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Abstract: The treatment of big data as well as the rapid improvement in the speed of data processing
are facilitated by the parallelization of computations, cloud computing as well as the increasing num-
ber of artificial intelligence techniques. These developments lead to the multiplication of applications
and modeling techniques. Reliability engineering includes several research areas such as reliability,
availability, maintainability, and safety (RAMS); prognostics and health management (PHM); and
asset management (AM), aiming at the realization of the life cycle value. The expansion of artificial in-
telligence (AI) modeling techniques combined with the various research topics increases the difficulty
of practitioners in identifying the appropriate methodologies and techniques applicable. The objective
of this publication is to provide an overview of the different machine learning (ML) techniques from
the perspective of traditional modeling techniques. Furthermore, it presents a methodology for data
science application and how machine learning can be applied in each step. Then, it will demonstrate
how ML techniques can be complementary to traditional approaches, and cases from the literature
will be presented.

Keywords: artificial intelligence; engineering of asset management; machine learning; prognostic
and health management; reliability

1. Introduction

For the past few years, machine learning and artificial intelligence have been attracting
the research community’s attention. More and more application cases are emerging in the
manufacturing environment, especially with the advancement of the Industry 4.0 vision.
The digitization of the environment through connectivity and cyber–physical systems is
leading to the generation of big data, which has several processing challenges. This is
now referred to as the “analytics disruption” due to the fact that, in general, organizations
use less than 10% of the data generated for modeling and decision support [1]. This
phenomenon is not escaping the reliability domain either. New ML analysis techniques
have been the subject of many publications, although traditional methods in the field are
still widely applied. The new techniques and technologies available allow the development
of new applications, but also new domains, making the selection of appropriate methods
more and more complex [2]. The goal of this work is to make it easier to understand the
difference between traditional and ML modeling techniques, as well as how they can be
applied in reliability applications. It seeks to provide a summary analysis of the different
topics so that researchers interested in the application of machine learning in reliability
engineering can become familiar with these different topics.

Section 2 defines the different types of modeling methods. First, a definition of
mathematical modeling is presented, then the branches of statistical modeling and machine
learning are defined. Furthermore, Section 2.4.1 presents a history of the development of
artificial intelligence methods in order to show recent developments in the field. Although
the discipline has been investigated for a long time, the success of its applications is quite

Sustainability 2023, 15, 6270. https://doi.org/10.3390/su15076270 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15076270
https://doi.org/10.3390/su15076270
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-5709-0754
https://orcid.org/0000-0001-9550-599X
https://doi.org/10.3390/su15076270
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15076270?type=check_update&version=1


Sustainability 2023, 15, 6270 2 of 22

recent, especially in the field of reliability. Section 3 formalizes the modeling process used in
data science, a process common to both RAMS and PHM for building data-driven models.
Finally, a systematic review presents recent ML applications in reliability engineering. The
analysis of the literature will be structured as follows:

Research questions

1. Is the application in RAMS or in PHM?
2. What machine learning methods are used?
3. What system is under study?
4. Does the dataset come from real data, simulated data, or a public benchmark dataset?

Databases used for the review
The research was done using the EBSCO library, precisely with the following databases:

1. Applied Science & Technology Source
2. Applied science and computing database
3. Computers & Applied Sciences Complete
4. Applied science and computing database

Keywords
title-abstr-key((“reliability engineering”) AND (“machine learning” OR “deep learn-

ing”))
Exclusion criteria

1. Works not related to reliability engineering, i.e., not related to either RAMS or PHM
2. Works dated before 2017
3. Works that are not in English or French

Selection Criteria

1. Full text available
2. Peer-reviewed journal

2. Modeling

This section explains the various modeling techniques used in RAMS and PHM. First,
reliability engineering is defined in relation to the RAMS and PHM topics. Following
that, the fundamentals of mathematical and statistical modeling are introduced. Then, the
respective methods for both fields are highlighted, from qualitative models to physics-based
methods. Finally, methods for machine learning and artificial intelligence are discussed.

2.1. Reliability Engineering

Reliability engineering is an engineering field that focuses on ensuring the reliability
and maintainability of systems. It uses various tools, techniques, and methods to identify,
analyze, and mitigate potential failures that could affect the performance and safety of
assets. This field has been in development since the 1950s and is used in various industries,
such as the military, consumer, and energy. Prognostics and health management (PHM)
and reliability, availability, maintainability, and safety (RAMS) are subfields of reliability
engineering. PHM focuses on the management of system health, the prediction of future
performance, and the implementation of advanced diagnostic techniques [3]. Unlike RAMS,
which examines the general characteristics of a group, PHM takes a more specific approach
by monitoring individual components [4].

2.2. Mathematical Modeling

In a broad sense, modeling is used to represent a simplified version of an object
or situation, to understand it, and to analyze it. Mathematical modeling is the use of
mathematical techniques to represent the true conditions of a specific scenario. Kaiser and
Stender’s modeling process describes a cycle of modeling and validation in order to obtain
a model that accurately depicts a real-world problem [5,6]. Two approaches to statistical
modeling can be differentiated. Descriptive statistics seek to describe and summarize the
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observations of a sample using indicators, graphical representations, etc. [7]. Inferential
statistics, in contrast, intends to infer the characteristics of a group based on a sample [8].
Figure 1 summarizes the most common approaches from both descriptive and inferential
statistics. Probability distributions are used in inferential statistics to describe and extract
the characteristics of random variables in a sample. It is generally simple to identify the
probability distribution and determine the parameters of this distribution from the sample,
knowing the type of random experiment. This is commonly referred to as parametric
analysis. In some cases, the distribution of data can be easily defined by factoring in the
operational and random context of the phenomenon under study [9].

Figure 1. Common statistical modeling techniques.

Descriptive analysis, also known as non-parametric analysis, is used to determine
the characteristics of a sample without using a statistical distribution. Measures of central
tendency (mean, median, modes) and dispersion (range, variance, standard deviation, etc.)
are commonly used to describe the characteristics of a population under investigation.
Histograms, scatter plots, and box plots are commonly used to study the behavior of
systems in reliability. Without the need for a specific distribution law, frequency tables can
also be used to estimate the probability density function [9].

2.3. RAMS and PHM Approaches

There are three main categories of models used in reliability engineering: data-driven,
physics-based, and qualitative modeling. Data-driven modeling is a method of modeling
that relies primarily on data to make predictions or inferences about a system or process.
This approach involves using statistical techniques (Section 2.2) and machine learning
algorithms to analyze data and create a model that can be used to make predictions.
Physics-based modeling, on the other hand, is a method of modeling that relies on the
laws of physics and the fundamental properties of the system or process being modeled.
This approach involves using mathematical equations and simulations to understand and
predict the behavior of a system based on its physical properties. Finally, qualitative
modeling is used to deal with non-numerical or non-quantitative information. It is used
to understand complex systems, processes, or phenomena that are difficult to quantify or
measure [10]. These models can take the form of diagrams, flowcharts, or other visual
representations that can be used to understand the complex relationships between different
components of the system.
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As stated before, PHM seeks to provide a personalized follow-up of assets. This
means that monitoring the components is a continuous process to guarantee the system’s
performance. Therefore, this field heavily relies on data obtained from sensors, unlike
RAMS, which typically uses historical data for modeling. RAMS mainly uses qualitative
and statistical (data-driven) modeling to determine the characteristics of assets. PHM relies
on qualitative and data-driven modeling, as well as physics-based and hybrid (data and
physics-based) modeling. The use of sensor data makes it easier to apply machine learning
and deep learning techniques in the fields of PHM. Qualitative modeling techniques include
failure modes and effects analysis (FMEA) and fault trees and are generally used both in
PHM and RAMS.

2.4. Machine Learning, Artificial Intelligence and Data Science

Machine learning, also known as artificial intelligence, is a form of mathematical mod-
eling that allows a system to learn from data and not through the explicit programming of
a system’s constraints and environment [11]. This definition of machine learning, devel-
oped by IBM (International Business Machines Corporation), raises the different important
components of ML. First, it is about a system, a machine that learns. Learning is a set
of processes that seek to develop or modify behavior through experience or interaction
with the environment. Another important point is that learning is done on data, and not
from explicit programming, for example in operational research, where the constraints of
a system must be specified by mathematical equations. This means that a mathematical
model is generated by the experience gained from the data that are sent to the algorithm.
Generally, ML approaches are divided into supervised, unsupervised, and reinforcement
learning methods.

2.4.1. History of Artificial Intelligence

In this digital age, it is undeniable that artificial intelligence is a scientific field in
effervescence. Surprisingly, the concepts of artificial intelligence have been developed for
almost 80 years. This raises the question as to why this recrudescence is happening now.
This section, complemented by Figure 2, describes a brief history of AI development and
attempts to highlight the reasons for this interest. As early as 1943, a study presented the
first concept of artificial neurons capable of performing logical operations. In 1950, the
English mathematician Alan Turing proposed a test, the imitation game or Turing test, to
test machine intelligence [12]. In 1955, the term artificial intelligence was introduced by
John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon for the Dart-
mouth Summer Research Project on Artificial Intelligence (1956). This event is sometimes
considered the birth of artificial intelligence as a field of study. In 1958, Frank Rosenblatt
made the first implementation of the perceptron algorithm, based on the work of McCul-
loch and Pitt on artificial neurons. In 1959, the concept of machine learning was presented
by Arthur Samuel. In 1965, Edward Feigenbaum and his team at Stanford University
developed DENDRAL, the first expert system capable of automating decision-making and
problem-solving [13]. In the same year, the American scientist Gordon Moore predicted
that according to his observations, the number of components in electronic circuits would
double every year. This prediction, known today as Moore’s Law, was adjusted in 1975,
proposing instead that the computational capacity would double every two years, and
this prediction has been realized until today. In their 1969 article, Marvin Minsky and
Seymour Papert describe some limitations of neural networks, including the lack of com-
putational power of computers at the time [13]. This article slowed down the research on
deep learning, and the success of expert systems pushed the research toward this field.
During the 1970s and 1980s, we saw the proliferation of expert systems: MYCIN (1972),
XCON (expert Configurer) (1978), Deep Blue (1997), etc. However, the way in which expert
systems are built limits their capacity: it is a collection of rules represented by a sequence of
if-then statements allowing problem-solving [12]. On the other hand, machine learning and
deep learning algorithms learn a model with the data, the interaction with its environment,
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etc. In 1989, the French researcher Yan LeCun applied the backpropagation algorithm to a
neural network to recognize handwritten postal codes. In 1998, with Léon Bottou, Yoshua
Bengio, and Patrick Haffner, LeCun proposed a convolutional neural network (CNN) for
handwritten character recognition [13]. These successes gradually revived interest in deep
learning and machine learning, with computational capacity becoming less and less of
an issue. In 2009, a Stanford research team proposed using graphics processors rather
than CPUs to do the learning. Their project also details an architecture to parallelize
the computations.

Figure 2. Artificial intelligence development.

At the turn of the century, there was a rapid increase in connectivity with the devel-
opment of smartphones and social networks. The democratization of these technologies
leads to an explosion of generated data. The exponential increase in the volume of data
can also be attributed to the growing presence of sensor technologies and the emergence
of the Internet of Things (IoT) [14]. Computing capabilities are becoming increasingly
sophisticated, and the costs associated with technologies are becoming inexpensive. In
addition, large and varied amounts of data (big data) are easily available to organizations.
In other words, what was missing in the past to apply artificial intelligence is now widely
available.

2.4.2. Supervised Learning

Supervised learning (SL) is the process in which the machine observes examples of
data in the form of input and output pairs Xi, yi [15]. The first phase of learning is called
training and the Xi, yi pairs are called labeled data. Figure 3 is a visual example of a learning
process where one would try to classify pictures of cats and dogs.
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Figure 3. Example of supervised learning.

The algorithm receives the X variables (pictures) and makes a prediction (cat or dog).
Knowing the value to predict, the algorithm can modify its behavior (its parameters) with
each example it receives. The assumption is that over the course of iterations, the prediction
error will decrease sufficiently so that the resulting model is able to predict the variable y,
with new examples X that it has never observed. This is referred to as generalization. To
evaluate the predictive ability of the model, the data are divided into two parts: the training
sample and the validation sample. The model is trained on a sample of the data, and then,
the validation set is sent to evaluate the average prediction errors of the model and to
improve its performance by optimizing the hyperparameters. Once the hyperparameters
have been optimized, the validation gives a first indicator of the model’s performance,
indicating whether the model fits the data well. To know if a model has a good ability to
generalize, the data are divided into two parts: the training sample and the test sample, as
shown in Figure 4. The evaluation of the final model with the test sample gives a second
performance indicator, on the ability to predict new data. In summary, the data are divided
into three parts: the training sample, the validation sample, and the test sample. This
procedure is called cross-validation.

Figure 4. Example of data sampling for SL.

Figure 5 shows two different curve fittings, where the coefficient of determination (R2)
allows us to evaluate how well it fits the data, that is, the goodness of fit. The curve on the
left has a coefficient of 0.71 and the one on the right of 0.85.
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Figure 5. Example of curve fitting.

Although the curve on the right shows a better fit to the data, it is unlikely that this
model will achieve good performance for prediction on new data. This phenomenon is
often referred to as over-fitting. In the same way, a model that does not perform well on the
training data might not have good predictive ability. This is what is called the bias/variance
trade-off. By doing two evaluations of the performance of the model, it ensures that the
model is well-balanced. Generally, supervised learning methods are divided into two
families according to the variable to predict. First, there is classification, where the variable
to predict is a discrete variable. Often, it is about predicting a class, a label, etc. Then, there
is regression, where the variable to predict is a continuous variable. Figure 6 shows some
well-known methods in supervised learning in regression and classification.

Figure 6. Supervised learning approaches and algorithm.
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2.4.3. Unsupervised Learning

Unsupervised learning, as opposed to supervised learning, is the ML process where
learning is done using unlabeled data [11]. The idea is to determine the relationships
between variables without having a variable to predict. A classic use of this type of learning
is data clustering. The objective of clustering is to categorize the data into subgroups that
are determined by the similarity between the data [16]. Unsupervised learning is often
used in big data where modeling can be very time-consuming, especially if all variables
are included. Clustering, for example, can be used to reduce the number of variables in a
dataset by grouping certain variables together based on common characteristics. A good
example of clustering is the classification of animal species. By classifying animals by
species (mammals, fish, birds, etc.), a large part of their characteristics is encapsulated in
a single variable. The same kind of treatment is applied in supervised learning. Another
class of unsupervised learning approach is dimensionality reduction. As the name implies,
these methods take a dataset and reduce the dimensionality, i.e., the number of variables.
For example, principal component analysis (PCA) consists of taking the data and trying
to construct new variables by making changes to reference points (axes). The data are
projected into a new simplified representation system (fewer variables) minimizing the loss
of information. In a simplified way, the method consists in finding a line that minimizes
the sum of the distances in a scatter plot, as in regression. Then, the points are projected
(orthogonal projection) on this line, which becomes a new reference system, named the
principal component. Figure 7 is adapted from the taxonomy developed in [16] to include
the dimensionality reduction algorithm. It shows a classification of different unsupervised
learning methods that are commonly used by practitioners.

Figure 7. Unsupervised learning algorithm.

2.4.4. Reinforcement Learning

Reinforcement learning is another type of machine learning algorithm. This type of
learning is quite similar to the process studied in behavioral psychology, where one tries to
induce behaviors through positive or negative reinforcement of the subject. These methods
are frequently applied in robotics and in the field of video games, for instance [11]. In
many cases, data are generated by the interaction of an intelligent agent (a machine) and
its environment [17]. These data come from sensors, which bridge the gap between the
physical and the computational, in the case of robots. From an algorithmic point of view,
learning is done through these interactions with the environment and a penalty/reward
function that guides the agent’s decisions. The goal of the intelligent agent is to maximize
the rewards of its actions. As the agent makes decisions and receives feedback, it will
become increasingly competent at performing the tasks it is trained to do [17]. Figure 8
presents a summary of the taxonomy of reinforcement learning algorithms developed by
Zhang and Yu [18].
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Figure 8. Taxonomy of reinforcement learning algorithm.

2.4.5. Deep Learning

Deep learning (DL) is a form of artificial intelligence. These methods take their name
from the architecture of neural network algorithms. The neuron is the basic unit that makes
up an artificial neural network (ANN), as demonstrated in Figure 9 [15]. The simple
neuron, more formally the perceptron algorithm, takes a vector as input, as shown in the
supervised learning example. These values are multiplied by their respective weights and
aggregated by the input functions, then an activation function is applied to produce an
output result.

Figure 9. A simple mathematical model for a neuron.

A neural network, as its name suggests, is composed of successive layers of neurons,
arranged in a network architecture. Deep learning occurs when a network has three or
more layers [11]. Table 1 shows the three most common ANN architectures, along with
their applications, as presented in [19].
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Table 1. ANN architectures and applications.

Type Structure Applications

Artificial Neural
Network

Input layer Classification
Hidden layers Regression
Output layer Pattern recognition

Convolutional
Neural Network

Input layer
Convolution layers Natural language processing
Pooling layer Image processing
Fully connected layer
Output layer

Recurrent Neural
Network

Input layer Time series analysis
Hidden layers Sentiment Analysis
Output layer Natural language processing

2.4.6. Data Science

Data science is an emerging discipline. Its objective is to use the data to gain insight
and turn those data into value for an organization [20]. General applications for data science
include reporting, diagnosis, prediction, and recommendation. The field combines multiple
other disciplines such as machine learning, data mining, statistics, data visualization, and
predictive analytics [20]. Figure 10 presents the data science life cycle, which describes
the general modeling process used by the practitioner. The first step of a data science
project, like in applied research, is to define the problem and its objectives according to the
business perspective and context. The data are then collected, cleaned, and prepared for
modeling. Modeling is often performed using machine learning methods. The method and
the performance metrics are selected according to the objectives defined and the type of
problem at hand.

Figure 10. Data science life cycle adapted from [21].
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3. Machine Learning
3.1. Data Science Modeling Process
3.1.1. Data Acquisition

The first part of data-driven modeling is the data acquisition process. Data are gener-
ated automatically by sensing technology or by a technician through an ERP system, for
example. The data are then loaded into a storage environment. The data can be structured
and stored in a relational database or unstructured and stored in a data lake. Once the data
are available in a stored environment, it can be prepared for modeling. Sometimes, relevant
data may be stored across multiple sources and needs to be gathered for analytics.

3.1.2. Data Cleaning

Data quality is an important issue for data-driven modeling. For example, a case study
applied to the reliability of mining equipment shows that raw data are often erroneous,
lacking detail and accuracy, and, therefore, not suitable for decision-making. The study
reveals that different fields of relational databases show errors in assigning maintenance
tasks to the right subsystem, assigning codes to describe the type of work, associating the
right type of maintenance (condition-based, preventive, corrective), etc. [22]. Cleaning
must be performed so that the data are exploited to produce valuable insights for decision
makers. In an ideal context, it is preferable that entry errors be prevented rather than
corrected downstream. In fact, since the variance in data quality is greatly influenced by the
user who enters it, it is essential to develop better management of the workers who interact
with the database. Organizations must consider the effect of time pressure on data entry
and provide feedback from supervisory staff to operators. In addition, it is necessary to
encourage the participation of operators and to value their work toward data entry, in order
to improve its quality [23]. Nonetheless, data scientists must ensure quality throughout
the modeling and cleaning still needs to be performed. The data cleaning process involves
the detection of errors and the removal or replacement in the dataset [24,25]. Figure 11
summarizes a methodology to quantify data quality (diagnostic) and manage its quality
(correction) through a continuous process [24].

Figure 11. Virtuous circle for data quality management adapted from [24].

Cleaning of the dataset includes handling missing values, outliers, and bad data. The
user can decide to correct the data with imputation techniques, get rid of the data, or
leave it as it is [26]. To get rid of inadequate data, the user can either remove the entries
(row) or delete a whole field (column), depending on the completeness (% of missing data)
of a feature. For the imputation of missing values, the simplest methods are based on
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descriptive statistics. Good choices are central tendency measurement: for continuous
variables, there is mean, mode, and median; for categorical variables, there is the most
frequent value. Interpolation is often used for imputation in the case of a time series. Finally,
some users may use machine learning techniques to replace missing values. The k-nearest
neighbors’ algorithm (k-NN) and other regression methods are frequently used for this
purpose [25].

3.1.3. Data Exploration

Once the data are gathered, data exploration or exploratory data analysis is done using
graphical or statistical methods. Exploratory data analysis (EDA) is a practice that has
been widely promoted by statistician John Wilder Tukey [27]. The idea behind EDA is to
perform an initial examination of the data without any assumptions. Exploration is used
to discover patterns or anomalies and then form a hypothesis on the data [27]. Common
methods used in EDA are box plots, histograms, scatter plots, heatmaps, etc. The box plot,
developed by Tukey, is used to represent graphically the minimum and maximum value,
the median, and the quartile of a dataset. This graphic is very useful to detect outliers, in
addition to showing the dispersion and skewness of a distribution. To graphically observe
the shape of a distribution, the preferred representation is the histogram, which makes
it an excellent tool for EDA. The scatter plot is used to plot the point of two variables as
coordinates. Heatmaps, in the context of data analysis, are used to plot covariates against
each other’s and demonstrate the relationships, often using a correlation matrix. Data
exploration generally starts at the beginning of the modeling project but is used throughout
the entire process. For example, a box plot is a good method for detecting outliers and can
help with data cleaning. Additionally, heatmaps are a good starting point for selecting or
eliminating features in the step of feature engineering.

3.1.4. Feature Engineering

When dealing with real-world data, there can be hundreds of features, and it is
necessary to select the most relevant one from a dataset. Feature engineering is a process
that includes feature selection, feature transformation, feature creation/feature construction,
and feature extraction. The goal of this process is to reduce the size of the dataset by
selecting and transforming features to optimize the learning of a model. Feature selection
is the process of selecting the most relevant variables to perform modeling. Some variables
may be irrelevant to the phenomenon studied, but some variables that are relevant may
have unwanted effects on the model. For example, a feature may be redundant since it is
highly correlated with another explanatory variable. When dealing with lots of variables, it
is important to select the feature that will better explain the phenomenon without being
too computationally intensive. Correlation coefficients (Pearson) and heatmaps are good
methods for feature selection, as well as analysis of variance (ANOVA) tests and hypothesis
testing. Sometimes, machine learning algorithms such as tree-based models (random forest
(RF), decision tree (DT), etc.) are used in feature selection [28]. Feature transformation
includes feature normalization and linearization. Feature normalization consists of scaling
the values of a feature so that all features have the same contribution to the model. Many
ML techniques use Euclidean distances to compute the distance between points. If the
numerical features are not proportional, the estimation might be biased towards the largest
variables [25,26]. Linearization is a technique to transform the points of a distribution
so that they can be represented by a linear function. This method is widely used in
reliability for the exponential distribution. With a logarithmic transformation, a curve
fitting of the data gives the equation of exponential or Weibull distribution, for example [9].
Feature extraction is associated with dimensionality reduction techniques. The concept
is to reduce the number of features by combining features with a linear projection in a
lower dimensionality space. Feature creation or feature construction consists of using
existing variables to create new features that are more appropriate for modeling. Examples
of feature creation include encoding techniques (one-hot encoding, label encoding) and
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binning. Features can also be created with clustering methods, where the new variables
represent groups of points with similarity [16].

3.1.5. Model Conception

According to what has been described in the previous sections, machine learning
methods are used well before the design of the asset model. However, it is during the
design of this model that the methods diverge between RAMS and PHM. Although some
techniques are similar, the purpose of the models and their context is different, as presented
in Sections 4 and 5. Figure 10 refers to predictive modeling, but it can be interpreted in a
more general context as modeling of any kind (classification, prediction, clustering, curve
fitting, etc.). In the case of a machine learning model, the method consists of training the
model and validating its performance, for example, by cross-validation, and then using it
to generate new knowledge from data. The same process applies to statistical modeling:
the model is fitted to the data, and then the goodness of fit is evaluated with different
performance metrics.

4. ML Applications Analysis

This section of the paper aims to analyze the literature on reliability engineering,
particularly machine learning methods that have been used by practitioners. An analysis
of applications in RAMS and PHM will give a clear picture of why and how ML modeling
is used and identify gaps between theoretical applications and industry use cases.

4.1. Results
4.1.1. Execution and Filtering of Results

The keyword search on the two databases available on EBSCO gave hundreds of
results. To reduce the number of publications, the search will focus on articles from the
last 5 years that deal with either RAMS or PHM. Additionally, the complete article must
be available for download, as it is important to review the work. The EBSCO filter tool
allows making these selections quickly, especially with the publication date filter, the source
type (academic journals), and the help of the thesaurus, to select publication by subject.
Finally, of these results, only a few articles correspond to the subject in question, and the
last filtering is done manually. Table 2 presents the different selection and exclusion rules,
as well as the number of publications that match this criterion.

Table 2. Results filtering.

Rule Numbers of Publications

Keywords 547

From 2017 to 2023 362

Works not related to reliability engineering 253

English or French only 251

Full-text available 38

Peer-reviewed 34

Hand-selected 19

4.1.2. Applications Analysis

As mentioned earlier, RAMS is a framework for evaluating and optimizing the per-
formance of a system, focusing on the general characteristics of a population, while PHM
is a more proactive approach that involves continuously monitoring a system to predict
and prevent potential failures. We classified each article and its application according to
these definitions. Figure 12 shows the distribution of publications each year, by the subject
of application. We notice that the number of publications per subject is quite similar for
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RAMS and PHM, with small variations over the years. We also notice that there is a strong
increase in the overall number of publications in 2020, which corresponds to the outbreak
of the pandemic, and then a significant decrease the following year.

Figure 12. Publications per year by topic.

4.1.3. Machine Learning Methods Review

Figure 13 shows the different machine learning methods that were used in the articles.
The artificial neural network is the most used method of all, being used in more than 30%
of the studies. Furthermore, considering the different architectures of neural networks (con-
volutional networks, auto-encoders, and recurrent neural networks (RNNs) of type LSTM
(long-short-term memory)), more than half of the methods are deep learning. Figure 13
shows the total number of uses of the algorithm used in RAMS versus in total. Although
deep learning methods are the most popular, the figure demonstrates that they are generally
more used in PHM research than in RAMS. When examining publication objectives in
prognostics, it seems that the research is more focused either on remaining useful life (RUL)
estimation or online monitoring and diagnostics. Both applications require a large amount
of data to build a supervised prediction model, so it is not surprising that deep learning is
the preferred ML approach. Furthermore, recurrent neural network methods such as LSTM
can account for time dependencies because of their architecture, which contains feedback
connections between layers, making it an excellent solution for RUL estimation. In RAMS,
ML methods and modeling objectives are more diverse. For example, [29] tested deep
learning approaches to solve the problem of stochastic flow manufacturing networks to
predict the overall reliability of a manufacturing production line. Another study uses a sup-
port vector machine (SVM)-based algorithm to solve an optimization problem of structure
reliability. Other RAMS applications apply machine learning to simulate possible scenarios
and evaluate system reliability [30,31]. The vast majority of techniques, for both RAMS and
PHM, are supervised learning methods; some studies have also used transfer learning and
self-supervised learning. Table 3 shows in which articles each of the techniques were used.
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Figure 13. Frequency of use of ML algorithms by topic.

Table 3. Algorithms associated with reviewed articles.

Title Authors Data Type Algorithm

Effective software fault localization using predicted
execution results Gao, Wong et al., 2017 Operational K-Means

An Intelligent Reliability Assessment technique for
Bipolar Junction Transistor using Artificial

Intelligence Techniques

Bhargava and Handa
2018 Experimental testing

Artificial Neural
Network, Fuzzy
Inference System

Active fault tolerant control based on a neuro fuzzy
inference system applied to a two shafts gas turbine

Hadroug, Hafaifa et
al., 2018 Operational

Artificial Neural
Network, Fuzzy
inference system

Deep Learning for Accelerated Seismic Reliability
Analysis of Transportation Networks

Nabian and Meidani
2018

Simulated/
Generated randomly

Artificial Neural
Network

Gaussian Process-Based Response Surface Method
for Slope Reliability Analysis Hu, Su et al., 2019 Simulated/

Generated randomly
Kriging/Gaussian

Process

Fault diagnosis of multi-state gas monitoring
network based on fuzzy Bayesian net Xue, Li et al., 2019 Operational Fuzzy Bayesian

Network

Active learning polynomial chaos expansion for
reliability analysis by maximizing expected indicator

function prediction error
Cheng and Lu 2020 Simulated/

Generated randomly

Polynomial Chaos
Expansion,

Kriging/Gaussian
Process

A Reliability Management System for Network
Systems using Deep Learning and Model Driven

Approaches

Min, Jiasheng et al.,
2020

Simulated/
Generated randomly

Artificial Neural
Network

Integration of Dimension Reduction and Uncertainty
Quantification in Designing Stretchable Strain Gauge

Sensor

Sungkun,
Gorguluarslan et al.,

2020

Simulated/
Generated randomly

Auto Encoder,
Artificial Neural

Network, Principal
Component Analysis
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Table 3. Cont.

Title Authors Data Type Algorithm

Data-driven prognostic method based on
self-supervised learning approaches for fault

detection
Wang, Qiao et al., 2020 Public dataset Kernel Principal

Component Analysis

Transfer Learning Strategies for Deep Learning-based
PHM Algorithms

Yang, Zhang et al.,
2020 Public dataset Convolutional Neural

Network

Bounds approximation of limit-state surface based on
active learning Kriging model with truncated
candidate region for random-interval hybrid

reliability analysis

Yang, Wang et al., 2020 Simulated/
Generated randomly

Kriging/Gaussian
Process

A data-driven approach based on deep neural
networks for lithium-ion battery prognostics Kara 2021 Public dataset

Convolutional Neural
Network, Long

Short-Term Memory

Using Deep Neural Networks to Evaluate the System
Reliability of Manufacturing Networks

Yi-Fan, Yi-Kuei et al.,
2021

Simulated/
Generated randomly

Artificial Neural
Network

Convolutional And Long Short-Term Memory Neural
Networks Based Models For Remaining Useful Life

Prediction

Gritsyuk and Gritsyuk
2022 Public dataset

Convolutional Neural
Network, Long

Short-Term Memory

DL-RSIM: A Reliability and Deployment Strategy
Simulation Framework for ReRAM-based CNN

Accelerators

Wei-Ting, Hsiang-Yun
et al., 2022 Public dataset Convolutional Neural

Network

A Novel Support-Vector-Machine-Based Grasshopper
Optimization Algorithm for Structural Reliability

Analysis
Yang, Sun et al., 2022 Simulated/

Generated randomly
Support Vector

Machine

4.1.4. Datasets and Systems under Study

In this section, we present the different types of datasets that are used in the literature,
as well as the different systems that these data come from.

As shown in Figure 14, 47% of the studies use simulated data or data that are generated
randomly by theoretical mathematical functions. Then, 29% of the publications used public
datasets; these data are freely available to the public for different uses. A large proportion
of public datasets are actual operational data. However, their treatment is simplified
compared to a real case study, and their use is mainly intended to test and compare new
approaches with existing methods. Many organizations make their data available to the
public on a platform such as Google Dataset Search or Kaggle. For example, in [32], they
used data from NASA’s Turbofan engine degradation simulation [33] to compare the new
RNN architecture for the estimation of the remaining useful life. In [34], they used NASA’s
experimental data on lithium-ion batteries to test a new CNN-LSTM architecture to improve
the precision of the prediction of remaining useful life [35]. Less than a quarter of the study
are interested in the analysis of industrial case studies (6%) through experimental testing
and operational data (18%).

The types of systems studied are very diverse, as shown in Figure 15. The reliability
of computer networks and software is a subject that has been studied extensively, and
this is reflected in the graph. As shown in Figure 14, theoretical studies using various
mathematical functions are very popular, instead of using real-life systems. Another
topic that is relatively popular is the reliability of the monitoring and sensing systems
themselves. Indeed, it is important to consider the possibility that monitoring systems
produce misleading signals and themselves suffer from failures to improve decision-making
in an organization.
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Figure 14. Pie chart of types of data sources.

Figure 15. Types of systems under study.

4.2. Related Works

The systematic review presented in the previous section provides a comprehensive
and reliable overview of the evidence on the topic of machine learning applied to reliability.
However, the review is based on two databases, potentially excluding interesting articles
on the subject. Therefore, this section aims to supplement the review by presenting some
additional applications as well as programming tools for practitioners. To begin with,
in [36], the authors present an agent-based modeling method for simulation to study the
balancing of smart grids. The objective is to use this model to test the effect of balancing
on electrical and telecommunications networks, among others. In [37], an attempt is
made to develop a model to predict failures, taking into account several covariates while
considering possible interactions. An approach to combining a neural network, specifically
a single-layer perceptron, with the method of general renewal Weibull process for curve
fitting is presented. Finally, the approach is tested through a case study on solar power
plants and presented, particularly by analyzing the reliability of thermal pumps. In [38],
a structure and method are developed to reduce the dimensionality of asset lifecycle
data while minimizing information losses. This PHM application also focuses on feature
engineering by introducing a data transformation method to prepare ML models for
predictive maintenance. The proposed framework appears promising, but the article lacks
an application to demonstrate the applicability and relevance of the method. On the other
hand, in [39], a similar methodology is attempted in a case study in a machining center. The
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authors use a supervised learning technique of feature selection: minimum redundancy
maximum relevance. The analyses demonstrate that the method has eliminated about ten
redundant variables. Then, a model is built from historical data, and the results are used to
produce a monitoring tool for enterprise management. A rule-based model is then used for
predictive maintenance. In [40], a preventive maintenance model is developed to improve
policies, in addition to presenting a cloud architecture for a predictive maintenance and
corrective maintenance program with real-time detection. A case study is presented to
analyze the residual life of equipment in a machining center. An artificial neural network is
trained from historical data and then used for real-time monitoring. The article [41] presents
a reliability study in the context of a semiconductor manufacturer. The objective is to present
a model that can learn and associate indicators with potential failures and determine rules or
patterns of indicators or critical areas. They use Bayesian networks to determine probability
distributions in the learning phase, then use the resulting network to learn patterns leading
to failure. The results suggest that the model could be extended to real-time prediction
applications. A growing area of research in reliability is natural language processing (NLP),
particularly for leveraging historical data in the form of free text. In [42], the authors discuss
the need to develop a new methodology, technical language processing, to adapt NLP to
the context of short technical text analysis. Indeed, traditional NLP tools are not suitable for
processing technical language contained in engineering databases; the texts are generally
short and contain abbreviations or domain-specific language for example. The article
proposes a new framework to address the reality of short texts contained in maintenance
work orders. In [43], a case study is presented for the classification of maintenance data in
a manufacturing company. CamemBERT, a pre-trained transformer architecture, is used
for French language processing. In [44], a classification model is developed based on a
pre-trained model for reclassifying maintenance orders in the context of an electrical utility.
Some reviews of the literature also present interesting perspectives on reliability. The
authors of [45] propose a summary of the literature on the application of the k-out-of-n: G
system method for evaluating the reliability of the system. This method aims to analyze
the reliability of a system consisting of n components, which can operate as long as k
components function. This method is particularly useful in the analysis of complex systems.
Finally, Ref. [46] provides a summary of the literature on statistical techniques in reliability,
particularly for predicting failures and applications of heavy equipment in the mining
industry. In addition, they propose to compare traditional methods with machine learning
methods by analyzing case studies presented in the literature.

Table 4 presents various programming tools, and Python libraries, which are widely
used by the scientific community and in the field of RAMS engineering. In particular, the
Reliability [47], Lifelines [48], and Scikit-survival [49] libraries allow for several statistical
analyses relevant to RAMS, including parametric analyses with known distributions such
as Weibull, Gamma, and Exponential, as well as survival analyses. The ProgPy [50] library
is a recently developed library by NASA for PHM applications. The statsmodels [51] library
is a general statistical library, while Scikit-Learn [52] is a general ML library containing a
multitude of methods. TensorFlow [53] and Keras [54] are among the most widely used
libraries for deep learning development. Finally, NLTK [55] and Spacy [52] are two open-
access libraries offering easy and quick integration of tools for natural language processing.
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Table 4. Python libraries for reliability engineering.

Library Name Application Library Function

Reliability Reliability and
Survival Analysis

Parametric Reliability Models (Weibull, Exponential,
Lognormal, etc.), Non-Parametric Models

(Kaplan–Meier, Nelson–Aalen, etc.), Accelerated Life
Testing

Lifelines Survival Analysis Cox Proportional Hazard Model, Kaplan–Meier
Estimator, Parametric Survival Models

Scikit-survival Survival Analysis
Survival Tree, Ensemble Model for Survival Analysis,

Cox Proportional Hazard Model, Kaplan–Meier
Estimator

ProgPy Python
Prognostics

Packages
Prognostics

Statsmodels Statistics Linear Regression, Generalized Linear Model,
ANOVA

Scikit-Learn Machine Learning Classification, Regressions, Clustering,
Cross-Validation/Model Selection Methods

TensorFlow Deep Learning Artificial Neural Network, Recurrent Neural Network,
Convolutional Neural Network

Keras Deep Learning High-level API built on top of Tensor Flow for easy
use

NLTK Natural Language
Processing

Tokenization, Sentiment Analysis, Stemming,
Part-of-Speech Tagging

Spacy Natural Language
Processing

Text Classifier, Transformer Models, Custom Trainable
Pipeline, Named Entity Recognition

4.3. Discussion

This section allows us to make several observations regarding the use of machine
learning in the field of reliability. Although this review only lists the results of a few
databases, it still allows us to have an insightful overview of the situation. The number
of publications found on the subject has been quite low for the last 5 years (19 articles),
although there is a growing trend for artificial intelligence applications. When you look
at the data sources, this gives a hint as to why there are no more publications in the
field. Indeed, most of the publications apply ML to fictive data, in particular with the
aim of developing new methodologies. Case studies are quite rare: less than a quarter of
publications. The difficulty to obtain good-quality operational data is probably part of the
problem. However, the development of new methodologies can be expected to lead to case
studies on real data. The data used in reliability are sometimes difficult to exploit, given
the complexity of the data (manually entered data, free text fields, etc.). Moreover, machine
learning requires a large amount of data, which means that it is necessary to have a large
database of historical maintenance work, which is a considerable constraint in itself. Given
these factors, this also justifies why deep learning approaches are generally preferred in
the field.

Future Work

This research introduces the concepts of machine learning and reliability engineering.
Learning these concepts is essential to start applying advanced techniques in the industry.
Although the general concepts may be perceived as well mastered by the community,
the systematic review shows that there are still few applications that are made in real
industrial contexts. With the rapid development of Industry 4.0 and the various enablers, it
is becoming clear that it is only a matter of time before these methods spread throughout
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the industry. To do so, the research community needs to prove that machine learning can
be applied to real, often imperfect data.

5. Conclusions

The field of reliability engineering has seen tremendous growth in recent years due to
advancements in data acquisition and processing technologies. However, the integration
of artificial intelligence (AI) techniques into the domain remains a complex task. The goal
of this publication is to summarize the basic techniques used in reliability and machine
learning in order to demonstrate how they can be applied in an industrial context. The
first sections focused on providing a summary of the techniques by presenting the basics of
modeling and statistical techniques, followed by a comprehensive overview of machine
learning, artificial intelligence, and data science. These sections provided a solid foundation
to understand the different types of techniques used for modeling. Then a systematic review
of machine learning applied in reliability engineering was presented. An analysis was
done by linking the analysis domain (RAMS or PHM), the type of algorithm, and the
type of system in which it is involved. Furthermore, the review compared the types of
data used, whether synthetic or operational. Finally, an overview of related works was
presented, introducing different machine learning applications and tools used in real-world
applications. This provided a good overview of different use cases of machine learning for
reliability engineering.

The findings of this review suggest that machine learning techniques are still not
widely used in the reliability engineering field. The results also showed that most of the
studies did not use operational data as input for their models, but rather used synthetic
data or publicly available datasets. In addition, deep learning techniques (deep neural
network) are the most widely used machine learning method in reliability.

In conclusion, the application of machine learning techniques in RAMS and PHM
gives new opportunities for researchers and practitioners to optimize the decision-making
processes and improve the reliability and performance of systems. This work provides a
good foundation for researchers with an understanding of the field of machine learning
applied to reliability engineering. However, there is still great difficulty in working with
operational data, opening the way for applied research in data mining and natural language
processing, particularly for the analysis of maintenance data.
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