict the life cycle environmental impacts and output energy of sugarcane pro-

duction in planted or ratoon farms, research was performed by Kaab et al. [3] using two 

methods of AI, namely ANNs and ANFIS. Overall, their results showed that the ANFIS 

model is a useful tool for predicting the environmental impact and output energy of sug-

arcane production in planted and ratoon farms. A comparison of ML approaches to esti-

mate the spatially explicit life cycle of GW and eutrophication of corn production was 

performed in the U.S. Midwest region in a case study by Romeiko et al. [18]. Their results 

showed that the gradient-boosting regression tree model had the highest prediction accu-

racy with cross-validation (CV) values of 0.8 and 0.87 for life-cycle GW and the life cycle 

eutrophication impacts, respectively. 

Iran also has many advantages in the production of agricultural products. One of 

these products is soybean. It is a major oilseed crop and supply of vegetable oil in Iran 

mostly planted for edible oil and meal [19]. Such cultivation occurs mainly in the northern 

and northwestern provinces of the country, i.e., Golestan, Mazandaran, and Ardabil [20]. 

However, despite the potential to produce this oilseed crop in Iran, it still imports about 

95% of its 1.5 million tons of vegetable oil [21]. Hence, to create capacity and promote 

soybean production in Iran, FAO implemented a Technical Cooperation Project (TCP) in 

the country in 2017–2019 [22]. In addition to highlighting the importance of further devel-

opment of this oilseed crop, this issue also provides a good incentive for new research in 

the field.  

Despite the importance of the EIA for sustainable economic growth, it has not had a 

long history in Iran [23], and although more than two decades (since 1994) have passed 

since its official introduction in the country, little research has been carried out in the field 

[24]. However, though few studies have been reported on the EIA of soybean production 

in Iran, the effects of different cultivation scenarios on the production of this crop have 

not yet been investigated. Moreover, based on a literature review, it has been observed 

that ANNs and ANFIS are the only ML methods used in life-cycle assessments. Therefore, 

it is essential to introduce a new model that can accurately predict several environmental 

impacts based on input energies. In this study, the ANFIS-FCM algorithm as a novel com-

putational method based on fuzzy c-means (FCM) clustering was used to predict the en-

vironmental performance of soybean based on life cycle input and output data. Finally, a 

comparison was made between the proposed model and the artificial neural network 

model using the statistical quality parameters. The present study can guide decision-mak-

ers in drafting policies and creating awareness to provide solutions for sustainable pro-

duction and management. Farmers can also adopt proper crop management in this re-

gard, given the potential contributions of any soybean cultivation system to emissions, 

environmental protection, and economic benefits. 
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2. Materials and Methods 

2.1. Study Region and Farming System Description 

Mazandaran (located at 35° to 36° N latitude, 50° to 54° E longitude) is one of the 

northern provinces of Iran that is situated on the southern side of the Caspian Sea (Figure 

1). Mazandaran Province is one of the most important agricultural hubs in Iran, thanks to 

its specific geographical location and natural features (weather conditions, surface, and 

underground water resources, fertile soil, etc.). Soybean cultivation in this region is per-

formed mainly in rotation with wheat, rapeseed, and fallow. In this study, three scenarios 

were investigated because of their dominance in different regions of the province, as fol-

lows:  

(1) Soybean cultivation after rapeseed harvest;  

(2) Soybean cultivation after wheat harvest;  

(3) Soybean cultivation after six months of fallow.  

 

Figure 1. Location of the studied area in the north of Iran. 

2.2. LCA of Soybean Production 

Based  on ISO standards [25], LCA as an appropriate approach to investigating the 

environmental impacts of agricultural products includes four stages: defining scope and 

target, life-cycle inventory (LCI), assessing impacts, and results interpretation.  

2.2.1. Goal, Functional Unit, and System Boundary 

In this study, the FU was mass-based on 1 ton of soybean produced. The system 

boundary included agricultural operations and all inputs used by farmers from the cradle 

(e.g., fuel and biocide production from raw materials) to the farm gate (harvested soy-

bean) (Figure 2). 
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Figure 2. The diagram of cradle-to-farm-gate system boundaries of soybean production. 

2.2.2. LCI Analysis and Data Collection 

This step of LCA is an inventory of various input/output data for a product about the 

system under study, including the collection and analysis of these data throughout its life 

cycle [26]. In fact, in this segment of LCA, all quantitative and qualitative data collected 

(measured, calculated, or estimated for each unit/process) are utilized to quantify the in-

puts and outputs related to every unit (or process) that enters the system boundary [25]. 

In this study, two datasets were used to complete the LCI.  

1. Background systems (cradle-to-gate) data:  Data related to this section include the en-

vironmental impacts of production, distribution, and transportation of inputs (e.g., 

biocides, chemical fertilizers, electricity, and fuels). In the present study, the data 

used in this section were adapted from the EcoInvent3.5 database available in 

SimaPro software v. 9.0.0.49.  

2. Foreground systems (gate-to-gate) data: Data associated with this section include the 

number of inputs (fertilizers, biocides, and fuels, etc.), and outputs, i.e., soybean seed, 

and emissions in water, soil, and air caused by input application on the farm (from 

the planting to harvesting of soybean). 

According to Table 1, based on the amount of active ingredient per pesticide, On-

Farm emissions from biocides were considered 0.01, 0.09, and 0.9 (kg/kg) for water, air, 
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and soil, respectively [27]. The application of chemical fertilizers (nitrogen, phosphorus, 

and potassium) is also responsible for several On-Farm emissions. In this context, for the 

calculation of pollutants in air and water, the standard equations and conversion coeffi-

cients of pollutants to the applied value (Table 1) were applied [28]. Additionally, the 

chemical fertilizers used in the field cause the emission of heavy metals into the soil, re-

sulting in environmental pollution and harm to human health. In the present study, the 

coefficients presented in Table 2 were used to calculate the heavy metal emissions in the 

soil [27]. 

Table 1. Coefficients for computing the emissions caused by agrochemicals (fertilizers and biocides). 

Characteristic Coefficient Emission Result 

A. Emissions of fertilizers   

[
kg N2O-N

kg N
in fertilizer applied

]  0.01 To air 

[
kg CO2-C

kg Urea
]  0.2 To air 

[
kg NH3-N

kg N
in fertilizer applied

]  0.1 To air 

[
kg NO3

- -N

kg N
in fertilizer applied

]  0.3 To water 

[
kg P emission

kg P
in fertilizer applied

]  0.05 To water 

Indirect N2O from atmospheric deposition:   

[
kg N2O-N

kg N
in chemical fertilizer applied

]  0.001 To air 

Direct NOX emissions from fertilizers and soil:   

[
kg NOX

kg N2O
from fertilizers and soil

]  0.21 To air 

Conversion of emissions:   

Conversion from kg CO2-C to kg CO2 [
44

12
]  

Conversion from kg N2O-N to kg N2O [
44

28
]  

Conversion from kg NH3-N to kg NH3 [
17

14
]  

Conversion from kg NO-3-N to kg NO-3 [
62

14
]  

Conversion from kg P2O5 to kg P [
62

142
]  

B. Emissions from biocides   

[
kg active ingredient

kg biocide
]  0.09 To air 

[
kg active ingredient

kg biocide
]  0.01 To water 

[
kg active ingredient

kg biocide
]  0.90 To soil 
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Table 2. Coefficients for calculating the On-Farm emissions of heavy metals in soil associated with 

the application of chemical fertilizers in different cultivation scenarios of soybean. 

Characteristic 
Heavy Metal (mg) 

Cd Cu Zn Pb Ni Cr Hg 

[
mg Heavy metal

kg Nin fertilizer applied
]  6.0 26.0 203.0 54.9 20.9 77.9 0.1 

[
mg Heavy metal

kg P2O5in fertilizer applied

]  39.5 90.5 839.0 67.0 88.3 543.0 0.3 

[
mg Heavy metal

kg K2O
in fertilizer applied

]  0.1 4.8 6.2 0.8 2.5 5.8 0.0 

The diesel fuel combustion in tractor engines and other agricultural machinery emits 

some harmful compounds into the air (e.g., CO2). As shown in Table 3, the EcoInvent da-

tabase was used to calculate the On-Farm emissions derived from the combustion of diesel 

fuel [29,30]. Additionally, emission factors for air emissions from kerosene [31–33] fuel 

combustion are presented in Table 3. Ultimately, all the inputs and outputs (the inventory 

data), based on the FU of 1-ton product yield (i.e., soybean), were imported to SimaPro 

software v. 9.0.0.49 for further analysis. 

Table 3. Emission factors for air emissions from fuel combustion. 

Emission  g MJ−1 Diesel Kerosene 

CO2 74.5 71.50 t TJ−1 

SO2 2.41 × 10−2 0.005 MT MT−1 

Pb - - 

CH4 3.08 × 10−3 10 kg TJ−1 

C6H6 1.74 × 10−4 - 

Cd 2.39 × 10−7 - 

Cr 1.19 × 10−6 - 

Cu 4.06 × 10−5 - 

N2O 2.86 × 10−3 0.6 kg TJ−1 

Ni 1.67 × 10−6 - 

Zn 2.39 × 10−5 - 

Benzo(a)pyrene 7.16 × 10−7 - 

NH3 4.77 × 10−4 - 

Se 2.39 × 10−7 - 

PAH 7.85 × 10−5 - 

HC, as NMVOC 6.80 × 10−2 - 

NOX 1.06 3.00 g kg−1 

CO 1.50 × 10−1 62.00 g kg−1 

Particulates, <2.5 μm 1.07 × 10−1 - 

In this study, to determine the information on agricultural input consumption, the 

initial data were collected by providing questionnaires and face-to-face interviews with 

farmers. Additionally, the simple random sampling method and Cochran formula were 

used to determine the number of farmers or sample size [34]. All inputs and soybean 

yields collected from farmers as well as On-Farm emissions from the application of these 

inputs in different cultivation scenarios are presented in Table 4. 

  



Sustainability 2023, 15, 6326 8 of 27 
 

Table 4. LCI of agricultural inputs (per FU = 1 ton) and seed yield of soybean annual production 

under different cultivation scenarios in Mazandaran province, Iran. 

Inventory 
Fallow–Soy-

bean 

Rapeseed–Soy-

bean 

Wheat–Soy-

bean 

A. Inputs (Off-Farm) Unit    

1. Seed  kg 25.68 31.51 32.37 

2. Agricultural machinery  kg 4.61 3.18 4.31 

3. Fossil fuels kg    

(a) Diesel  71.66 39.04 79.67 

(b) Lubricant   1.35 1.09 1.87 

(c) Kerosene   - 10.53 10.50 

4. Electricity  kWh 27.5 25.84 11.44 

5. Biocides:  kg    

(a) Insecticide      

Indoxacarb   0.04 0.03 0.02 

Diazinon   0.38 0.34 - 

Chlorpyrifos  - 0.08 0.09 

Cypermethrin  0.24 0.19 0.13 

Thiodicarb  - 0.38 0.05 

Profenofos  - - 0.31 

Fenitrothion  - 0.19 - 

(b) Herbicide     

Imazethapyr   - 0.04 - 

Haloxyfop-ethoxyethyl   - 0.19 - 

Trifluralin  - - 0.14 

Bentazone sodium  0.12 - - 

Paraquat  - - 0.07 

6. Polyethylene  kg 0.84 0.36 0.07 

7. Chemical fertilizers kg    

(a) Nitrogen fertilizer      

Urea (N: 46-P2O5: 0-K2O: 0-S: 0)  50.25 25.03 39.37 

Ammonium sulfate (21-0-0-24)  - 3.75 - 

(b) Phosphate fertilizer     

Diammonium phosphate (18-46-0)  18.87 6.45 18.89 

Single superphosphate (0-16-0-12)  31.73 - - 

Superphosphate triple (0-46-0)  - 16.66 29.47 

(c) Potassium fertilizer     

Potassium sulfate (0-0-52-18)  - 2.08 4.31 

(d) Sulfur fertilizer     

Bentonite sulfur 70% (0-0-0-70-30)  - 5.55 13.83 

Granular sulfur 90% (0-0-0-90-0)  5.86 4.84 3.12 

B. Output      

Soybean yield  kg ha−1 2950.00 2853.33 2308.32 

C. On-Farm     

1. Emissions in air:      

a. Emissions from chemical fertilizers (kg)    

1. NH3 emitted from nitrogenous fertilizers   3.22 1.63 2.61 

2. N2O     

N2O emitted from fertilizer  4.17 × 10−1 2.12 × 10−1 3.38 × 10−1 

N2O released from atmospheric deposition of fertilizers   4.17 × 10−2 2.12 × 10−2 3.38 × 10−2 

3. NOX emitted from N2O of fertilizers and soil  9.62 × 10−2 4.89 × 10−2 7.81 × 10−2 
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4. CO2 released from urea  3.69 × 10+1 1.84 × 10+1 2.89 × 10+1 

b. Emissions from biocides (kg)    

1. Emissions from insecticide     

Indoxacarb   5.00 × 10−4 4.00 × 10−4 3.00 × 10−4 

Diazinon   2.03 × 10−2 1.83 × 10−2 - 

Chlorpyrifos  - 3.10 × 10−3 3.40 × 10−3 

Cypermethrin  8.50 × 10−3 7.00 × 10−3 4.50 × 10−3 

Thiodicarb  - 2.71 × 10−2 3.50 × 10−3 

Profenofos  - - 1.27 × 10−2 

Fenitrothion  - 8.50 × 10−3 - 

2. Emissions from herbicide     - 

Imazethapyr   - 4.00 × 10−4 - 

Haloxyfop-ethoxyethyl   - 1.80 × 10−3 - 

Trifluralin  - - 5.90 × 10−3 

Bentazone   5.00 × 10−3 - - 

Paraquat  - - 1.30 × 10−3 

c. Emissions from fossil fuels  (kg)    

1. Diesel      

CO2  3.58 × 10+2 1.95 × 10+2 3.98 × 10+2 

SO2  1.16 × 10−1 6.31 × 10−2 1.29 × 10−1 

CH4  1.48 × 10−2 8.06 × 10−3 1.64 × 10−2 

C6H6  8.36 × 10−4 4.55 × 10−4 9.29 × 10−4 

Cd  1.15 × 10−6 6.26 × 10−7 1.28 × 10−6 

Cr  5.72 × 10−6 3.11 × 10−6 6.36 × 10−6 

Cu  1.95 × 10−4 1.06 × 10−4 2.17 × 10−4 

N2O  1.37 × 10−2 7.49 × 10−3 1.53 × 10−2 

Ni  8.02 × 10−6 4.37 × 10−6 8.92 × 10−6 

Zn  1.15 × 10−4 6.26 × 10−5 1.28 × 10−4 

Benzo(a)pyrene  3.44 × 10−6 1.87 × 10−6 3.82 × 10−6 

NH3  2.29 × 10−3 1.25 × 10−3 2.55 × 10−3 

Se  1.15 × 10−6 6.26 × 10−7 1.28 × 10−6 

PAH  3.77 × 10−4 2.05 × 10−4 4.19 × 10−4 

HC, as NMVOC  3.27 × 10−1 1.78 × 10−1 3.63 × 10−1 

NOX  5.09 2.77 5.66 

CO  7.21 × 10−1 3.93 × 10−1 8.01 × 10−1 

Particulates, < 2.5 μm  5.14 × 10−1 2.80 × 10−1 5.71 × 10−1 

2. Kerosene (kg)    

CO2  - 3.39 × 10+1 3.38 × 10+1 

CO  - 6.53 × 10−1 6.51 × 10−1 

SO2  - 5.27 × 10−2 5.25 × 10−2 

CH4  - 4.74 × 10−3 4.73 × 10−3 

N2O  - 2.84 × 10−4 2.84 × 10−4 

NOX  - 3.16 × 10−2 3.15 × 10−2 

2. Emissions in water:      

a. Emissions from chemical fertilizers  (kg)    

NO-3  3.52 × 10+1 1.79 × 10+1 2.86 × 10+1 

P  3.00 × 10−1 2.32 × 10−1 4.86 × 10−1 
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b. Emissions from biocides (kg)    

1. Emissions from insecticide      

Indoxacarb   1.00 × 10−4 5.00 × 10−5 3.00 × 10−5 

Diazinon   2.30 × 10−3 2.03 × 10−3 - 

Chlorpyrifos  - 3.40 × 10−4 3.70 × 10−4 

Cypermethrin  9.00 × 10−4 7.80 × 10−4 5.00 × 10−4 

Thiodicarb  - 3.01 × 10−3 3.90 × 10−4 

Profenofos  - - 1.41 × 10−3 

Fenitrothion  - 9.40 × 10−4 - 

2. Emissions from herbicide      

Imazethapyr   - 4.00 × 10−5 - 

Haloxyfop-ethoxyethyl   - 2.00 × 10−4 - 

Trifluralin  - - 6.60 × 10−4 

Bentazone   6.00 × 10−4 - - 

Paraquat  - - 1.50 × 10−4 

3. Emissions in soil:      

a. Emissions from chemical fertilizers (mg)    

1. From N-fertilizer:     

Cd  1.59 × 10+2 8.08 × 10+1 1.29 × 10+2 

Cu  6.89 × 10+2 3.50 × 10+2 5.59 × 10+2 

Zn  5.38 × 10+3 2.73 × 10+3 4.37 × 10+3 

Pb  1.46 × 10+3 7.39 × 10+2 1.18 × 10+3 

Ni  5.54 × 10+2 2.81 × 10+2 4.50 × 10+2 

Cr  2.07 × 10+3 1.05 × 10+3 1.68 × 10+3 

Hg  2.65 1.35 2.15 

2. From P-fertilizer:     

Cd  5.44 × 10+2 4.20 × 10+2 8.78 × 10+2 

Cu  1.25 × 10+3 9.62 × 10+2 2.01 × 10+3 

Zn  1.15 × 10+4 8.92 × 10+3 1.87 × 10+4 

Pb  9.22 × 10+2 7.12 × 10+2 1.49 × 10+3 

Ni  1.22 × 10+3 9.39 × 10+2 1.96 × 10+3 

Cr  7.47 × 10+3 5.77 × 10+3 1.21 × 10+4 

Hg  4.13 3.19 6.67 

3. From K-fertilizer:     

Cd  - 1.08 × 10−1 2.24 × 10−1 

Cu  - 5.18 1.08 × 10+1 

Zn  - 6.70 1.39 × 10+1 

Pb  - 8.64 × 10−1 1.79 

Ni  - 2.70 5.60 

Cr  - 6.26 1.30 × 10+1 

b. Emissions from biocides (kg)    

1. Emissions from insecticide     

Indoxacarb   5.40 × 10−3 4.30 × 10−3 2.90 × 10−3 

Diazinon   2.03 × 10−1 1.83 × 10−1 - 

Chlorpyrifos  - 3.08 × 10−2 3.35 × 10−2 

Cypermethrin  8.46 × 10−2 6.98 × 10−2 4.50 × 10−2 

Thiodicarb  - 2.71 × 10−1 3.51 × 10−2 

Profenofos  - - 1.27 × 10−1 
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Fenitrothion  - 8.46 × 10−2 - 

2. Emissions from herbicide     

Imazethapyr   - 3.80 × 10−3 - 

Haloxyfop-ethoxyethyl   - 1.83 × 10−2 - 

Trifluralin  - - 5.94 × 10−2 

Bentazone   4.97 × 10−2 - - 

Paraquat  - - 1.33 × 10−2 

2.2.3. Assessing the Impacts of Soybean Production 

As the third step of the LCA, impact assessment, which applies LCI results and pro-

vides characterization factors, expresses the impacts per amount of inventory [13,35]. In 

addition, to evaluate potential environmental impacts, this step also provides information 

on the life-cycle interpretation stage [13].  

In this study, the IMPACT 2002+ (v2. 15) model was used to determine soybean pro-

duction’s environmental impacts. This methodology is a combination of the CML, Eco-

indicator 99, IPCC, and Impact 2002 methods [36]. IMPACT 2002+ combines the midpoint 

and damage indicators as a life-cycle impact assessment (LCIA) methodology to enhance 

consistency in the impact pathway modeling [37]. As described in Humbert et al. [38], the 

model consists of 15 midpoint categories (Figure 3), all of which are expressed in units of 

a reference substance and are related to four damage indicators of ecosystem quality (PDF 

× m2 × yr: Potentially Disappeared Fraction (PDF) of species, year (yr), climate change (kg 

CO2-eq), resources (MJ primary), and human health (DALY: Disability-Adjusted Life 

Years). 

 

Figure 3. Damage groups and the linked midpoint categories in the IMPACT2002+ method. 
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2.3. ANFIS-FCM Method 

The adaptive neuro-fuzzy inference system (ANFIS) was first proposed by Jang [39]. 

ANFIS is  a neural network that uses the Takagi–Sugeno inference model structure. ANFIS 

is a powerful modeling technique with a combination of learning rules from ANNS and 

linguistic transparency of fuzzy logic theory. Fuzzy inference systems (FIS) are one of the 

most popular applications of fuzzy logic theory in various fields of economics, science, 

engineering, and management. In FIS, membership functions (MFs) usually have to be 

manually adjusted by trial and error, and this model is known as the white box, while in 

the ANN, achieving the goal is self-learning and acts as a black box. The general picture 

of ANFIS architecture is described in Figure 4. This model includes five layers with several 

nodes described by the node function. The function of each layer is described as follows. 

The set of parameters in this model that can be changed and fixed are shown as squares 

and circles, respectively. 

Layer 1: The first layer comprised of an adaptive node with a node function convert-

ing the inputs into a fuzzy set using the process of fuzzification: 

𝑂1,𝑖 = 𝜇𝐴𝑖(𝑋1), 𝑓𝑜𝑟𝑖 = 1,2 

𝑂1,𝑖 = 𝜇𝐵𝑖−2(𝑋2), 𝑓𝑜𝑟𝑖 = 3,4 

(1) 

 

where X1 and X2 are the input variables i, A and B are the linguistic labels characterized 

with this node, and μ(X1) and μ(X2) are the MFs, such as a generalized bell, sigmoid or 

triangular. 

Layer 2: Every circle node in layer 2 represents a fixed node and is labeled by Π, 

which multiplies the input signals and sends the output signal. 

𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑋1). 𝜇𝐵𝑖−2(𝑋2), 𝑓𝑜𝑟𝑖 = 1,2 (2) 

where the O2,i is the output of Layer 2. The output of each node wi shows the firing 

strength of a rule. 

Layer 3: Every circle node in layer 3 is considered a fixed node. Here, the ratio of the 

ith rule is firing strength to the sum of all firing strength, calculated as: 

𝑂3,𝑖 = 𝑤̄𝑖 =
𝑤𝑖

𝑤1 + 𝑤2
, 𝑓𝑜𝑟𝑖 = 1,2 (3) 

where the O3,i is the output of Layer 3. The𝑤̄is the normalized firing strength of the fuzzy 

rule. 

Layer 4: This layer is called defuzzier. In this layer, for every square node, the output 

from the previous layer is multiplied with the function of fuzzy rules: 

𝑂4,𝑖 = 𝑤̄𝑖 . 𝑓𝑖 , 𝑓𝑜𝑟𝑖 = 1,2 (4) 

where f1 and f2 are the fuzzy if–then rules as follows: 

Rule 1. IF 𝑋1𝑖𝑠𝐴1𝑎𝑛𝑑𝑋2𝑖𝑠𝐵1, 𝑇𝐻𝐸𝑁𝑓1 = 𝑝1𝑋1 + 𝑞1𝑋2 + 𝑟1 (5) 

Rule 2. IF 𝑋1𝑖𝑠𝐴2𝑎𝑛𝑑𝑋2𝑖𝑠𝐵2, 𝑇𝐻𝐸𝑁𝑓2 = 𝑝2𝑋1 + 𝑞2𝑋2 + 𝑟2 (6) 

where, pi,  qi,  and ri are the parameters set (consequent parameters). 

Layer 5: The single circle node in layer 5 in the fifth layer of the output layer is labeled 

Σ, which calculates using the sum of all inputs of the previous layer: 

𝑂5,𝑖 =∑𝑤̄𝑖 . 𝑓

𝑖 𝑖

, =
∑ 𝑤𝑖 . 𝑓𝑖 𝑖

𝑤𝑖
= 𝑓𝑜𝑢𝑡 (7) 

The most widely used ANFIS learning rule is “back-propagation”, which calculates 

error signals recursively from the output layer (layer 5) and transfers backward to the 

input nodes (layer 1). The gradient descent method is applied to optimize the parameters 

of the premise part. This learning rule is the same as the back-propagation learning rule 
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in the feed-forward neural networks. Excessive slowness and being trapped in local min-

ima for conventional methods are some of the main problems that can be solved by a 

hybrid learning algorithm.  

 

Figure 4. The structure of ANFIS. 

The ANFIS-fuzzy c-means clustering is the most common hybrid learning method of 

fuzzy clustering. In this structure, the behavior of the data describes the rules of ANFIS. 

The fuzzy c-means (FCM) method determines the number of rules and MFs for input and 

output variables. The developed K-means algorithm is the FCM method. FCM divides the 

data set X into C clusters by minimizing the weight distance errors for each data point Xi 

relative to all C cluster centroids. Thereafter, the algorithm tries to minimize the objective 

function, which is a generalization of the least-squares method: 

𝑗𝑚 =∑∑𝑤𝑖𝑐
𝑝‖𝑥𝑖 − 𝑣𝑐‖

2

𝑛

𝑖=1

𝑐

𝑐=1

 (8) 

where n represents the number of data points, c presents the number of clusters, v is the 

cluster centers, 𝑤𝑖𝑐 is the degree of membership of xi in the cluster c, and x shows the 

input data point. 𝑤𝑖𝑐can be calculated with the following formula: 

𝑤𝑖𝑐 =
1

∑ (
‖𝑥𝑖 − 𝑣𝑖‖
‖𝑥𝑖 − 𝑐𝑘‖

)
2/(𝑝−1)

𝑐
𝑘=1

 
(9) 

where p presents the fuzzifier exponent and k is the number of iteration steps. 

Additionally, in the FCM algorithm, after initializing the central vectors, the centers 

are calculated with the following formula: 

𝑣𝑖 =
∑ 𝑤𝑖𝑐

𝑝
𝑥𝑖

𝑛
𝑖=1

∑ 𝑤𝑖𝑐
𝑝𝑛

𝑖=1

 (10) 

In this study, the input set for the developing model included 14 variables independ-

ent of field soybean cultivation, including the type of soybean cultivation (after wheat 

cultivation, rapeseed cultivation, and fallow land), seed, agricultural machinery, polyeth-

ylene, nitrogen, phosphate, potassium, sulfur, herbicide, insecticide, electricity, diesel, lu-

bricating oil, and kerosene (Table 4). Human health, ecosystem quality, climate change, 

and resources were given as data output sets. This data set was subdivided into 123 data 

for training and 52 data for testing. In the modeling process, ANFIS-related functions in 

Matlab software (version Marlab 2019a) were used to generate the model program. In the 

modeling process, the parameters of the ANFIS model are determined during the learning 

phase at a specific epoch that verifies that errors are minimal. Experimental datasets are 

https://www.sciencedirect.com/topics/computer-science/fuzzy-clustering
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applied to assess the accuracy, effectiveness, and prevention of over-fitting of the trained 

model. To create the structure of FIS from data in ANFIS, the FCM clustering method was 

used in this work. These methods were applied to develop and select the best LCA pre-

diction model for soybean cultivation. In this study, 70% of the data was used for training 

(123 data) and 30% of the data was used for testing (52 data). In this method, the number 

of rules and MFs for input and output variables is determined by the FCM method. The 

number of clusters (NC) created by FCM can be specified in the program. Determining 

the radius of a smaller cluster usually results in more clusters. This means more rules have 

been produced in FIS. When the FIS structure type is selected as Sugeno, the input and 

output membership types are defined as gauss and linear, respectively. Six alternative 

models are produced by assigning different values to the NC. The NC determines the 

number of MFs and rules. Simulations are performed for these alternative models to find 

the optimal FIS structure. 

2.4. ANN Method 

ANN with a multi-layered feed-forward (MLFF) back-propagation algorithm learns 

by changing the weights; these changes are stored as knowledge. To obtain the best pre-

diction by the network, several architectures were evaluated and trained to apply the ex-

perimental data. The hidden layer can consist of one or more layers; the number of neu-

rons in each layer varies and is usually determined by trial and error [40]. In this study, 

the neural network structure was modeled with 14 factors, including inputs such as chem-

ical pesticides and fertilizers, agriculture machinery, polyethylene, electricity, diesel, lu-

bricating oil, kerosene, and seed as 14 neurons in the input layer, and the 4 factors of hu-

man health, ecosystem quality, climate change, and resources as output layer neurons. 

Combined parameters, such as the number of hidden layers, the number of neurons, and 

the number of training cycles during the artificial neural network training process, were 

determined by trial and error. The total number of input patterns to the network was 123, 

which were randomly divided into three groups: training (70%), evaluation (15%), and 

testing (15%). Additionally, the training rate for all cases was 0.2 and the momentum rate 

was 0.1. The best neural network topology was determined based on two criteria: R and 

RMSE. 

2.5. Model Validation 

Statistical parameters were used to evaluate and fit the best model for data. Indices 

of mean absolute percentage error (MAPE), root means square error (RMSE), and the de-

termination coefficient (R2) can be expressed as: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

𝑛

𝑖=1

|
𝑦𝑖 − 𝑦̑𝑖
𝑦𝑖

 | × 100 (11) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̑𝑖)

2

𝑛

𝑖=1

 (12) 

𝑅2 = 1 −
∑ (𝑦̑𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦̑𝑖 − 𝑦̅)2𝑛
𝑖=1

 (13) 

where 𝑦𝑖 and 𝑦̑𝑖 are the observed and predicted values for the ith testing dataset (re-

spectively), 𝑦̄ represents the average of the observed values (respectively), and n repre-

sents the total number of data. 
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3. Results 

3.1. EIA of Soybean Production Scenarios 

3.1.1. Results of Damage Assessment 

The damage categories result for the production of 1 ton of soybean, based on the 

IMPACT2002+ method presented in Table 5 and illustrated graphically in Figure 5, 

showed the relative contribution of different inputs to the four environmental damage 

indicators. Based on the obtained results, On-Farm emissions from soybean production in 

all cultivation scenarios have the highest share in the three damage categories of human 

health (>71%), climate change (>50%), and ecosystem quality (>89%). In the following sec-

tion, we will concentrate on the description of soybean production’s environmental dam-

ages.  

Table 5. The results of damage categories for producing 1 ton of soybean under different scenar-

ios. 

Scenarios 
Human Health 

(DALY) 

Ecosystem Quality 

(PDF × m2 × yr) 

Climate Change (kg 

CO2-eq) 

Resources  

(MJ Primary) 

Fallow–Soybean (F-S) 0.0015 1410.73 794.50 7669.47 

Rapeseed–Soybean (R-S) 0.0009 1033.68 563.55 5476.18 

Wheat–Soybean (W-S) 0.0016 1840.70 880.61 8799.80 

 

Figure 5. The contribution of On-Farm and Off-Farm emissions to damage categories of soybean 

production under different scenarios. 

As shown in Table 5, in different scenarios of soybean production, the highest CO2-

eq value related to W-S (880.61 kg) was followed by F-S (794.50 kg), and the lowest CO2-

eq value was for the R-S (563.55 kg) cropping system. In this way, the R-S scenario was 

the best in terms of kg CO2-eq emissions, which led to a reduction of about 29 and 36% 

compared to the F-S and W-S scenarios. According to Figure 5, the direct emissions from 

farm operations played the most important role in increasing GW or climate change in 

different scenarios of soybean production (about 51–60%). This increase was mainly due 
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to the release of CO2 from diesel combustion in all farms and then the emitted N2O, albeit 

in smaller amounts compared to CO2. Likewise, concerning Figure 5, the contribution of 

indirect emissions from seed production to this category was also significant. 

As shown in Figure 3, the resource damage category is related to the two midpoint 

categories of mineral extraction and non-renewable energy. These midpoints mean “MJ 

additional or surplus energy (or kg-eq iron)” and “MJ total primary non-renewable en-

ergy (or kg-eq crude oil)”, respectively [41]. According to Table 5, the R-S scenario with a 

total value of 5476.18 MJ primary had the lowest use of resources. The highest damage to 

resources was also related to the W-S scenario, which was estimated at 8799.80 MJ pri-

mary. As can be deduced from Figure 5, diesel has played the biggest role in creating the 

environmental burden of this damage category. After diesel, the share of nitrogenous 

chemical fertilizers was also significant, which varied from about 16–22% in different sce-

narios. 

The results demonstrate that the total amount of damage to ecosystem quality in the 

wheat–soybean (W-S) scenario is higher than in other scenarios (Table 5). In other words, 

the production of each ton of soybeans in the R-S, F-S, and W-S scenarios has resulted in 

damage of 1033.68, 1410.73, and 1840.70 PDF × m2 × yr to the quality of the ecosystem, 

respectively. This shows that the R-S scenario performed better than the F-S and W-S sce-

narios by about 27 and 44%, respectively, in terms of ecosystem degradation in the region. 

The most damage to this category in the production of soybean relates to the field opera-

tions, with no considerable share from background processes (Figure 5). It is also notable 

that the main contributors to On-Farm emissions are heavy metals (mostly Zn) in applied 

chemical fertilizers; in particular, phosphorus. 

As shown in Table 5, the total amounts of human health damage category produced 

in the F-S, R-S,  and W-S scenarios are 0.0015, 0.0009, and 0.0016 DALY, respectively. As 

can be seen in Figure 5, this difference is mainly due to the high share of direct emissions 

in different scenarios, i.e., about 71–78%. Given the importance of human health, it is of 

particular importance to identify the sources of these pollutants so that the right manage-

ment strategies can be provided to mitigate these emissions by identifying these inputs. 

The analysis revealed the direct emissions of NOX and Particulates, <2.5 μm caused by 

diesel fuel, and NH3 from nitrogen fertilizers had the most significant role in damage to 

human health in all scenarios of soybean production, respectively. Like N2O, the release 

of NH3 depends on the number of nitrogen fertilizers consumed on farms [42]. In this way, 

as the results in Table 5 also show, the R-S scenario can be introduced as the best scenario 

in terms of damage to human health due to the reduced emission of these On-Farm pol-

lutants. According to the results listed in Table 5, this scenario showed a decrease of about 

44 and 40% in damage to human health compared to the other two scenarios, i.e., W-S and 

F-S, respectively. 

Because damage categories have different units, it is still difficult to select the most 

environmental scenario. Accordingly, damage categories were weighted according to the 

IMPACT 2002+ method to obtain a single score (in milli Point unit (mPt)) based on which 

decisions could be made. Based on the results obtained from the weighting analysis, the 

total environmental damage for soybean production under various cultivation scenarios 

was 293.87–503.73 mPt. Moreover, the human health damage category had a critical role 

in the total environmental impacts of around 43–47%. 

3.1.2. Comparison of Environmental Damages among Various Scenarios 

From Figure 6, it is evident that the R-S scenario showed greater environmental com-

pliance than the other scenarios. More specifically, compared to W-S (as the most applied 

scenario in Mazandaran), R-S led to a reduction of around 44, 44, 36, 38, and 42%, respec-

tively, in human health, ecosystem quality, climate change, resources, and total environ-

mental damage.  
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Figure 6. The weighted environmental damages of soybean production (FU = 1 ton) in different 

cultivation scenarios. 

3.2. Evaluating of ANFIS-FCM and ANN Models 

The ANFIS-FCM models and performance results are given in Table 6. As can be 

seen, it is not easy to conclude that with more clusters, better performance results can be 

obtained. For environmental parameters, i.e., human health, climate change, and re-

sources, the best performance of the model was obtained in the lower clusters (FCM2). On 

the other hand, for ecosystem quality, the best performance forecast of the model in cluster 

3 was obtained (FCM3). The criterion for selecting the best model is fewer differences in 

the RMSE of training and testing of models. For example, in ecosystem quality, the RMSE 

values obtained for training, testing, and all data sets were 31.20, 42.02, and 34.83, respec-

tively. Therefore, the ANFIS-FCM3 model was considered with three optimal rules in eco-

system quality. Increasing the number of clusters causes over-fitting of the model. For 

instance, in the FCM7 model, although the training error was the lowest (RMSE = 20.98), 

the testing error reached its highest level (RMSE = 1776.55). This trend can be seen for 

other environmental parameters in the ANFIS-FCM model by increasing the number of 

rules and cluster models. 

Table 6. The performance of ANFIS-FCM models for prediction of environmental impact. 

Environment

al Impacts 

Model 

Name 

Number of 

Clusters 

Number of 

Input MF 

Number of 

Output MF 

Number 

of Rule 
Epochs 

RMSE R 

Training Testing All Data Training Testing All Data 

Human 

health 

(DALY) 

FCM2 2 [222] ]2] 2 5 4.43 × 10−5 5.35 × 10−5 5.70 × 10−5 0.9983 0.9996 0.9985 

FCM3 3 [333] ]3[ 3 2 5.17 × 10−5 6.26 × 10−4 3.47 × 10−4 0.9986 0.7765 0.9369 

FCM4 4 [444] [4] 4 2 4.20 × 10−5 6.34 × 10−4 3.51 × 10−4 0.9991 0.7680 0.9353 

FCM5 5 [555] [5] 5 15 4.77 × 10−5 6.26 × 10−4 3.47 × 10−4 0.9988 0.7706 0.9365 

FCM6 6 [666] [6] 6 15 4.96 × 10−5 2.23 × 10−3 1.27 × 10−3 0.9987 0.6035 0.6807 

FCM7 7 [777] [7] 7 2 2.86 × 10−5 4.51 × 10−3 2.49 × 10−4 0.9996 0.8750 0.9668 

Ecosystem 

quality (PDF 

× m2 × yr) 

FCM2 2 [222] [2] 2 15 35.47 45.70 38.86 0.9993 0.9997 0.9996 

FCM3 3 [333] [3] 3 5 31.20 42.02 34.83 0.9994 0.9998 0.9997 

FCM4 4 [444] [4] 4 5 32.23 61.97 43.44 0.9994 0.9996 0.9995 

FCM5 5 [555] [5] 5 5 27.68 1741.04 958.42 0.9995 0.6118 0.7369 

FCM6 6 [666] [6] 6 2 20.22 1741.50 958.54 0.9997 0.6110 0.7367 

FCM7 7 [777] [7] 7 2 20.98 1776.55 977.83 0.9997 0.5731 0.7215 

Climate 

change (kg 

CO2-eq) 

FCM2 2 [222] [2] 2 15 17.85 20.12 18.57 0.9994 0.9993 0.9994 

FCM3 3 [333] [3] 3 2 15.11 38.43 24.63 0.9995 0.9987 0.9990 

FCM4 4 [444] [4] 4 20 12.51 110.58 61.74 0.9997 0.9861 0.9938 

FCM5 5 [555] [5] 5 2 10.06 2230.00 123.01 0.9998 0.9356 0.9731 
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FCM6 6 [666] [6] 6 1100 5.88 523.28 288.01 0.99999 0.6359 0.8614 

FCM7 7 [777] [7] 7 1100 6.27 291.03 160.24 0.9999 0.8395 0.9513 

Resources 

(MJ primary) 

FCM2 2 [222] [2] 2 100 178.50 205.17 186.98 0.9993 0.9993 0.9993 

FCM3 3 [333] [3] 3 2 162.87 302.96 222.92 0.9994 0.9984 0.9990 

FCM4 4 [444] [4] 4 1100 72.67 902.58 500.40 0.9999 0.9885 0.9954 

FCM5 5 [555] [5] 5 1100 59.20 477.53 267.41 0.9999 0.9972 0.9987 

FCM6 6 [666] [6] 6 2 128.06 23,009.21 12,662.90 0.9996 0.3624 0.4370 

FCM7 7 [777] [7] 7 15 118.98 616.83 353.69 0.9997 0.9954 0.9978 

Additionally, the parameters of the most accurate ANN network models in predict-

ing environmental impacts for soybean production are shown in Table 7. The results of 

MAEP, RMSE, and R for the neural networks were calculated. Feed-forward backpropa-

gation neural networks with the Levenberg–Marquardt training algorithm for ANN mod-

els were used. Sigmoid “tansig” and “purelin” linear functions were used as activation 

functions in the hidden and output layers, respectively. The best ANN structures were 14-

10-7-1, 14-11-6-1, 14-10-10-1, and 14-12-8-1 for human health, ecosystem quality, climate 

change, and resources, respectively. It can be seen that the coefficient of determination 

values differ from 0.9863 to 0.9938 in the overall data, 0.9666 to 0.9977 for the testing, 

0.9688 to 0.9929 for the validation, and 0.9945 to 0.9996 for the training in the ANN models. 

Table 7. The performance of ANN models for prediction of environmental impact. 

Environmental 

Impacts 

Best Topology 

of ANN 
Epochs 

R RSME 

Training Validation Testing All Data Training Validation Testing All Data 

Human health 14-10-7-1 11 0.9984 0.9859 0.9866 0.9938 5.69 × 10−5 2.17 × 10−4 1.33 × 10−4 1.09 × 10−4 

Ecosystem qual-

ity 
14-11-6-1 9 0.9994 0.9854 0.9666 0.9863 31.97 504.00 325.66 234.12 

Climate change 14-10-10-1 13 0.9945 0.9929 0.9879 0.9929 57.21 93.24 57.05 63.84 

Resources 14-12-8-1 17 0.9996 0.9688 0.9977 0.9866 141.13 2146.36 500.88 858.51 

According to the statistical indices shown in Figure 7, the calculated coefficients of 

determination (R2) to predict the environmental impacts obtained by the ANFIS-FCM 

models were higher than the ANN models. The R2 ranges for the ANFIS-FCM and ANN 

models were between 0.9967 to 0.9989 and 0.9269 to 0.9870, respectively. Two other pa-

rameters that were used to evaluate the accuracy of the model are RMSE and MAPE. The 

lower value of these parameters indicates higher model accuracy. The RMSE and MAPE 

values obtained in ANFIS-FCM were lower compared to the ANN model for all environ-

mental indicators. The MAPE values for the ANFIS-FCM and ANN models were obtained 

at 3.71, 5.54, 2.18, and 2.26, and 6.35, 13.22, 7.51, and 4.76 for human health, ecosystem 

quality, climate change, and resources, respectively. Additionally, results revealed the 

values of the RMSE were 5.35 × 10−5, 34.90, 18.57, and 186.98 in ANFIS-FCM and 1.09 × 10−4, 

234.12, 63.84 and 858.51 in the ANN model for human health, ecosystem quality, climate 

change, and resources, respectively.  

In general, according to the results of the ANN and ANFIS-FCM models, it is con-

cluded that the ANFIS-FCM model performed better than ANN in all aspects for the pre-

diction of environmental impacts in soybean farms. Additionally, Figure 8 illustrates the 

environmental indicator prediction results in the ANFIS-FCM model versus actual envi-

ronmental indicator data for climate change, ecosystem quality, human health, and re-

sources. The prediction results show that it is fully consistent with the actual results. A 

more complete distinction between them can be seen in Figure 9. The range of calculated 

R2 for predicting all environmental parameters is very close to each other (Figure 9).  
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Figure 7. Comparison between R2 and MAPE in ANN and ANFIS-FCM models. 
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Figure 8. Prediction values versus actual data for (a) resources, (b) climate change, (c) ecosystem 

quality, and (d) human health. 
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Figure 9. Comparison between observed and predicted values for (a) human health, (b) ecosystem 

quality, (c) climate change, and (d) resources. 

4. Discussion 

The increase in population in recent years and its growing trend in future years has 

increased the need for agricultural and food products, and thus the agricultural produc-

tion should be increased. This goal can lead to increases in GHG emissions, and the sub-

sequent phenomenon of climate change, by increasing the consumption of inputs such as 

nitrogen and phosphorous fertilizers, diesel fuel, and manure [43]. Nitrogen, as one of the 

most important nutrients for plant growth and higher yields, mainly by spreading manure 

and using chemical fertilizers in farmlands, leads to several important emissions that af-

fect GW [27]. Amongst these emissions, nitrous oxide (N2O) has great importance due to 

its longevity in the atmosphere (more than 114 years) and its GWP (298 times higher than 

CO2). The main sources of N2O emissions in the soil are mainly due to agricultural activi-

ties, including nitrogen fertilizers applied in the soil, fossil fuel combustion, and some of 

the natural mechanisms that occur in aquatic and terrestrial ecosystems [44]. Therefore, 

any strategy proposed to reduce the atmospheric concentration of GHG should be focused 

on the agricultural sector as an important source of their emissions.  

In a similar study on the LCA of oilseeds production in Iran, Ardabil Province, the 

amount of CO2-eq emitted per ton of product for rapeseed, sunflower, and soybean was 

2132, 2283, and 1549 kg, respectively. Moreover, the study reported that more than 70% 

of these emissions (GW) were due to electricity production, manure, and chemical ferti-

lizers [45]. By comparing these results, it is clear that the GWP index for soybean produc-

tion in Ardabil province is much higher than in Mazandaran, which is due to the higher 

consumption of these inputs and more intensive management to produce this product. In 

another study in South Korea [46], the amount of CO2-eq emitted from soybean produc-

tion in conventional and organic farms was 1657.55 and 2045.11 kg ton−1, respectively. Like 

the present study, N2O emissions from the consumption of manure and chemical fertiliz-

ers and CO2 from fossil fuel combustion accounted for the largest share of total CO2-eq 

emitted from these farms. Manure, fuel, and fertilizer were the main contributors to GHG 

emissions and poor energy efficiency in Korean soybean production. To diminish these 

emissions, the authors proposed the optimal use of these inputs. Research to assess the 

LCA of farming systems in Switzerland [12] revealed that N2O and CO2 emitted from fer-

tilizers and fossil fuels had the highest impact on GWP, respectively. Similar surveys on 

the LCA of soybean production in different parts of the world, such as the Northern Great 
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Plains, USA [47], the U.S. Midwest [48], Southern Brazil [49], Mato Grosso State, Brazil 

[50], and Jilin Province, China [51], showed that the amount of CO2-eq emitted was calcu-

lated as 602 g kg−1, −11.4 to 22 kg kg−1, 0.734 kg kg−1, 0.186 kg kg−1, and 263 kg ton−1, respec-

tively. Accordingly, although the emission of GHG in different agroecosystems varies de-

pending on climatic and soil conditions, the type of management practices also has a sig-

nificant effect on the amount of these emissions and their environmental impact. Hence, 

due to the role of diesel, and chemical fertilizers (as the most crucial environmental 

hotspots) in causing damage to the climate change category, improvement measures 

should focus on the consumption management of these inputs. 

The findings revealed that in all scenarios, diesel and nitrogen fertilizer had the high-

est impacts on the resource category, respectively. In other words, these inputs are the 

main environmental hotspots in damage to this category (Figure 5). These results are con-

sistent with the findings of Knudsen et al. [51] in Jilin Province, China. Based upon this 

study, the production of agro-chemicals and traction at farms, with about 73% and 27% of 

the total non-renewable energy used in soybean production (1710 MJ t−1), respectively, 

were the main contributors to the environmental burdens caused by this index. To im-

prove the environmental profile of soybean production, they suggested a minimum con-

sumption of nitrogen fertilizer and efficient management of manure by covering manure 

storage and providing adequate aeration, reducing nutrient losses and NH4 emissions. In 

Swiss farming systems, mechanization processes, i.e., soil cultivation and harvest, accom-

panied by mineral fertilizers, particularly N fertilizers, showed the highest demand for 

non-renewable energy resources. The reason why N fertilizers have the highest energy 

demand of all inorganic fertilizers is the high consumption of fossil fuels in the process of 

NH3 synthesis [12]. Depletion of abiotic resources refers to the use of resources such as 

minerals (e.g., phosphate rock) or fossil fuels, which reduces the access of future genera-

tions to these resources. Since these resources have inherent value for human beings and 

access to them in the future is economically and socially important [14], more monitoring 

and research are needed to properly manage and reduce the consumption of these valua-

ble resources. In a similar study, the incompatibility of farm equipment and machines 

with the target product, as well as the use of old machinery on the farms, led to the high 

consumption of fossil fuel, i.e., diesel for peanut production. Therefore, it is possible to 

reduce diesel consumption and higher efficiency by replacing old machines with new and 

modern ones, as well as by conservation tillage (minimum or no-tillage), and, as a result, 

decrease its environmental impacts [52].  

In terms of damage to ecosystem quality, chemical fertilizers were the main environ-

mental hotspots due to their emissions. These results emphasize the importance of ferti-

lizer consumption management in Mazandaran soybean farms. In this regard, Zortea et 

al. [49], Khanali et al. [53], Brentrup et al. [42], and Ntiamoah and Afrane [26] also noted 

the need for the efficient management of fertilizer in the production of soybean, rapeseed, 

wheat, and cocoa, respectively. Similarly, Matsuura et al. [54] attributed the impacts of 

human toxicity and freshwater eutrophication (as the impact categories affecting human 

health and ecosystem quality) in the soybean–sunflower production system to heavy met-

als and phosphate emitted from high phosphorus fertilizers consumption in soybean cul-

tivation. These results reflect the importance of optimizing the usage of fertilizers for the 

cleaner production of these products. However, due to the sharing of some resources, such 

as the biological stabilization of nitrogen by soybean and more efficient use of land, the 

soybean–sunflower cropping system had better environmental performance than the sum 

of monocultures. As the results of this study showed, the agricultural sector, through the 

use of chemical fertilizers, especially phosphorus, is one of the anthropogenic sources for 

the release of heavy metals into the environment. By emitting these pollutants into water 

and soil, not only are natural ecosystems damaged, but they also endanger human health 

by entering the food chain [55]. Apart from being an important anthropogenic source for 

the release of heavy metals, phosphorus is vital as an important nutrient for crop produc-

tion [56]. In addition, most countries in the world (more than 90%) do not have significant 
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reserves of phosphate rock as the main source of production of most phosphate fertilizers, 

considering that no element can be replaced instead of phosphorus in biochemical pro-

cesses [57], so it is important to manage the consumption of this non-renewable resource. 

Hence, to achieve sustainable agriculture, biofertilizers and renewable inputs can be used 

to improve soil fertility and minimize environmental hazards [58]. These inputs can main-

tain long-term soil fertility and stability through mechanisms such as biological nitrogen 

fixation, conversion of insoluble phosphorus in the available form for plants, and in-

creased access to macro- and micronutrients in the rhizosphere [59]. Plant-growth-pro-

moting microbes, such as plant-growth-promoting rhizobacteria (PGPR) and plant-

growth-promoting fungi (PGPF), are examples of these biofertilizers. 

According to the present study, the use of agrochemicals (herbicides and chemical 

fertilizers) and the burning of diesel fuel in farm machinery were the main contributors to 

the environmental burdens caused by sugarcane growth and harvesting in Mexico. In this 

study, the use of NPK fertilizers in farms had a significant contribution to the endpoint 

categories (climate change, ecosystem quality, human health, and resources). For dealing 

with this problem and to correctly estimate the amounts of fertilizer used on farms, they 

proposed an artificial-intelligence-based decision support system. Furthermore, they sug-

gested the presence of agricultural experts due to the difficulty of interpreting soil test 

results for farmers [60]. In a similar study in Mazandaran Province, high consumption of 

nitrogen fertilizers and diesel fuel were the main contributors to the environmental bur-

dens of rapeseed production in the area. They revealed that the integration of legumes, 

such as beans, in rotation with rapeseed could be a management strategy to reduce de-

pendence on chemical fertilizers and thus produce more environmentally friendly rape-

seed in the region [61]. Pulses increase soil productivity by reducing soil pathogens, de-

creasing soil erosion, and biological stabilization of nitrogen, thereby improving crop 

yields in rotation. In addition, pulses are environmentally friendly products due to their 

reduced use of inputs such as irrigation and agrochemicals, i.e., pesticides and fertilizers. 

Legume-based cropping systems enhance the sustainability of production systems by in-

creasing soil biodiversity, soil health and quality, crop productivity, soil restoration, and 

food security [62,63].  

By comparing the statistical parameter MAPE, it can be concluded that the proposed 

model predicts the environmental parameter climate change better than other parameters 

with 2.1% MAPE. The use of two artificial intelligence simulation models, ANN and AN-

FIS-FCM, showed that the use of these models could predict the impacts of reducing 

chemical fertilizers and fuel consumption on the number of emissions of pollutants and 

categories of environmental damage in soybean production. These forecasts can predict 

the best levels of agriculture inputs according to damage categories to be used by farmers. 

In addition, the predicted results can help to formulate different programs in farms for 

the future so that the optimization of emissions of pollutants and energy consumption 

does not cause harm to performance. 

5. Conclusions 

In the current study, the life-cycle assessment method was used to predict environ-

mental impacts from soybean cultivation in different scenarios using developing models 

based on ANFIS-FCM and ANN. Based on the result obtained, the total environmental 

impact of soybean production in the studied area was in the range of 293.87–503.73 mPt 

ton−1, the lowest and highest of which were related to the R-S and W-S scenarios, respec-

tively. Out of these values, about 43–47% was related to the human health damage cate-

gory, which was mainly due to the consumption of diesel and chemical fertilizers. Ac-

cording to the results, ANFIS-FCM was chosen as a better model than ANN models due 

to the higher accuracy of its statistical indicators. Additionally, the RMSE and MAPE val-

ues achieved in ANFIS-FCM were lower compared to the ANN model for all soybean 

cultivation environmental prediction performances. Generally, the results of this study 

are important for the environmental burden control of soybean production. However, the 
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results showed that soybean cultivation after rapeseed (R-S) has the smallest environmen-

tal impacts compared to the W-S and F-S scenarios. In addition, the ANFIS-FCM model 

can be a more useful tool than ANN to predict high-precision environmental indicators 

for agricultural production.  
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Nomenclature 

ANNs Artificial neural networks m3 Cubic meter 

ANFIS Adaptive neuro-fuzzy inference system m2 Square meter 

AI Artificial intelligence mg Milligram 

C Carbon mPt Milli point 

CV Cross-validation MJ Mega joule 

CCI Climate change indicator MT Metric ton 

Cu Copper ML Machine learning 

Cr Chromium MAPE Mean absolute percentage error 

Cd Cadmium MFs Membership functions 

C6H6 Benzene NC Number of clusters 

CO2 Carbon dioxide NO-3 Nitrate 

CO Carbon monoxide NH3 Ammonia 

CH4 Methane N2O Dinitrogen monoxide 

CF Carbon footprint NOX Nitrogen oxides 

DALY Disability-adjusted life years Ni Nickel 

EIA Environmental impact assessment NMVOC Non-methane volatile organic compound 

eq Equivalents  PAH Polycyclic hydrocarbons 

FCM Fuzzy C-means clustering algorithm Pb Lead 

FIS Fuzzy inference systems P Phosphorus 

FU Functional unit PO4−3 Phosphate 

F-S Fallow–Soybean PDF Potentially Disappeared Fraction 

GHG Greenhouse gases PGPR Plant-growth-promoting rhizobacteria 

GW Global warming PGPF Plant-growth-promoting fungi 

GWP Global warming potential R2 Determination coefficient 

g Gram R-S Rapeseed–Soybean 

ha  Hectare RMSE Root means square error 

HC Hydrocarbons SO2 Sulfur dioxide 

Hg Mercury Se Selenium 

IPCC Intergovernmental Panel on Climate Change TCP Technical Cooperation Project 

https://www.ipcc.ch/
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ISO International Organization for Standardization TJ Terajoule  

kWh Kilowatt-hour W-S Wheat–Soybean 

kg Kilogram yr Year 

LCA Life-cycle assessment Zn Zinc 

LCI Life-cycle inventory μm Micrometer 

LCIA Life-cycle impact assessment PDF Potentially Disappeared Fraction of Species 
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