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Abstract: Climate change effects on long-term groundwater (GW) resource developments in the
Tana Basin, Ethiopia, are a growing concern. Efforts to provide estimates under various climatic
uncertainties are lacking in the region. To address this need, we deployed a fine-resolution (500 m)
GW model using MODFLOW-NWT for the Tana Basin, Upper the Blue Nile region. The GW model
was calibrated based on 98 historical instantaneous well-level measurements (RMSE = 16.36 m,
1.6% of range), and 38 years of monthly lake level data (RMSE = 0.2 m, 6.7% of range). We used the
model to simulate long-term climate change impacts by considering two representative concentration
pathways, (RCPs) 4.5 and 8.5, from the two extreme global circulation models (MIROC5 for wetter
conditions and CSIRO-Mk3 for drier conditions) available in the region. While the MIROC5 simulated
GW table (GWT) was found to be stable, the CSIRO-Mk3 simulated GWT exhibited large fluctuations
within +2 m to −4 m by 2100 due to climate change. More critical impacts were predicted for the lake,
where total lake releases from the baseline scenario were foreseen to be changed by +50% (MIROC5)
or −22% (CSIRO-Mk3) by the end of 2100.

Keywords: groundwater model; sustainability; MODFLOW-NWT; Upper Blue

1. Introduction

Climate change is a prominent environmental issue in Africa where effects on hy-
drological extremes, droughts, crop production, and groundwater (GW) resources are
projected [1–3]. Almost 50% of the population that relies on GW are projected as being ex-
posed to climate vulnerability [2]. In Ethiopia, climate change in combination with growing
water/food and anthropogenic stresses may impose a substantial risk to its rich reserves of
GW resources [4], straining the country’s sustainable development needs [5]. The country’s
climate vulnerability is critical due to its rainfed irrigation dependency, severe agricultural
drought, unsustainable use of resources, and existing water/food security issues [6,7]. Cli-
mate variability could affect the GW system’s direct replenishment through recharge and
future GW use patterns needed to sustain domestic, industrial, and agricultural needs [8].

Ethiopia’s water resources, with a documented availability of 120 km3 for surface
water (SW) and a recharge of over 36 km3 for GW [9,10], have the capacity to buffer such
climatic vulnerability [11] and foster a sustainable environment [12]. The Blue Nile Basin
(BNB), also known as the Abay Basin, results in more than 80% of the flows occurring dur-
ing the wet season (June–September, JJAS), with seasonal variabilities. The dependence on
GW during the dry season in the basin of Lake Tana (Tana Basin), the source of the BNB, is
increasing [13]. Strong interannual variability and climate change may further affect the dry
season flow [14], emphasizing the potential of GW to withstand future water-scarcity chal-
lenges. Despite these understandings, limited knowledge of GW sustainability, especially
under an uncertain climate, affects decision-makers’ efforts to design sustainable solutions.

Driven by these motivations, we simulated the long-term impacts of climate change
on the GW resources of the Tana Basin as well as several key components of the SW-GW
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budget in Lake Tana itself, using a calibrated GW model (referred frequently as the ‘Tana
GW model’). The work builds on our previous GW modeling efforts [15,16]. By using the
MODular 3-D finite-difference GW FLOW model with NWT solver (MODFLOW-NWT) [17]
and the Lake Package (LAK) [18], this work attempts to complement other subsurface
hydrological models in the BNB region [19–22] in overcoming the limitations of effectively
simulating GW-SW interactions of Lake Tana.

Studying climate change impacts on the variability of GW levels with MODFLOW
has gained some interest recently. Many studies have focused on the impacts on surface
hydrological processes [23–25] as well as agricultural droughts [2]. Tigabu et al. (2021) [26]
carried out the first attempt to use subsurface modeling to simulate climate change impacts
on GW resources in the Tana Basin. However, the study only simulates the shallow
GW contribution to streamflow (e.g., baseflow) in two Tana sub-basins (Gilgel-Abay and
Gumera) and does not provide enough vertical details to effectively address the complex
lake-aquifer interactions.

Our study is an effort to conduct physically-based GW model simulations to inves-
tigate combined climate change effects on the depth of the GW table (GWT), lake levels
and the GW-SW interactions of Lake Tana. The outcome of this research may contribute
to Ethiopia’s efforts to address the global challenge of sustainable development amidst
climatic uncertainties [27]. Furthermore, this research seeks to provide valuable hydro-
climatological information to the climate science community interested in the Upper Blue
Nile region, specifically focusing on the subsurface impacts of climate change, which is a
highlighted drawback in climate science [28].

2. Methodology and Data
2.1. Research Framework

The physically based simulations of this research imply an integrated modeling ap-
proach that takes the recharge, streamflow, and lake evaporation outputs from the Coupled
Routing and Excess STorage (CREST) hydrological model simulations [29] and develops
a fine-resolution (500 m) calibrated GW model for a spatial domain encompassing the
Tana Basin. Other key inputs to the model are overland precipitation and evaporation,
which come from satellite, reanalysis, and CREST simulations, respectively. The model
was calibrated with 98 instantaneous observation wells from 2013–2017, spread across the
Tana Basin.

Following the baseline scenario of simulations, we used the calibrated Tana GW model
to perform long-term simulations up to 2100. We used two climate change scenarios for the
two general circulation models (GCMs), e.g., RCP 4.5 and RCP 8.5 to pass the meteorological
forcings to CREST. We then simulated recharge, streamflow, and lake evaporation using
CREST, which were added as inputs to the calibrated Tana GW model. More details on
CREST and GCM data processing are available in [29,30] and are beyond the scope of
this research.

Figure 1 is a process diagram showing the key components of this research. The
Tana withdrawals (Figure 1) mostly accounted for irrigation, hydropower, and domestic
withdrawals. We used climate change simulations to investigate the long-term physical
availability of GW resources in the Tana aquifer, Lake Tana level variabilities, and potential
GW depletions. We also simulated the subsurface water budget components to map key
lake-aquifer interactions.

2.2. Study Area

The model domain encompasses the Tana Basin (latitudes of 10.95◦ N to 12.50◦ N and
longitudes of 36.73◦ E to 38.20◦ E, and covers an area of 15,096 km2) shown in Figure 2.
Figure 2 also shows the Tana sub-basins, tectonic faults, and the 98 historical wells used
in model calibration. The Tana Basin topography varies from about 4509 m on the east
to around 1777 m near Lake Tana. Several irrigation schemes have been proposed within
the Tana Basin in the past decade. Environmental flow from the lake is primarily released
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through the Blue Nile outlet (Figure 2). Lake Tana is the largest lake in Ethiopia, accounting
for 50% of the freshwater resources for the country, including water for domestic use, irriga-
tion, hydropower production, fisheries, grazing, and livestock. Hydropower withdrawals
largely account for the requirements of the Tana Beles project established in 2010 [31].
The Tana Beles project, together with existing national plans [32], offers hope for energy
transition in the region. Lake Tana and its adjacent wetlands provide a livelihood to more
than half a million people [33], including the Negede people whose livelihood depend on
making boats and baskets from papyrus. Lake Tana is an important source of fish for
communities around the lake and beyond, while the lake wetlands are very important
for breeding and enhancing biodiversity, sediment retention, and flood protection [34].
The lake is also a popular tourist destination, offering many opportunities for recreational
activities to its visitors. The region’s tourism and ecological value played a key role in
UNESCO’s inclusion of the Lake Tana biosphere reserve [32].
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2.3. Data Description

The research utilizes the one-way coupling of MODFLOW with CREST, and in the
process, uses the following three tiers of data:

1. Static features—topography, geology, river network, and fault lines, collected primar-
ily from the 90 m DEM [35] and from Kebede (2012) [10].

2. Dynamic forcings—lake precipitation datasets from a combination of satellite precipi-
tation and atmospheric reanalysis, e.g., MSWEP [36], IMERG [37], and ECMWF [38];
climate model simulations, e.g., MIROC5 [39] and CSIRO-Mk3 [40]; CREST simulated
streamflow, recharge, and lake evaporation—driven by the above precipitation and
climate scenarios.

3. Secondary datasets—historical data on 98 GW wells, borehole information, lake levels
(1979–2017) measured near the Blue Nile outlet (Figure 2), lake outflow, and Koga
reservoir levels (2012–2019) received from different line agencies—i.e., the Abay Basin
Authority (ABA), Bahir Dar University (BU), and the Ministry of Water, Irrigation,
and Energy—Ethiopia.
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One-way model coupling was carried out with daily recharge (R), streamflow (Q),
and lake evaporation (E) simulated by CREST. The LAK package requires inputs on anthro-
pogenic water withdrawals (W). Given the management uncertainties and lack of accurate
information, we adjusted values of W during calibration, with constraints obtained by a
thorough review of the existing literature [31,41].

We used the climate projections from a Regional Climate Model (RCM), named Rossby
Centre Atmospheric Model version 4 (RCA4) for representative concentration pathways
(RCP); 4.5 and 8.5 (All RCA4 downscaled GCM data were downloaded from https://esgf-
node.llnl.gov/search/esgf-llnl/, accessed on 11 January 2022). RCPs are concentration
pathways, which are characterized by the radiative forcing to be produced by the end of the
21st century [28]. The RCA4 provides an ensemble of future climate change scenarios [42].

https://esgf-node.llnl.gov/search/esgf-llnl/
https://esgf-node.llnl.gov/search/esgf-llnl/
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In this RCM, the variables (precipitation, temperature, radiations, humidity, air pressure,
and wind speed) are downscaled to 3 hourly and 50 km resolution from different general
circulation models (GCMs) of the Coupled Model Intercomparison Project 5 (CMIP5) [43].
Since we aimed to analyze the impact of future extremes, we selected the wettest and
driest GCMs from all available downscaled GCM products in the RCA4 model, using the
annual precipitation change against the baseline (1976–2005) as the criteria. As Figure 3
shows, the Model for Interdisciplinary Research on Climate (MIROC5) [39] projects the
wettest precipitation trend in all three future time windows, early-century (2011–2040),
mid-century (2041–2070), and late-century (2071–2100); whereas CSIRO [40] indicates the
driest condition. First, CREST-SVAS was calibrated using the historical baseline period
(1981–2005) and the downscaled forcing variables from these two GCMs. Then, calibrated
parameters were used in future simulations with MIROC5 and CSIRO projections. CREST-
SVAS simulated outputs (streamflow, infiltrations, and potential evapotranspiration) for
the wettest and driest climate scenarios were then used as inputs to the MODFLOW
groundwater model.
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baseline (1981–2010) precipitation of the corresponding GCM, where the red and blue dashed squares
highlight the driest and wettest GCMs, respectively; (b) annual precipitation trends in the Tana Basin
for different RCPs within the MIROC5 and CSIRO projections.

Figure 3 shows the precipitation anomalies for different climate change scenarios
compared to the baseline (1981–2010) precipitation of the corresponding GCM in the Upper
Blue Nile Basin area (Figure 3a). The figure also shows annual precipitation trends for the
wettest (MIROC5) and driest (CSIRO) GCMs used in our study. Figure 3b further high-
lights how the selection of dry and wet projections continues to incorporate precipitation
uncertainties (one of our primary forcings) in our long-term modeling work.
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2.4. Groundwater Modeling

The groundwater modeling performed in this research was built on our previous
research in the Gilgel-Abay sub-basin [15]. In this work, we modified the previous model
by spatially extending it to encompass the entire Tana Basin and simulating the water levels
and lake-aquifer interactions in Lake Tana, using MODFLOW’s Lake Package (LAK) [18].
The conceptual model was developed using information from the previous literature [44]
in combination with the conceptual model built in our previous work [15] and is shown
in Figure 4. The stratigraphic assembly, primarily developed by Hautot et al. (2006) [44],
comprises a sedimentary basin of about 1.5–2 km thick beneath the basaltic lava flow,
which spreads as deep as 250 m in some areas (Figure 4). As such, the numerical model
MODFLOW-NWT included two vertical layers (aquifers). The distributed thickness of
the top layer was obtained by performing a Kriging interpolation [45] on borehole depth
records of the 98 observation wells. During the simulation, the bottom aquifer was always
confined, and the top aquifer was unconfined (both were specified as ‘convertible’ in
the model).
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The GW model was calibrated using a trial-and-error–based approach to minimize
the root mean squared error (RMSE) between simulated and observed heads, from the
98 historical wells. Hydraulic conductivity (K), specific yield (Sy), unit streambed con-
ductance (ζ), recharge-infiltration ratio (φR/I), and lakebed leakance (lk) were considered
as major calibration parameters based on the literature [13]. Among these, K, ζ and Sy
are spatially distributed, whereas ΦR/I and lk is spatiotemporally constant. In addition,
we also adjusted some other parameters during calibration, i.e., specific storage (Ss) and
boundary flux (q). Initial values of these calibration parameters were selected based on
the literature [10,46,47]. We also evaluated the calibrated GW model by forcing it with
past data (precipitation) and resulting CREST simulations (Q, R, and E) from the two
climate projections, MIROC5 and CSIRO-Mk3. The past climate forcings from 1980 to 2020
used in this evaluation encompassed a combination of bias-corrected available (1980–2006)
historical climate data and bias-corrected RCP 4.5 climate change projections (2007–2020).
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2.5. Future Scenarios

Climate change simulations were conducted under the same setting as the baseline
scenario, which we defined in this study from the period of 1991–2020 (allowing 10 years
of model warm-up period). In the IPCC 5th Assessment Report (AR5), climate change
scenarios were defined based on total anthropogenic radiative forcings by the end of the
21st century [28]. The RCPs represent different concentration paths of climate change
scenarios, and in this study, we selected RCP 8.5 (high emission: 8.5 Wm−2) and RCP 4.5
(stabilized emission: 4.5 Wm−2) together to have a better understanding of the uncertain
climate up to 2100. It is also a common practice in hydrological modeling research to
consider these two RCPs [48–50].

In order to specify the lake releases for future simulations, we used varying with-
drawals, W (adjusted during calibration) within the threshold of 3 km3 maximum with-
drawal accounting for the Tana-Beles hydropower project [31]. For future simulations,
we used the same W as the calibrated estimate during Tana Beles operations (2009–2020).
We let MODFLOW simulate lake outflow (Qo) at the Blue Nile outlet, based on the water
available in the lake, after specifying thresholds of lake level fluctuations. This allowed us
to incorporate sufficient variability in future total lake releases, which was an improved
consideration than just assuming different scenarios of lake releases, which would be
computationally expensive as well.

2.6. Climate Change Impacts

Following the long-term simulations, we investigated a range of potential impacts
of climate change on the (a) physical availability of GW resources in the Tana Aquifer,
(b) hydrology of Lake Tana, and (c) future GW level fluctuations and resource management.
While assessing these impacts, we focused on specific issues and challenges encountered
by the simulations, explored the future trends, and investigated how such trends might
relate to future water management decision-making in the Tana area.

The analyses were temporally conducted in four different time periods from the GW
modeling standpoint, e.g., a baseline (1991–2020), early-century (2021–2050), mid-century
(2051–2080), and late-century (2081–2100). Aside from investigating time-series estimates of
lake levels and spatiotemporal estimates of GW head (H), we also assessed GW depletions
and future lake and reservoir management at regional and local scales.

We used the standardized water level index (SWI) defined by Bhuiyan (2004) [51]. This
index is a simplistic approach to estimating GW depletions that includes estimating the
normalized differences (with respect to standard deviation) of GW levels from the baseline
mean (where +ve values indicate a drop in water levels). The method is considered for its
generalizability in different parts of the world [52,53], and more specifically, in Ethiopia [54].
SWI values within 0–1 are classified as mild depletion, while values from 1–2.5 refer to
moderate, 2.5–4 refer to severe, and >4 refer to extreme GW depletions. For the lake, we did
not estimate any water-level-based drought indices, as the calibrated GW model was not
forced with enough data to provide accurate estimates of lake levels corresponding to the
complex management effects through operations of existing water control and regulatory
structures. Instead of lake levels, we analyzed the total lake releases, which is a combination
of withdrawals, W, and lake outflow, Qo, to obtain an understanding of future trends and
impacts on lake and reservoir management at regional and local scales.

3. Results
3.1. GW Model Evaluation

This section presents the summary of the model calibration parameters, how the
simulated surface and groundwater levels compare against historical observations, and
how the calibrated GW model performed with historical climate forcings.
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3.1.1. Calibrated Parameters

Figure 5a shows the calibrated values of K, and q. In addition, Figure 5b shows the
annual average recharge, which was calibrated as 30% (ΦR/I) of the infiltration simulated
by CREST. The calibrated K values entailed a wide range of values in different geological
regions (shown in Figure 5). For most of the basaltic regions in the top aquifer, K values
were low (0.1~0.5 m/d), while at alluvial formations, it was significantly higher. This is
also in accordance with the literature [10,46,47,55–57]. The calibrated Sy distributed from
0.05~0.2 in the top unconfined aquifer had similar variability as K (Table 1). For the bottom
aquifer, calibrated Ss was found as 10−6 m−1. The calibrated Sy was also reasonable in
comparison to the literature [46,58]. The calibrated values for ζ were obtained as 1 d−1 for
the four major rivers, Gilgel-Abay, Megech, Ribb, and Gumera, and 0.05 d−1 for all other
minor rivers. The calibrated value of ΦR/I = 30% indicated 30% of net infiltration was
used as recharge and was also supported by the recent literature [59]. Moreover, calibrated
flux (q) was 1~2 m/d during the dry season and 2~5 m/d during the wet season. The
lakebed leakance, lk, was calibrated as 1 d−1. The lake withdrawals (W) increased over
time and were also adjusted during model calibration (varying from 0.6 to 1.26 km3). From
2008–2020, higher W values were assigned to represent the Tana Beles water withdrawals
during the project operation phase. Table 1 summarizes calibrated model parameters, and
Figure 5 shows the spatial distribution of horizontal K values for the top aquifer (with
Kx = Ky) and q values.
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Figure 5. (a) Calibrated values of K in top layer and q (m/d), and (b) temporally averaged recharge
(mm/yr) from CREST. Unmarked boundaries in (a) are no-flow conditions.

Table 1. Summary of model calibration parameters.

Parameter Aquifer Initial Values Calibrated Values

K

Top
Horizontal: 1 m/d Horizontal: 0.1–40 m/d

Vertical: 0.1 m/d Vertical: 0.01–4 m/d (i.e., 1/10th of Horizontal K)

Bottom
Horizontal: 0.5 m/d Horizontal: 0.5 m/d or equal to Top Aquifer’s horizontal K

(whichever is less)

Vertical: 0.05 m/d Vertical: 0.05 m/d or equal to Top Aquifer’s vertical K (whichever
is less)
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Table 1. Cont.

Parameter Aquifer Initial Values Calibrated Values

Sy 0.05 0.05 (for 0.1 ≤ K < 10), 0.1 (for 10 ≤ K < 20), 0.15 (for
20 ≤ K < 30), and 0.2 (for K ≥ 30)

ζ 0.1 m/d 0.05~1 d−1

ΦR/I 10% 30% of CREST infiltration

Ss 10−4 m−1 10−6 m−1

q from contour map of [60] 1~2 m/d during dry season, 2~5 m/d during wet season

lk 0.5 d−1 1 d−1

W 1 km3 0.6 km3 (1979–2000), 0.75 km3 (2000–2008), 1.26 km3 (2008–2020)

3.1.2. Model Calibration

The calibration results are shown in Figure 6. Figure 6a indicates a good agreement
(RMSE = 16.36 m, R2 = 0.99 and p < 0.0001) of simulated heads with 98 observations
(instantaneous data for 2013–2017). Figure 6a also highlights the spatial bias distribution
(red: overestimation, blue: underestimation). The bias is consistently spread across the
model domain and despite some high errors in groundwater head predictions, it does well
in capturing a large range of observations (1017 m, with a normalized RMSE of 1.6%).
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Figure 6b shows the model calibration results against monthly observed water levels
in Lake Tana from 1979 to 2017. The result shows that the groundwater model, taking
advantage of the lake-aquifer interactions incorporated by the sophisticated lake package
module of MODFLOW, was able to capture the trends and seasonality of the lake level
dynamics, with an RMSE of 0.2 m (R2 of 0.89 and p < 0.05). In general, the simulated lake
levels had a slightly lower variability in comparison with observations, but the mean water
levels were in good agreement.
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3.1.3. Performance with Historical Climate Forcings

Upon testing the calibrated GW model with historical (1980–2006) and projected
(2006–2020) climate datasets and comparing the simulated H values with the same set of
98 instantaneous observation wells, we obtained an RMSE of 16.98 m for MIROC5 forcings
and 16.72 m for CSIRO-Mk3 forcings (Figure 7). These values were similar to the RMSE
obtained for the actual calibrated model solely forced with CREST simulations driven
by ECMWF and MSWEP/IMERG reanalysis datasets. It is to be noted that despite the
RMSEs being similar to the CREST-calibrated model, the spatial distributions of biases with
observed H are not identical in either of the models presented in Figures 6a and 7a,b.
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3.2. Spatiotemporal Water Availability and Climate Change Impacts

This section explores the long-term impacts of climate change in the GW levels simu-
lated across the model domain as well as the long-term changes in water levels of Lake Tana.
Results are presented on how the future climate might impact regional water availability
by considering both the wettest and driest climate models.

3.2.1. Groundwater Table

The climate change impacts on the GW table (GWT) in the model domain are shown
below in Figure 8. The average depth of GWT for the baseline period (1990–2020) is shown
in Figure 8a. The figure shows relatively shallow (within a depth of 5 m from the surface,
marked by a blue color) groundwater availability along the major river routes in the Tana
Basin. There are some regions where the GWT drops to moderate depths of up to 30 m.
In some areas, e.g., areas with high elevations in the south and east, the areas within
the northern flood plains, and the Megech sub-basin regions, some deep GW areas are
encountered where the water table dropped approximately 40~50 m. The majority of
the lowest GW areas were found in areas where the model domain was intersected by
the specified hydrogeological boundary conditions (no-flow boundaries, specified flux,
intersections of faults and rivers, etc.). The figure also shows a contour map of simulated
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hydraulic heads, H, for the baseline simulation period (Figure 8d). This showcases the
direction of GW flow within the aquifer (towards Lake Tana).
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In Figure 8(b1,c1), we compared the long-term simulated GW levels, primarily forced 
with the two projections (RCP 4.5 and RCP 8.5) of the wettest (MIROC5) and driest 
(CSIRO-Mk3) climate models. The figures represent the temporally averaged anomalies 
of GW levels for three different 30-year spans up to 2100 (2020–2050, 2051–2080, and 2081–
2100), in comparison with the baseline GW levels shown in Figure 8a. The blue and red 
shades in Figure 8(b1,c1) represent water gains and losses, respectively. In addition, Fig-
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Figure 8. Long-term impacts on Tana GWT where, (a): temporally averaged depth of GWT for the
baseline period (1990–2020), (b1): anomalies of GWT from baseline for MIROC5 model, (b2): boxplots
of individual data points used in (b1); (c1): anomalies of GWT from baseline for CSIRO-Mk3 model,
(c2): boxplots of individual data points used in (c1); (d): contours of average hydraulic head during
baseline period. Different rows in (b1,b2) indicate the different climate projects RCP 4.5 and RCP 8.5,
while the different columns indicate the three different 30-year spans up to 2100.

In Figure 8(b1,c1), we compared the long-term simulated GW levels, primarily forced
with the two projections (RCP 4.5 and RCP 8.5) of the wettest (MIROC5) and driest (CSIRO-
Mk3) climate models. The figures represent the temporally averaged anomalies of GW
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levels for three different 30-year spans up to 2100 (2020–2050, 2051–2080, and 2081–2100),
in comparison with the baseline GW levels shown in Figure 8a. The blue and red shades in
Figure 8(b1,c1) represent water gains and losses, respectively. In addition, Figure 8(b2,c2)
provide boxplots to showcase the spread of individual data points used to prepare the
temporally averaged maps in Figure 8(b1,c1). The boxplots presented in Figure 8, as well
as all subsequent figures, showcase the 5% and 95% quantiles by the transect lines in the
extreme ends, whereas the 25% and 75% quantiles are marked by the solid rectangles.

From the baseline scenario, the MIROC5 RCP 4.5 simulated mean GWT changed by
+0.05 m (2021–2050), +0.1 m (2051–2080), and +0.02 m (2081–2100); whereas the MIROC5
RCP 8.5 simulated mean GWT changed by +0.11 m (2021–2050), +0.09 m (2051–2080),
and +0.1 m (2081–2100). From CSIRO-Mk3 projections, RCP 4.5 simulated mean GWT
changed by +0.01 m (2021–2050), −0.35 m (2051–2080) and −0.6 m (2081–2100); whereas
the MIROC5 RCP 8.5 simulated mean GWT changed by −0.01 m (2021–2050), −0.4 m
(2051–2080), and −0.8 m (2081–2100).

3.2.2. Lake Tana Dynamics

The lake inflows (Qi, accounting for both SW and GW contributions) and outflows
(Qo through the Blue Nile outlet releases, GW outflow, plus the withdrawal, W) for the
baseline scenario (1991–2020) was simulated by the Tana GW model as 1675 mm/yr and
1666 mm/yr, respectively. Sequentially, to investigate the climate change effects on future
water levels and releases of Lake Tana, we simulated our calibrated GW model up to
2100 under the four different projections (e.g., RCP 4.5 and RCP 8.5 for the two climate
models). Figure 9 below summarizes the results, where the top two sub-plots show the
time series of monthly lake levels, and the bottom sub-plot shows the time series for annual
lake releases. The relaxation of Tana outflow through the Blue Nile outlet led to peak water
levels being fixed at 1787 m for most of the years, except when instances of dry years could
be foreseen, and the lake level was not able to revive into normal conditions due to releases
being too high (Figure 9b).
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The MIROC5 RCP 4.5 model projections revealed a few dry spells (Figure 9(a1)),
most notably the one in the early 2080s when the water level was simulated to be below
1785 m. For the dry model CSIRO-Mk3, there was one notable dry spell encountered in
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the mid-2050s. In 2081–2100, the dry model—with specified withdrawals equaling existing
estimates and no specified releases (which were computed by the model itself)—exhibited
a sustained drop in water levels (Figure 9(a2)). For the CSIRO-Mk3 RCP 4.5 scenario, the
lake levels gradually replenished back to normal, but for the extreme CSIRO-Mk3 RCP
8.5 scenario, lake levels were not able to revive within the simulation time frame (up to
2100). When we compared this phenomenon with the total releases (constituting specific
withdrawal and MODFLOW estimated releases), we found that there was no annual
variability in total releases from 2081–2100 in the CSIRO-Mk3-forced simulations. This
indicates that after sustaining the specified Tana withdrawals, there was not enough water
to be released through the Blue Nile outlet, which would introduce hydrologic variabilities.

For a dry climate model such as CSIRO-Mk3 to happen in the near future, it would not
be possible to have W as current; therefore, we proposed a 50% reduced W scenario (the
‘conservative’ scenario, suffixed with ‘b’ in Figure 9(a2,b)). With the reduced withdrawal,
W, during the CSIRO-Mk3 scenarios, the lake levels revived back above the minimum
thresholds. At the same time, more releases through the Blue Nile outlet were simulated,
which is important considering the two major downstream irrigation schemes, Tis-Abay I
and Tis-Abay II, which rely on the variability of lake releases [10,31].

3.3. Subsurface Water Budget and Climate Forcings

We compared different simulated sub-surface water budget components with the three
primary model forcings, precipitation (P), evaporation (E), and recharge (R), for both the
baseline and future scenarios, shown in Figure 10 (all estimates are in mm/d). The mean
annual precipitation and evaporation used in the Tana GW model were 1319 mm/yr and
1392 mm/yr respectively. The GW contributions towards the annually averaged baseline
lake inflows (Qi) of 1675 mm/yr was 15%, which is 8% of the total lake inflows (including P).
For lake outflows, we estimated a total annually averaged release of 1666 mm/yr, of which
the Tana withdrawals (W) accounted for 15% during 1991–2008 and 26% during 2009–2020.

Figure 10 shows boxplots of annually averaged estimates, of which precipitation and
evaporation are over the lake, while all other water cycle variables (recharge, seepage into
the lake, baseflow, and drainage through faults) are for the entire model domain (Tana
Basin). The future precipitation scenarios offer a more extreme variability compared to the
baseline. However, the median estimates for the climate model scenarios are slightly lower
than the baseline. In general, precipitation from MIROC5 was higher than CSIRO-Mk3. For
evaporation, the projected variabilities were similar to the baseline, with median values
gradually increasing across the three different timelines, e.g., 2021–2050, 2051–2080, and
2081–2100. Of all other input forcings, recharge values exhibited substantial variability,
and for the CSIRO-Mk3 RCP 8.5 scenario, which was the driest of all, recharge values were
significantly less for the 2021–2050 and 2081–2100 time periods.

3.4. Future Impacts and Water Management
3.4.1. GW Depletion

Upon analyzing the monthly GW level simulations for future climate events, we did
not find any ‘moderate’ or worse GW depletions (e.g., SWI > 1) when compared with the
baseline scenario (1991–2020). As such, Figure 11 only shows the number of months in
a year when each model grid was predicted to be subjected to ‘mild’ depletion. Areas
of mild depletion exhibited in MIROC5 RCP 4.5 simulations were 20% (2021–2050), 18%
(2051–2080), and 22% (2081–2100); whereas the MIROC5 RCP 8.5 simulated estimates
were 17% (2021–2050), 18% (2051–2080), and 16% (2081–2100). In contrast, areas of mild
depletions for CSIRO-Mk3 RCP 4.5 simulations were 17% (2021–2050), 32% (2051–2080),
and 48% (2081–2100); whereas the CSIRO-Mk3 RCP 8.5 simulated estimates were 21%
(2021–2050), 46% (2051–2080), and 68% (2081–2100). To summarize, for the dry climate
scenarios (CSIRO-MK3 RCPs 4.5 and 8.5), a significant portion of the areas were found to
experience mild depletions in the future. For the wet scenarios (MIROC5 RCPs 4.5 and
8.5), there were some areas along the southeast boundaries in the Gilgel-Abay sub-basin,
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and significant areas from Ribb and Gumera sub-basins that were found to experience
mild depletions.
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3.4.2. Surface Water Availability and Management

We also investigated the surface water availability in Lake Tana by exploring the future
simulated releases already presented in Figure 9b. In this analysis, we did not compute any
water-level-based indices as we did not use our model to simulate the dynamic lake levels
corresponding to the complex management effects through operations of existing water
control and regulatory structures. Rather, as our model was used to primarily estimate lake
releases through the Blue Nile outlet, supported by the imposed water budget constraints
and the relaxation of the simulated lake levels between specified thresholds, we compared
the total releases against the baseline (Figure 12).
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For MIROC5 RCPs 4.5 and 8.5, our simulations predict a substantial increase in mean
annual releases of about 3 km3/yr (more than 50% from baseline mean) from Lake Tana
during the later part of the century, while sustaining peak lake levels of 1787 masl. In
contrast, using the CSIRO-Mk3 RCPs 4.5 and 8.5 scenarios, our simulations show a drop
in mean annual releases, which could be as much as 1.2 km3/yr (22% of baseline mean)
for the most extreme case of CSIRO-Mk3 RCP 8.5. This indicates that total releases from
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Lake Tana could undergo significant changes to account for the growing needs amidst
uncertainty with climate change.

To investigate the effects of climate change on local-scale reservoir operations and
irrigation management, we used the calibrated GW model to predict water levels in Koga
Reservoir, Ethiopia (shown in Figure 2), which is the largest reservoir-operated irrigation
scheme in the Tana Basin with approximately 7000 ha of coverage [61]. Figure 13a shows the
long-term simulated reservoir levels. In order to represent the local reservoir in our model
domain, we used a simple technique called “high K” [18], where the cells representing the
Koga reservoir were specified with a high hydraulic conductivity (can be seen in the spatial
distribution of calibrated K in Figure 5). A high specific yield was also assigned for the
top layer. The simulated reservoir levels were calibrated with 2012–2019 observed levels
(RMSE of 0.7 m, R2 = 0.863, and p < 0.05), and the results are shown in Figure 13b.
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Figure 13. Long-term impacts of climate change on local reservoirs and irrigation management,
where (a) shows Koga reservoir-level deviates from the full supply level (=2015.5 m) at the beginning
of irrigation season in October, (b) shows the evaluation of simulated Koga reservoir levels with the
“high K” technique with observations, and (c) highlights the relation of the historical reservoir-level
deviates in October with simulated wheat irrigation water deficits for 2012–2018.

4. Discussion and Study Limitations

The study underscores the climate change effects on the future availability of GW
resources in the Tana Basin as well as the future water levels and releases of Lake Tana.
Table 2 shows the performance of some other GW models reported in the Lake Tana
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region. Our normalized RMSE, with a range of 1017 m, was 1.6%, which is better than our
previously calibrated model in the Gilgel-Abay region. Another aspect worth considering
is that the Gilgel-Abay GW model was fed with specified constant boundaries of observed
lake levels. In the Tana GW model, however, lake levels were independently simulated,
which was again efficiently calibrated against observed time-series records (RMSE = 0.2 m).
Considering the in-situ data scarcity, the regional scale, and the performances of other
coupled GW models, [62,63], the results are acceptable. The model performed well in
capturing the GW levels with bias-corrected climate projections, as it did for the reanalysis-
based forcings. This supports our calibrated Tana GW model to simulate and capture future
long-term climatic events when we force the model with MIROC5 and CSIRO-Mk3-based
forcings from 2020 to 2100.

Table 2. Performances of other GW models of interest.

Model [Source] Location Error Calibration Data Remarks

MODFLOW [11] Gumera Basin (Lake
Tana sub-basin) 1.7 m One well (nine

months’ records)
Known boundaries provided,

extensively calibrated at one well.

MODFLOW [13] Northern part of
Tana Basin ~10 m 58 observation wells Calibration dataset was not

spatially as distributed as ours.

MODFLOW [47] Tana Basin ~20 m 37 target wells The spatial pattern of K is similar
to our study.

MODFLOW and
LISFLOOD [62] Bulgaria ~30 m Model not calibrated

with in-situ data
Highlights challenges in SW/GW

model coupling.

SWAT-MODFLOW [22]
Parts of Tana Basin
(Gilgel-Abay, Ribb

and Gumera)

~0.45 (normalized
with SD) 36 instantaneous wells

Aquifer interactions are not well
purported by only one 6 m

vertical layer.

CREST-MODFLOW [15] Gilgel-Abay Basin 14.4 m 38 instantaneous wells

Lake Tana was not simulated and
observed lake levels were rather

specified as a downstream
constant head boundary.

In Figure 8 (Section 3.2.1), the averaged GW level anomalies varied from +2 m to −4 m
from baseline estimates. In general, more water gain was exhibited for the wet climate
model, MIROC5, whereas the dry climate model, CSIRO-Mk3, led to significant water
losses. Water losses for the dry climate model CSIRO-Mk3 were more prominent in high-
elevation areas, e.g., east of the Ribb and Gumera sub-basins, and south of the Gilgel-Abay
sub-basin. Among the two different projections, RCP 8.5 indicated more extreme water loss
(for the CSIRO-Mk3 model). MIROC5 RCP 8.5 forced GW levels were found higher than
MIROC5 RCP 4.5.

Figure 9 in Section 3.2.2 shows how the two extreme GCMs relate to long-term water
availability in Lake Tana. Lake Tana is a lake that undergoes a wide range of controls [31,41],
and our physically-based modeling, primarily considering the hydrologic sensitivities,
marks an acceptable effort in simulating the lake’s behavior. From a GW modeling perspec-
tive, this was a major challenge to efficiently use MODFLOW’s LAK package to simulate
the complicated lake-aquifer processes [18]. An interesting point here is how different
climate change projections reveal different conditions (dry and wet) for the future. The
GW model also predicted similar outcomes, with foreseeable long-term fluctuations in
lake releases as +50% (MIROC5) or −22% (CSIRO-Mk3) by 2100. While this information
seems overwhelming from a decision-maker’s perspective, the knowledge of future cli-
matic uncertainties highlights the need to adopt a flexible decision-making approach to
ensure sustainable development. More specifically, adaptive (considering both dry and
wet scenarios) and equitable sharing of Lake Tana water resources could be mandated by
designing policies for each 30-year span into the future (e.g., 2021–2050, 2050–2080, and
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2080–2100). This way, the water managers and farmers would be prepared to exercise
flexible ways of water sharing and use.

The lake inflows and outflows simulated by our calibrated GW model for the baseline
period (1991–2020) were 1368 mm/yr, and 1667 mm/yr, respectively. For future climate
simulations, we used MODFLOW’s LAK package to simulate river releases through the
outlet in a way so that the lake levels vary within a specified threshold (1784 m to 1787 m,
based on the existing regulatory standard), and all water budget components are balanced,
accounting for the withdrawal, W, for hydropower and domestic purposes.

The reduced withdrawal scenarios (suffixed with a ‘b’ in Figure 9) produced a com-
promised outcome of lake levels. Lake Tana’s water level increased substantially in the
‘conservative’ scenario. The mean releases were the same as the ‘regular’ scenario for
the CSIRO-Mk3 model projections, but this ‘conservative’ scenario added more seasonal
variability in releases (Figure 9b), which would better reflect the agricultural needs of
existing irrigation schemes in the Tana Basin. As we reduce the withdrawals by 50%,
about 0.63 km3/yr of water could be allocated in the late-century period (2081–2100) from
hydropower to agricultural needs. If a critical circumstance arises (e.g., CSIRO-Mk3 RCPs
4.5 or 8.5), this could feed a significant portion of projected agricultural water requirements
of 0.93 km3 in the area [64]. This scenario would, however, compromise direct withdrawal
(W), accounting for the hydropower requirements of the Tana Beles project, leading towards
a more manageable problem.

The simulated water budget variables (shown in Figure 10, from Section 3.3), namely,
seepage into the lake, baseflow, and drainage through the faults, offer more erratic shifts
across the different timelines. The seepage into the lake—despite increasing and reducing
in different periods compared to the baseline—was always positive, meaning that upon
considering annually averaged estimates, the lake is always expected to gain net water from
the aquifer GW discharge. The same could be said for both baseflow and drainage through
the faults. The faults, on the other hand, offered some drainage through the saturated
aquifers throughout the simulated timeline. For all these components, the dry-climate
scenarios (CSIRO-Mk3 RCPs 4.5 and 8.5) simulated substantially low estimates in future.

The Tana GW model revealed a mean baseflow of 0.25 mm/d, which was 58% of
the entire basin’s mean annual recharge of 158 mm/yr (spatial average of distributed
recharge shown in Figure 5b). Kebede (2012) [10] reported a mean annual recharge of about
300 mm/year in the Gilgel-Abay region, which also appears to be consistent with the spatial
estimates of Figure 5b. Overall, the percentage of recharge contributing to baseflow, as
simulated by the Tana GW model, agreed with some other studies [65,66]. The magnitudes
of drainage through faults were less, nevertheless, the fault lines’ inclusion as drains helped
improve model performance (in comparison with observations).

Table 3 shows different estimations of the annual inflows and outflows of Lake Tana.
About 8% of total lake inflows (from river, aquifer, and precipitation sources) were con-
tributed by GW sources (lake seepage, shown in Figure 10). The Tana GW model exhibits
an improved understanding of lake-aquifer interactions, as it simulates the GW inflows
and outflows from the lake. Specification of W allowed us to minimize the losses (L) of the
lake water budget, which was a challenge for other hydrological models reporting lake
releases (Table 3).

Figure 11 in Section 3.4.1 showed the likelihood of future GW depletions. The mild
depletions (0 ≤ SWI ≤ 1) indicated drops in GWT within 1 SD of baseline GWT fluctuations.
Considering the rich groundwater availability already simulated for the baseline period
(shown in Figure 8a), a mild GW depletion could still ensure substantial groundwater
storage that might be explored for future irrigation developments. Recently in 2009 and
2015, we have seen severe agricultural droughts in this region and relying on GW for
supplemental irrigation has already been evidenced as a sustainable strategy to tackle
extreme spells of agricultural droughts in this region [16].
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Table 3. Annual water budget of Lake Tana from various sources [67]. Here, * gauge and empirically
fitted, ** hydrological model-based (SWAT, CREST, MODFLOW, etc.), and *** satellite and reanalysis-
based analysis. All values are in mm/yr.

Source Year E P Qi Qw+W L

Kebede et al. (2006) [68] * 1960–1992 1478 1451 1162 1113 22

SMEC (2008) [55] * 1960–1995 1650 1260 1622 1231 1

Gieske et al. (2008) [69] * 1992–2003 1671 1255 1770 1348 19

Wale et al. (2009) [70] ** 1992–2003 1690 1220 2160 1520 170

Chebud and Melesse (2009) [20] ** 1960–2003 1428 1198 1458 1679 −451

Setegn et al. (2008) [71] ** 1978–2004 1248 1375 1312 1280 159

Rientjes et al. (2011) [72] *** 1994–2003 1563 1347 1781 1480 85

Tegegne et al. (2013) [73] ** 1996–2002 1618 1291 2119 1725 67

Nigatu (2013) [74] * 1994–2003 2041 1274 2186 1520 −101

Duan et al. (2018) [75] *** 2006 1688 1652 2226 1566 191

Dessie et al. (2015) [76] * 2012–2013 1789 1330 2349 1618 273

Mamo et al. (2016) [77] ** 1995–2005 1544 1315 2829 1552 945

Alemu et al. (2020) [67] * 1990–2007 1650 1190 1415 1124 −169

Lazin et al. (2020) [29] ** 1979–2020 1392 1319 1527 1342 95

Tana GW Model **
1991–2008 1359 1269 1719

(SW 85%, GW 15%)
1698

(SW 84%, GW 0.3%, W 15%) −69

2009–2020 1452 1408 1608
(SW 84%, GW 16%)

1618
(SW 74%, GW 0.3%, W 26%) −54

Figure 13a in Section 3.4.2 shows whether it is expected for the Koga reservoir to be
full (with a full supply level of 2015.5 m) in October before the irrigation in November.
The shaded areas highlight the shared envelope of two scenarios (RCPs 4.5 and 8.5) for
the different climate models (MIROC5 and CSIRO-Mk3). It can be inferred that the dry
climate scenarios could substantially affect the reservoir levels in the long run, which
would affect local irrigation outcomes in the Gilgel-Abay region. To further comprehend
this, we used our calibrated local-scale GW model from Khadim et al. (2021) to simulate
wheat irrigation water-deficit estimates (difference in potential transpiration and simulated
root-water uptake) for different irrigation seasons from 2012–2019 and plotted these against
the observed reservoir-level deviates from those years. This underscores that a drop of
Koga reservoir levels by 1.6 m in October (which happened during the 2015 drought) could
lead to a wheat irrigation water deficit of 1.5 mm/d during the irrigation season. The
effects on irrigation water deficit would also affect crop yields; however, the extent of such
impacts would be better understood through comprehensive research efforts involving
other agronomic and societal aspects.

This study experienced several limitations, most notably, the scarcity of continuous
records of GW levels in the Tana Basin. The model coupling was also subject to modeling
uncertainties. To address these uncertainties, we bias-corrected the climate forcings and
evaluated the GW model with historical climate-forced simulations. Another limitation of
the study is the internal validity attributed to using future scenarios without considering
detailed anthropogenic or land use phenomena. In future, human developments and their
associated uncertainty would most likely inject major disturbances, and our results, which
only highlight the science aspect, should be interpreted knowing this limitation. Finally,
from a simulation standpoint, a limitation was not being able to consider an ensemble of
GCMs to force our models, which was not possible due to computational expense.
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5. Conclusions and Future Work

We used a physically-based numerical modeling framework to improve on our pre-
vious model calibrated at the Gilgel-Abay Basin [15], and then used the newly calibrated
Tana GW model to simulate long-term projections by considering two extreme GCMs
(MIROC5 and CSIRO-Mk3) by assessing two RCPs, 4.5 and 8.5. Specific improvements
include the expansion of the geographic domain to include the four Tana sub-basins and
using the LAK package to simulate lake levels and lake-aquifer interactions. Evaluation
of the model against ground observations indicates acceptable model performance at the
regional scale. The simulated H values also indicate a substantial physical availability of
GW resources in future, especially in areas closer to Lake Tana. The long-term climatic
simulations carried out in this study provide an important source of information for re-
gional policy and decision-makers, which in future, may be used as a foundation for other
cross-cutting research.

The Tana GW model presented in this research is part of an integrated hydro-ground-
water-crop modeling initiative under the project titled PIRE: Taming Water in Ethiopia [78].
The model provided dynamically downscaled boundaries for a set of local GW mod-
els [16,79], which supported the development of crop models in the area [80], devised and
improved seasonal forecasts for farmers in select communities [81], and facilitated citizen
science and sustainable development goal-based inter-disciplinary research [82].

In future efforts, the model could be used to understand climate change impacts
on local irrigation. In recent years, interest towards growing avocados has increased
manyfold [83], which coupled with climate change, may affect the GW reserves and chances
of supplemental irrigation management. With our calibrated Tana GW model, we would
be interested to explore several crop growth scenarios by considering different cropping
practices throughout the Tana Basin and eventually investigating how different crop choices
under different climate change scenarios might affect them in the long run. We are also
interested in exploring the impacts of climate change on local reservoir and irrigation
operations, by providing dynamically downscaled head boundaries to our local-scale
vadose zone GW models already calibrated in the area [16,79].
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