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Abstract: Forest fire is a primary disaster that destroys forest resources and the ecological environ-
ment, and has a serious negative impact on the safety of human life and property. Predicting the
probability of forest fires and drawing forest fire risk maps can provide a reference basis for forest
fire control management in Hunan Province. This study selected 19 forest fire impact factors based
on satellite monitoring hotspot data, meteorological data, topographic data, vegetation data, and
social and human data from 2010–2018. It used random forest, support vector machine, and gradient
boosting decision tree models to predict the probability of forest fires in Hunan Province and selected
the RF algorithm to create a forest fire risk map of Hunan Province to quantify the potential forest
fire risk. The results show that the RF algorithm performs best compared to the SVM and GBDT
algorithms with 91.68% accuracy, 91.96% precision, 92.78% recall, 92.37% F1, and 97.2% AUC. The
most important drivers of forest fires in Hunan Province are meteorology and vegetation. There are
obvious differences in the spatial distribution of seasonal forest fire risks in Hunan Province, and
winter and spring are the seasons with high forest fire risks. The medium- and high-risk areas are
mostly concentrated in the south of Hunan.

Keywords: forest fire occurrence probability model; forest fire risk rating; machine learning

1. Introduction

As an important component of terrestrial ecosystems, forests are energy reservoirs,
gene banks, water reservoirs, and carbon reservoirs on Earth, and play a vital role in main-
taining the ecological balance of the planet and improving the ecological environment [1].
Forest fires, as a global phenomenon [2], pose a serious threat to the ecological environment
as well as the safety of human life and property [3–6]. In recent years, the frequency of
forest fires has increased due to global warming and frequent human activities [7]. Forest
fire risk is defined as the likelihood of fire occurrence and its consequences [2]. Forest fire
risk assessment is a scientific method to quantify the level of forest fire risk [8]. Forest fire
risk level zoning map is an important part of forest fire risk assessment. It is based on the
probability of forest fire occurrence at a specific threshold [9] and provides an effective map
for resource allocation for forest fire risk management. Therefore, in order to protect forest
resources and forest ecosystem functions, it is important to map the forest fire risk level
zones for forest fire prevention and control [10].

Forest fires are influenced by a variety of factors [11,12]. With the advancement of
forest fire risk prediction studies, at present, most analyses are carried out in a compre-
hensive manner with multiple factors, such as meteorology, topography, vegetation, and
human activities [13–15]. Meteorology is considered to be a determinant of forest fires,
which mainly affects forest fires in two ways: by influencing the frequency of forest fire
weather and the water content of combustible materials [16]. Differences in topography
can influence wind, water, and heat transfer between sites [17]. Furthermore, they have
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an impact on the composition of vegetation types as well as the spatial distribution of
combustibles, influencing the occurrence and spread of forest fires. Human activities are
considered to be a major factor affecting forest fires, including mainly the distance of roads,
the distance of settlements, and the location of recreational areas [18]. Vegetation is a source
of fuel for forest fires and has a direct impact on their ability to catch fire [19].

Currently, forest fire risk prediction has evolved from statistical analysis models to
more sophisticated models [20]. Simple statistical and empirical methods include an-
alytic hierarchy [21], weight of evidence [22], multiple linear regression [23], Poisson
regression [24], and logistic regression [25–27]. However, forest fires are a typically non-
linear and complex process, and the above methods do not always achieve satisfactory
results [28,29]. To address these problems, machine learning has been applied to modeling
forest fire occurrence, such as random forests (RFs) [15,19,30], support vector machines
(SVMs) [31,32], multilayer perceptron neural networks (MLP) [20,33], artificial neural net-
works (ANNs) [34–36], and adaptive neuro-fuzzy inference systems (ANFISs) [37,38]. In
addition, hybrid and ensemble models have also received attention from researchers in or-
der to obtain higher prediction accuracy. For example, Bui et al. [28] used a novel hybrid AI
approach combining a neuro-fuzzy inference system (NF) and particle swarm optimization
(PSO) for forest fire risk prediction in Lam Dong Province, Vietnam, and they found that
the model performed well on both the training dataset (AUC = 93.2%) and the validation
dataset (AUC = 91.6%), and outperformed SVM and RF. Moayedi et al. [39] used ant colony
optimization (ACO) and biogeography-based optimization (BBO) algorithms to optimize
an ANN for forest fire prediction accuracy, and the results of the study showed that BBO
and ACO could improve ANN accuracy from 81.3% to 84.0% and 83.9%, respectively. Jaa-
fari et al. [40] improved the forest fire prediction capability of an ANFIS using an integrated
combination of ANFIS with applied genetic algorithm (GA) and firefly algorithms (FA).
They demonstrated that these two algorithms improve the prediction efficiency of ANFIS
from 77.6% to 88.1% and 90.8%, respectively. Similarly, Moayedi et al. [41] used the three
wise meta-heuristics of genetic algorithm (GA), differential evolution (DE), and particle
swarm optimization (PSO) in combination with ANFIS for forest fire sensitivity mapping in
the Golestan Province, Iran. Their study found that GA-ANFIS obtained optimal accuracy
on training (AUC = 91.25%) and prediction datasets (AUC = 85.03%). In fact, there is
currently no consensus on the choice of a model for forest fire risk prediction. No study has
proven that a particular method is applicable to all areas in different environments [42,43].
Different models differ in predicting the probability of forest fire occurrence and mapping
forest fire risk zones.

Hunan Province is one of the key forestry provinces in the south of China, rich in
forest resources and with a high frequency and intensity of fires. In the past, Guo Haifeng
et al. [44] used principal component analysis to establish a weighted forest fire weather
index model and to determine forest fire weather classes. Wang Shuang et al. [45] used
logistic model to study the forest fire risk occurrence pattern in Hunan Province. However,
due to the nonlinear complexity of forest fire occurrence, simple empirical methods or
linear regression models can no longer meet the needs of managers. Few studies have
compared multiple machine learning methods for mapping seasonal forest fire risk levels
in the region. This study utilized random forests, support vector machines, and gradient
boosting trees to predict forest fires in Hunan Province. The primary goals of this study are
to (1) assess the predictive ability of random forest, gradient boosting tree, and support
vector machine in Hunan Province forest fire risk, (2) produce accurate and reliable forest
fire risk zoning maps using optimal models, and (3) assess the importance of various
influencing factors in forest fire risk prediction.

2. Materials and Methods
2.1. Study Area

Hunan Province is located in the middle reaches of the Yangtze River, between 108◦47′

and 114◦15′, 24◦38′ and 30◦08′ N, with a total land area of 21.18 × 104 km2 (see Figure 1).
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The region has a continental subtropical monsoonal humid climate with a warm climate,
concentrated rainfall, and abundant light and heat resources, with an average annual
temperature between 16 and 18.5 ◦C and an average annual precipitation between 1200
and 1700 mm [45]. Its topography consists of plains, hilly land, mountains, basins and
rivers, and lakes, with mountains and hills dominating, together accounting for 66.62% of
the total area. The province has a vast number of planted forests and primarily evergreen
broad-leaved forests, mainly concentrated in southwestern, southern, northwestern, and
eastern Hunan [44].
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Figure 1. Study area and distribution of provincial forest hotspot data in Hunan Province, 2010–2018.

2.2. Forest Fire Data

The Department of Fire Prevention and Control Management, Ministry of National
Emergency Management, China, provided the satellite monitoring hotspot data from 2010
to 2018. Fire point data were obtained from this data, and the abnormal samples in the
original dataset were removed before screening the forest fire data with the land type
of forest land. When modelling forest fire prediction, because the dependent variable
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under study is a binary variable, a certain number of random points need to be created
to participate in the modelling as non-fire points. We created random points (non-fire
points) at a 1:1 ratio within the forested area of the 30 m surface cover data for Hunan
Province in 2020, and performed a 500 m buffer zone analysis on fire points to avoid
random points being located at or near the same location as fire points. The fire point is set
to 1 and the random point is set to 0. The random point follows the principle of double
randomness in time and space [19,30]. The woodland data were obtained from the 30 m
global land cover dataset GlobeLand30 from the Global Geographic Information Public
Product (http://www.globallandcover.com/ accessed on 16 January 2022), and the number
of fire points and random points were 12,815 and 10,539, respectively.

2.3. Forest Fire Impact Factor Data

The fire variables of the forest fire risk model mainly include meteorology, topography,
vegetation, and human activities. We chose 22 forest fire variables as the initial variables
influencing the occurrence of forest fires in Hunan Province for this study, and detailed
descriptions of the categories are shown in Table 1. In this study, all were continuous
variables except for aspect and special festival, which were categorical variables.

Table 1. The initial driving factors of forest fire.

Influencing Factors Independent Variable Symbol References

Location

Longitude (◦) Lon
[31]Latitude (◦) Lat

Altitude (m) Alt
[2,5,8,10]Slope (◦) Slo

Aspect Asp

Infrastructure

Closest distance of fire point to
residential area(m) Set

[15,28,46]Distance from the fire point to the
highway (m) Hig

Nearest distance of fire point to
railway (m) Ral

Social humanity
Special festival Spe [30,31]

Population Pop
[18,47,48]GDP GDP

Vegetation NDVI NDVI [7,32,41]

Meteorology

Average surface temperature (°C) Ast

[11,19,49]

Daily maximum surface
temperature (°C) Mast

Cumulative precipitation at 20–20
(mm) Pre

Average station pressure (hPa) Spr
Average relative humidity (%) Arh

Minimum relative humidity (%) Mrh
Average temperature (°C) Ate

Daily maximum temperature (°C) Mate
Average wind speed (m/s) Aws

Hours of sunshine (h) Suh

2.3.1. Meteorological Data

The meteorological data were obtained from the China Meteorological Data Network
(https://data.cma.cn/ accessed on 30 June 2021), which includes daily value dataset (V3.0)
of Chinese surface climate data for 8 years from 2010 to 2018. After pre-processing the
meteorological data, we finally selected 10 meteorological factors, including daily average
surface temperature, daily maximum surface temperature, cumulative precipitation at
20–20 (the 24-h cumulative precipitation from 20:00 pm to 20:00 pm the following day), daily
average air pressure, daily average relative humidity, daily minimum relative humidity,

http://www.globallandcover.com/
https://data.cma.cn/
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hours of sunshine, daily average temperature, daily maximum temperature, and average
wind speed, as the initial forest fire meteorological variables.

2.3.2. Topographic Data

The incidence and spread of forest fires are impacted by topographic variations.
Differences in topography play an important role in the composition of vegetation types and
the spatial distribution of combustible materials, which directly affect the occurrence and
spread of forest fires, for which elevation, slope, and aspect have been widely reported [17].
To collect altitude, slope, and aspect information for Hunan Province, the DEM data
with a spatial resolution of 30 m was acquired from the Geospatial Data Cloud website
(http://www.gscloud.cn/ accessed on 16 January 2022). We divided the aspect into nine
categories as shown in Table 2.

Table 2. Aspect classification.

Aspect Aspect Range (Degrees) Classification Description

Gentle slope −1 0
North 0∼22.5/337.5∼360 1

Northeast 22.5∼67.5 2
East 67.5∼112.5 3

Southeast 112.5∼157.5 4
South 157.5∼202.5 5

Southwest 202.5∼247.5 6
West 247.5∼292.5 7

Northwest 292.5∼337.5 8

2.3.3. Vegetation Data

Changes in NDVI values can indicate changes in water and nutrient availability, plant
diseases, and other stressors, which in turn are indicators of vegetation vulnerability to
fire [50]. As a result, the vegetation data in this study were expressed by NDVI (Normalized
Vegetation Index). The Resource Environment Science and Data Center (http://www.resdc.
cn/ accessed on 30 June 2021) provided the spatial distribution dataset of China Quarterly
Vegetation Index (NDVI) with a spatial resolution of 1 km. The seasons were separated into
four groups based on the vegetation status: spring (March–May), summer (June–August),
autumn (September–November), and winter (December–February).

2.3.4. Social and Humanistic Data

The basic geographic data were obtained from the National Basic Geographic Database
of 1:250,000 from the website of National Geographic Information Resource Catalog System
(http://www.webmap.cn/ accessed on 30 June 2021). Based on ArcGIS software, the short-
est distance from sample points to infrastructures, such as railroads, roads, and settlements,
was calculated. Socioeconomic data included population density, gross domestic product
(GDP) per capita, and special festival. GDP and population density were uploaded from
the National Earth System Science Data Center (http://www.geodata.cn/ accessed on
30 June 2021) for the 2015 spatial distribution of population and GDP on a kilometer grid
with a resolution of 1 km. Since there are certain traditional Chinese holidays where people
burn paper money to pay respects to their deceased relatives that may lead to forest fires,
Chinese New Year’s Eve, the first day of Chinese New Year, the second day of Chinese New
Year, the Lantern Festival, the Tomb Sweeping Festival, and the Zhongyuan Festival (i.e.,
July 15 of the lunar calendar) were set as special festival days and denoted as 1; non-special
festival days were denoted as 0.

http://www.gscloud.cn/
http://www.resdc.cn/
http://www.resdc.cn/
http://www.webmap.cn/
http://www.geodata.cn/
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2.4. Data Processing
2.4.1. Normalization

The magnitudes and magnitude units of the forest fire inciting elements vary, which
will have an impact on the analysis of the data. The normalization of the data is required
so that each factor is in the same order of magnitude in order to avoid the influence of
magnitudes among indicators and the issue of excessive differentiation of output data
magnitudes. The normalization formula is as follows.

x∗i =
xi − xmin

xmax − xmin
(1)

where xi and x∗i are the values before and after normalization of the data, respectively; and
xmax and xmin are the maximum and minimum values of the sample data, respectively.

2.4.2. Multiple Collinearity Test

The assessment of multicollinearity of the independent variables can provide their
respective importance and positional positioning in the optimal model construction [51].
Therefore, the variance inflation factor (VIF) was applied in this study to step out the
independent variables with significant covariance. Generally, when VIF > 10, it indicates
that the independent variables should be excluded because of their significant covariance.
Since the diagnosis of multicollinearity is only applicable to continuous variables, not to
categorical variables, aspect and special festival did not perform multicollinearity diagnosis,
and these two variables entered directly the importance test stage of the model. After the
test, after excluding the three variables of daily average surface temperature, daily average
temperature, and minimum relative humidity (VIF values of 76.849, 89.026, and 14.605,
respectively), the VIF values of the remaining 17 continuous variables were less than 10,
and there was no multicollinearity (see Table 3). Finally, 17 continuous variables and the
2 categorical variables of aspect and special festival, a total of 19 feature variables, entered
the model fitting stage.

Table 3. The results of the multicollinearity diagnosis.

Independent Variable VIF

Lon 1.274
Lat 1.329
Alt 1.818
Slo 1.319
Set 1.135
Hig 1.248
Ral 1.095

GDP 3.807
Pop 4.137

NDVI 1.861
Mast 8.634
Pre 1.179
Spr 1.521
Arh 2.283
Suh 2.623

Mate 7.146
Aws 1.216

2.5. Methods
2.5.1. Random Forest

RF is a popular machine learning algorithm proposed by Breiman in 2001 [52], which
is an inheritance and improvement of the traditional decision tree, capable of analyzing
and evaluating the relative importance of the input factors with high classification accuracy
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and computational speed as well as robustness to outliers [47]. The performance of RF
is influenced by two important parameters: the number of trees in the forest (ntree) and
the number of random variables per split node (mtry). Therefore, these two parameters
must be set appropriately beforehand. As ntree is less sensitive to classification accuracy,
we set ntree to 500 trees [20] and used five-fold cross-validation to determine the optimal
parameters for the model mtry, finally settling on mtry = 4.

2.5.2. Support Vector Machine

SVM is a machine learning method that is applicable to classification and regression.
Its basic idea is to maximize the gap between different classes of samples by finding an
optimal hyperplane in the feature space as the basis for classification [53]. The prerequisite
for classification using SVM is that the training sample space is linearly divisible, but the
actual data may be complex. To solve nonlinear problems in classification or regression,
kernel functions are introduced into SVM classification methods. Kernel functions can map
the original input space to a new feature space, making samples that are otherwise linearly
indistinguishable potentially distinguishable in the kernel space. The kernel functions
are mainly divided into kernel functions with linear kernel function, polynomial kernel
function, radial basis kernel function (RBF), etc. In this study, the parameters of C and g
and the optimal model were determined based on grid search, and then the optimal values
of C and g were determined to be 100 and 0.01, respectively, and the RBF kernel function
was selected to build the model.

2.5.3. Gradient Boosting Decision Tree

Gradient boosting decision tree (GBDT) calculates the residuals between the current
output and the true value by each weak learner, and then accumulates the residuals of
each weak learner output to reduce the residuals in the training process to achieve the
classification goal [54]. The GBDT algorithm has the advantages of high prediction accuracy,
robustness, and the ability to handle both continuous and discrete data [55]. The main
purpose of the GBDT algorithm is to solve the optimization of the loss function, using the
negative gradient of the loss function to fit the residuals of the previous round of weak
learners, and the training process can be represented by the following equations [56].

fM(x) =
M

∑
m=1

T(x, θm) (2)

where M is the number of iterations, T(x, θm) is the weak classifier generated at each
iteration, and θm is the loss function, which can be expressed as:

θm = argmin∑N
i=1 L(yi, Fm−1(xi) + T(xi, θm)) (3)

where Fm−1(xi) is the current iteration.
This study determined a definite learning rate of 0.1 and a number of weak learners of

190 for the GBDT model through a five-fold cross-validation and grid search.

2.5.4. Model Performance Evaluation

In this study, the classification ability of different machine learning methods was
evaluated using five metrics: accuracy, precision, recall, F1 (H-mean), and area under curve
(AUC) [31,48]. F1 is used to assess precision and recall. Accuracy is the proportion of
correctly classified samples in the total sample, while precision is the proportion of positive
samples in the sample that are predicted to be true, and recall is the proportion of positive
samples in the sample that are actually true [57]. The relationship between sensitivity and
specificity is represented by the receiver operating characteristic curve (ROC), and the area
of the lower part of the ROC curve is known as the AUC. This area is frequently used to
assess the predictive power of classification models, and the closer its value is to 1, the more
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accurate the mode prediction [49]. The accuracy, precision, recall, and F1 can be expressed
by the following equations.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 = 2× Precision× Recall
Precision + Recall

(7)

where TP (true positive) was predicted by the model as the number of positive samples
in the positive category, FP (false positive) was predicted by the model as the number of
negative samples in the positive category, TN (true negative) was predicted by the model
as the number of negative samples in the negative category, and FN (false negative) was
predicted by the model as the number of positive samples in the negative category.

3. Results

In this study, the original sample data were randomly divided into 70% training
samples (for models building) and 30% test samples (for models testing).

3.1. Comparison and Validation of the Three Models

This research conducted a grid search and five-fold cross-validation on each classifier
to measure the predictive accuracy of the model. Using the training dataset, the final RF,
SVM, and GBDT models were trained. Five evaluation metrics are then used to validate
the performance of these three machine learning algorithms: accuracy, precision, recall, F1
value, and AUC. The fit results of all three models were good (AUC > 0.85), according to
the test findings of the validation dataset (see Figures 2 and 3). The higher accuracy value
indicates the stronger predictive ability of the model, and the order of accuracy values of
the three models was RF> GBDT > SVM. Therefore, RF was found to be the best method
for predicting forest fire risk in Hunan.

Among the three machine learning algorithms, the RF algorithm performed the best,
outperforming the other two algorithms in every evaluation index with 91.68% accuracy,
91.96% precision, 92.78% recall, 92.37% F1, and 97.2% AUC. RF algorithms can tolerate
outliers and noise, and have the ability to handle redundant attributes and good general-
ization [58,59]. This was followed by GBDT with 89.38% accuracy, 88.56% precision, 92.36%
recall, 90.42% F1, and 95.83% AUC. SVM had the worst performance with an accuracy
of 88.88%, precision of 87.07%, recall of 93.38%, F1 value of 90.11%, and AUC of 95.29%.
Although SVM also shows good classification and generalization capabilities, it is very
time consuming to calibrate [48,59].

3.2. Importance of Feature Factors

The RF algorithm is able to automatically identify the relative importance of feature
variables by mean decrease accuracy [2]; therefore, the importance of the mean decrease
accuracy of the 19 drivers was ranked. The results show (see Figure 4) that the importance
of average relative humidity is significantly greater than that of the other variables, and
its importance is ranked first, followed by the maximum daily temperature and hours of
sunshine. Higher temperatures and long periods of sunshine tend to reduce the water
content of vegetation and increase the likelihood of forest fires. Among the meteorological
factors, the average air pressure has a relatively small effect on the occurrence of forest
fires in Hunan Province. In this study, NDVI was the fourth most important factor influ-
encing the occurrence of forest fires in Hunan, followed by the daily maximum surface
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temperature and latitude, and the influence of longitude was relatively small compared
to latitude. Longitude and latitude reflect, to some extent, differences in forest and tree
species categories, as well as differences in the degree of flammability of forests of different
tree species. Among the topographical factors, elevation has a greater influence on the
occurrence of forest fires in Hunan compared to slope and aspect. The influence of human
activities on the occurrence of forest fires in Hunan Province is ranked as follows: GDP,
nearest distance of fire point to railway, population density, special festival, closest distance
of fire point to residential area, and distance from the fire point to the highway.
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3.3. Seasonal Fire Zoning Map of Hunan Province

The spatial distribution of forest fire occurrence is crucial for forest fire prevention and
control as well as fire management. In order to achieve the optimal allocation of firefighting
resources, the best performing RF model’s forest fire occurrence probability prediction
results were selected for this study to map the fire risk in Hunan Province over four seasons.
The kriging interpolation method in the ArcGIS 10.4 software was used to interpolate
the fire prediction probabilities. In this study, the fire risk zones in Hunan Province were
classified into five categories (I–V). I: forest fire probability range of 0.0–0.2 represents the
very-low-risk zone, i.e., forest fires are basically unlikely to occur; II: forest fire probability
range of 0.2–0.4 represents the low-risk zone, i.e., forest fires are unlikely to occur; III: forest
fire probability range of 0.4–0.6 represents the medium-risk zone, i.e., forest fires are likely
to occur; IV: forest fire probability range of 0.6–0.8 represents the high-risk zone, i.e., a
forest fire is likely to occur; and V: forest fire probability range of 0.8–1.0 represents the
very-high-risk zone, i.e., forest fire is very likely to occur.

Figure 5 illustrates the stark differences in the spatial range of the risks of seasonal
forest fires in Hunan Province. Among them, winter and spring are the seasons with
high forest fire risks. The areas of medium and high fire risks are relatively large, mainly
concentrated in southern Hunan. There are relatively few forest fires in autumn and
summer. Yongzhou City, Chenzhou City, Hengyang City, Zhuzhou City, the center portion
of Loudi City, the southeast of Shaoyang City, and the east and south of Yueyang City
are the main locations of the highly high-risk zones in winter. The central and southern
parts of Yongzhou City, the eastern part of Shaoyang City, the central part of Loudi City,
the southern and eastern parts of Hengyang City, and the northern and central parts of
Huaihua City are the main locations of the highly high-risk zones in spring. In the fall, the
southeast of Hengyang City, Zhuzhou City, and the center of Yongzhou City are the main
distribution points for the extremely high-risk zones. In the fall, the southeast of Hengyang
City, Zhuzhou City, and the center of Yongzhou City are the main distribution points for
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the extremely high-risk zones. The south of Hengyang City and the east of Shaoyang City
are mostly where the severely high-risk zones in the summer are located. The relevant
management authorities in Hunan Province should step up their fire prevention efforts in
spring and winter, especially in the major cities mentioned above.
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4. Discussion

Three machine learning methods (RF, SVM, and GBDT) and 19 forest-fire-driving
factors were used in this study to predict the likelihood of forest fire occurrence in Hunan
Province. The results demonstrate that all three models are suitable for predicting forest
fire occurrence in Hunan Province (prediction accuracy is greater than 85%), but RF has
a higher generalization ability than GBDT and SVM. The optimal model’s accuracy is
91.68%, precision is 91.96%, recall is 92.78%, F1 is 92.37%, and the AUC is 97.2%, indicating
that the stochastic forest model is more appropriate for this assignment. The results can
provide a reference for future forest fire modeling in Hunan. RF is able to operate on
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large datasets with a large number of feature variables, has a high tolerance to noise and
missing data, and can efficiently assess complex interactions and nonlinearities among
explanatory variables [2,30]. Due to its powerful functions and high usability, RF has
become one of the most popular machine learning methods. SVM has the advantage of
nonlinear mapping without excessive interference from noisy data and is not prone to
overfitting; however, it requires considerable time to test different kernel functions and
model parameters to find the best model, making this approach impractical for dealing
with large sample datasets [31,50]. GBDT is an additive model consisting of multiple CART
regression trees, which improves the accuracy of prediction by updating the residuals and
continuously reducing them with the number of training rounds. This study concluded that
SVM is less suitable for predicting forest fire incidence in Hunan compared to the other two
methods, mainly because it is difficult to calibrate, too time-consuming to optimize, and
does not achieve the accuracy of RF or GBDT. Because each model’s prediction accuracy
depends heavily on the input data and the adjusted parameters, different results may be
achieved for various study areas and datasets [48,49]. In addition, we compared a number
of other studies related to forest fire risk prediction in Hunan Province and found that the
optimal model in this study, RF, achieved a high prediction accuracy, as detailed in Table 4.

Table 4. Comparison of the prediction accuracy of some relevant studies on forest fire risk in Hunan
Province.

Investigator Method Description Impact Factor Precision

Guo et al. [44]

Combined with the principal component
analysis method, a weighted forest fire

risk weather index model was established
to determine the forest fire risk weather

level according to the weather index.

Meteorology (5 factors) AUC = 74.2%

Wang et al. [45]

The logistic model was used to predict
the probability of forest fire risk to

classify the forest fire risk level in Hunan
Province.

Meteorology, vegetation,
topography, social/humanity

(7 factors)
AUC = 77.9%

Yang et al. [60]

Construction of the Maxent wildfire risk
assessment model using GIS to analyze

the contribution, importance, and
response of environmental variables to

wildfire in Hunan Province.

Meteorology, vegetation,
topography, social/humanity

(12 factors)
AUC = 80.2%

This study

This study used random forest, support
vector machine, and gradient boosting
tree for forest fire prediction in Hunan

Province and selected the optimal model
to map the seasonal forest fire risk level

in the region.

Meteorology, vegetation,
topography, social/humanity

(19 factors)
AUC = 97.2%

The analysis of the significance of the characteristic factors revealed that slope, among
the topographic factors, has the least influence on the incidence of forest fires in Hunan
Province, followed by human activity infrastructures. However, elevation, among the
topographic factors, has a greater influence on forest fire occurrence in Hunan. The higher
the elevation, the higher the relative humidity and the less likely fires are to occur [61,62],
while the lower the elevation, the higher the human accessibility and the more significant
the human activities; thus, the more likely forest fires are to occur [48]. GDP and population
density in human activities have a greater influence on the occurrence of forest fires in
Hunan Province, most likely because the development of the forestry industry is closely
linked to human activities, and an increase in population density and GDP promotes the
occurrence of forest fires [63,64]. Meteorological factors and vegetation factors are the
most important influencing factors of forest fires in Hunan Province. There is a great
deal of weight assigned to meteorological elements, including mean relative humidity,
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daily maximum temperature, and sunlight hours. The environment’s water and heat
conditions as well as the moisture content of forest fuels are all impacted by meteorological
elements [65,66], which is one of the main causes of forest fires. Among the vegetation
factors, NDVI has an important influence. Although longitude and latitude reflect the
differences in forest and tree species categories to some extent, they have less influence
relative to NDVI, mainly because NDVI can directly reflect the amount of fuel for forest
fires to occur, and the amount of fuel directly determines the fire capacity of the forest.
Although latitude and longitude and NDVI reflect the situation of combustibles to a certain
extent, they have certain limitations. Soil moisture affects the physiological activity of
vegetation and is related to vegetation water content and soil moisture. Therefore, in the
next work, we hope to incorporate accurate combustible material data and soil moisture
data for forest fire prediction modeling.

The Hunan Province’s forest fire risk level map indicates that the majority of Hunan’s
medium- and high-risk areas for forest fires are located in the southern portion of the
province, especially in Hengyang City, Shaoyang City, Yongzhou City, Chenzhou City,
central Loudi City, and southern Zhuzhou, which are essential locations for monitoring
and forecasting forest fires, which is largely consistent with previous studies [45]. The
main reason for this situation is that, due to the influence of monsoons and the topography,
Hunan is under the influence of winter wind in winter, and the geomorphological char-
acteristics of being surrounded by mountains in the southeast and west and open to the
north are conducive to the long drive of cold air, with the general trend of temperature
distribution being high in the south and low in the north. In addition, Hunan’s forest
resources are mainly distributed in the south, and the northern region has a wide water
area with small forest coverage and fewer fires. The eastern part of Yueyang City (Linxiang
City and Pingjiang County) in this study is also an area with a high incidence of forest
fires, probably because of the developed man-made infrastructures and large population
in the area, and the large forested area with poor fire resistance of forest tree species. It is
advised to raise investments to enhance comprehensive prevention and control of forest
fires and to safeguard the security of forest resources in Hunan Province due to the risk
of forest fires listed above in high-risk areas. Hunan Province experiences a large number
of forest fires in the winter and spring, so the forestry department should concentrate its
fire prevention efforts during these two seasons. Hunan is under the control of the winter
monsoon in winter, and the winter is dry, which increases the risk of forest fires. In spring,
the temperature rises, human activities such as agricultural production and Qingming
festival sacrifices increase, and the frequency of forest fires is high. Therefore, the forestry
department should strengthen the management of human activities and fire prevention
publicity and education, and raise awareness of forest fire prevention among all people. In
addition, when a forest fire occurs, structural changes occur in the forest ecosystem. How
it recovers is a complex process that includes a series of events, actions or changes, and
the role of humans [67]. Resilience can be seen as a key parameter in decision-making
processes [68], such as event mitigation following forest fires. In order to minimize the
impact of forest fires and reduce the recovery period, resilience in forest fire-prone areas
needs to be assessed. In future research, we hope to explore forest fire resilience in order to
aid the decision-making processes of local management bodies.

5. Conclusions

Accurately predicting the probability of forest fires and mapping scientific forest fire
risk levels can help forestry management departments to make scientific and effective
forest resource management decisions. In order to achieve these goals, this study used the
2010–2018 satellite monitoring hotspot data provided by the Department of Fire Prevention
and Control Management, Ministry of National Emergency Management, China, taking
into account meteorological, terrain, vegetation, and socio-human factors, and using three
machine learning methods (RF, SVM, and GBDT) to evaluate and map forest fire risk zones.
The model performance comparison showed that the RF model was more suitable for
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forest fire occurrence prediction in Hunan Province, with the optimal model having 91.68%
accuracy, 91.96% precision, 92.78% recall, 92.37% F1, and 97.2% AUC. In addition, the main
characteristic factors of forest fires in Hunan Province were meteorological factors and
vegetation factors by RF importance ranking. The drawn forest fire risk level zoning map
showed that there are obvious differences in the spatial distribution of seasonal forest fire
risk in Hunan Province, among which winter and spring are the seasons with high forest fire
risk. The high-risk area of forest fires is mainly concentrated in the south of Hunan Province,
and the prevention of forest fires should focus on these areas, and the authorities at all
levels should develop scientific management strategies and make reasonable emergency
resource allocation according to the local conditions. The results of this study can provide
some reference basis for future forest fire management and prevention and control in
Hunan Province.

Since the geographical distribution of forest fires and their influencing factors is highly
heterogeneous in space, the relationship between them has significant spatial instability [69].
Therefore, in future work, we will consider adding a geographically weighted regression
model for comparative studies, which incorporates spatial location information in the
regression parameters and is capable of conducting the spatial analysis of the influencing
factors and spatial prediction of forest fires. In addition, in future studies, we expect to add
more accurate combustible data, soil moisture data, and different types of socio-economic
factors to better support forest fire risk assessment in Hunan Province.
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