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Abstract: In this study, the hydrological system of the Weather Research and Forecasting model
(WRF-Hydro) is applied to simulate the streamflow at the Kaidu River Basin, which is vital to the
ecological system in the lower reaches of the Tarim River in Northwest China. The offline WRF-Hydro
model is coupled with the Noah multi-parameterization land surface model (Noah-MP) and is forced
by the China Meteorological Forcing Dataset (CMFD), with the grid spacing of the hydrological
routing modules being 250 m. A 3-year period (1983–1985) is used for calibration and a 17-year
period (1986–2002) for the evaluation. Several key parameters of WRF-Hydro and four Noah-MP
parameterization options are calibrated, and the performance of WRF-Hydro with the optimized
model setting is evaluated using the daily streamflow observations. The results indicate that WRF-
Hydro can reproduce the observed streamflow reasonably, with underestimation of the streamflow
peaks. The simulated streamflow is sensitive to the parameters of bexp, dksat, smcmax, REFKDT,
slope, OVROUGHRTAC and mann in the Kaidu River Basin. At the same time, the parameterization
options of Noah-MP also have a large influence on the streamflow simulation. The WRF-Hydro
model with optimized model settings can achieve correlation coefficient (CC) and Nash efficiency
coefficient (NSE) statistical scores of 0.78 and 0.61, respectively, for the calibration period. Meanwhile,
for the evaluation period, the scores are 0.7 and 0.50, respectively. This study indicates the importance
of applying the physical-based WRF-Hydro model over Northwest China and provides a reference
for the nearby regions.

Keywords: Kaidu River Basin; Northwest China; the WRF-Hydro model; streamflow simulation

1. Introduction

The water resources in the arid regions of Northwest China are highly susceptible
and vulnerable to the effects of both climate change and human activities [1–3]. In recent
decades, the expansion of human populations and economic development in the arid
regions have exacerbated the conflict between water supply and demand, resulting in rapid
degradation in the quality of the ecological environment [4]. For instance, the groundwater
table along the Tarim River has declined from 2–3 m to 4–10 m after the 1970s [5], and
over 10,000 km2 of land has been affected by desertification, particularly for the Populus
euphratica forest along the river [6]. To ensure the security of the ecological system in the
lower reaches of the Tarim River, a large ecological water conveyance project has been
implemented by the local government, transferring water from the Kaidu River to the
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lower reaches of the Tarim River Basin for the past two decades [7], and observations have
indicated that this ecological water conveyance has increased the groundwater table and
has a significant influence on the restoration of vegetation in the lower reaches of the Tarim
River [1]. As the project relies on water from the Kaidu River, accurate prediction and an
in-depth understanding of streamflow variations of the Kaidu River are crucial for the local
area [8,9].

In arid regions, the water, energy and ecological processes between the atmosphere,
land surface and subsurface are strongly coupled, and numerous studies have emphasized
the importance of integrated representation of terrestrial hydrological dynamics in the
development of meteorological models [10–12], as most of the current weather and climate
models oversimplify hydrological processes by using a one-dimensional (vertical) approach
that neglects lateral water movement and the subsequent re-infiltration and exfiltration
processes. This oversimplification can lead to errors in the representation of hydrologic
conditions in models, especially for complex terrain and areas with moisture gradients.
The Weather Research and Forecasting (WRF) model [13] is one of the most popular
mesoscale models and shows good performance in simulating and predicting major meteo-
rological variables such as temperature, precipitation and wind speed over China [14–18].
The hydrological enhancement system of the WRF model, named WRF-Hydro [19,20], is
a fully distributed, multi-physical and multi-scale three-dimensional land surface hydro-
logical simulation system that considers the lateral redistribution of surface, subsurface,
groundwater and channel water. As a result, it can better describe the relationship between
water and energy fluxes at the atmospheric–terrestrial interface. The WRF-Hydro model
can be applied as an offline model for model calibration and flood simulation [21] and as a
coupled model for studying the land–atmosphere feedback [22–27]. A growing number
of studies have been conducted with WRF-Hydro over China, either in the uncoupled
or coupled mode [22,24–31]. For example, Wang et al. [22] studied the spatiotemporal
characteristics of rainfall and several key water cycle elements, including soil moisture,
evapotranspiration and runoff over North China, the results show that the fully coupled
WRF/WRF-Hydro system produced slightly less runoff but more frequent infiltration and
higher soil moisture than the WRF-only simulations. Liu et al. [30] investigated the effects
of four key parameters on the streamflow simulation over North China and found that the
runoff infiltration parameter and the channel Manning roughness parameter are the most
sensitive parameters, particularly under unsaturated soil conditions. Wang et al. [26] used
WRF-Hydro to simulate the climate hydrological coupling situation of the Daihai Basin
in North China from 1980 to 2020, and the simulations showed that the inflow of Daihai
Lake decreased during the study period and that the runoff into the lake tended to be flat
since 2013.

Although many simulations were conducted in different regions of China in previous
studies, there are almost no applications of WRF-Hydro in the arid regions of Northwest
China. For the Kaidu River Basin of Northwest China, accurate simulation of natural
streamflow is of utmost importance for the local government. It can provide the necessary
scientific support for effective reservoir operation and agricultural planning. Despite their
significance, such simulations have yet to be carried out in this region. Thus, in this study,
we apply version 5.1.2 of the WRF-Hydro model to simulate the streamflow of the Kaidu
River, investigate the model’s sensitivity to the key parameters affecting its behavior and
assess the performance of the WRF-Hydro model with the calibrated parameters. The
results of this study could provide valuable references for further research in the study area
and nearby regions.

2. Materials and Methods
2.1. Study Area

The Kaidu River Basin is located at the edge of the Taklimakan Desert, the second
largest desert in the world. It originates from the southern slope of the Tianshan Mountains
in northwestern China and flows into Bosten Lake, which is the headwater of the down-
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stream Tarim River that ultimately flows into the Lob Nor. The basin’s bottom elevation
ranges from approximately 2300 to 2600 m above sea level [8]. The climate in the basin is
continental temperate arid, with a mean annual temperature of −4.2 ◦C in the mountainous
area (Bayinbuluke station, as shown in Figure 1) for the period 1961–2010. The Kaidu River
is the primary contributor to Bosten Lake, accounting for over 80% of the inflowing water,
and the annual runoff at the Dashankou hydrological station (as illustrated in Figure 1) is
35.05 × 108 m3 for the period 1961–2010, primarily originating from snow- and ice melt
and rainfall. The accumulation of snow typically begins in November and ends in March
of the following year, while mountain snowmelt and rainfall are the primary water sources
of the river during the summer months [9].
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2.2. WRF-Hydro Model Structure and Configuration

In this study, the WRF-Hydro model is used, the model extends the traditional one-
dimensional land surface schemes in WRF by providing a framework for multiple terrestrial
physics options, such as overland flow, subsurface flow, channel flow and a bucket model
to account for baseflow. The model can be used as a hydrological model, which is referred
to as the ‘one-way coupling’, ‘offline’ or ‘standalone’ mode, where the model applies a one-
way process using gridded atmospheric forcing variables, including incoming shortwave
and longwave radiation, specific humidity, air temperature, surface pressure and near-
surface wind. Alternatively, the model can be run in a fully coupled mode with information
exchange between the land surface model and the atmospheric model; in this case, the
atmospheric model can provide the meteorological forcing, and no additional inputs are
necessary for the land surface model. This configuration is often referred to as the ‘fully’ or
‘two-way coupling’ mode.

The default land surface model for WRF-Hydro 5.1.2 is the Noah-MP model [32,33],
which is developed based on the Noah model [34] and features multiple parameterization
options. In contrast to its predecessor, the Noah model, the Noah-MP model offers an
expanded range of user-selectable process schemes, including canopy stomatal resistance
scheme, dynamic vegetation scheme, snowpack parameterization and runoff/groundwater
options. The default physics options of Noah-MP are listed in Table S1. The soil column
in Noah-MP has a 2 m profile, subdivided into 4 layers with thicknesses of 10, 30, 60 and
100 cm, respectively.

In this study, the grid spacing of the Noah-MP model is 1 km, and the simulation
domain covers the Kaidu River Basin and the surrounding areas, consisting of 300 grids in
the west–east direction and 160 grids in the south–north direction. The subgrid routing
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modules of WRF-Hydro, on the other hand, have a horizontal grid spacing of 250 m,
resulting in an aggregation factor of 4. As a result, the WRF-Hydro modules have 1200 grids
in the west–east direction and 640 grids in the south–north direction, and the timestep of
terrain routing and channel routing is 6 s. For each timestep, the soil conditions within
the Noah-MP model are disaggregated from the land surface grids to the high-resolution
routing grid through a subgrid, spatial weighting method [19]. The relevant input fields
passed from Noah-MP to the routing modules include maximum soil moisture for each soil
type, infiltration capacity excess, lateral saturated hydraulic conductivity for each soil type
and soil moisture content for each soil layer.

The high-resolution routing fields were generated from elevation data extracted from
the HydroSHEDS DEM (https://www.hydrosheds.org (accessed on 10 January 2022)).
Channel parameters, such as stream order and flow direction, are presented in Figure S1 for
the river basin. The land use dataset used in this study is the Moderate Resolution Imaging
Spectroradiometer (MODIS) modified International Geosphere–Biosphere Program (IGBP)
20-category land cover product (Figure S1) developed by the Chinese Academy of Sciences
(CAS) [15], and soil type information was obtained from the global soil dataset created
by Beijing Normal University [35]. Based on the CAS land cover dataset, the basin was
mainly classified into three land cover types: grasslands, open and closed shrublands and
barren or sparsely vegetated areas. The land surface properties, including canopy height,
maximum carboxylation rate and overland flow roughness, are dependent on land cover
type, while the soil hydraulic parameters (i.e., soil porosity, grain size distribution index and
saturated hydraulic conductivity) are based on the soil texture types. The physically based
one-dimensional column snowpack model (Crocus) was activated during the simulation.

The China Meteorological Forcing Dataset (CMFD), a high-resolution gridded near-
surface meteorological dataset over China [36], was utilized to provide meteorological
forcing for WRF-Hydro. This dataset has a spatial resolution of 0.1◦ and 3-hourly temporal
resolution and has been validated to be superior to the GLDAS (Global Land Data Assimi-
lation System) when compared to observations. Surface overland, saturated subsurface
and channel routing were activated for the routing module in the WRF-Hydro model. The
steepest descent for the surface overland flow routing and diffusive wave for the channel
routing were used.

Due to the limitation of computational resources, a three-year period (1983–1985) was
selected as the calibration period, and for each calibration run, the model performance
was evaluated using the simulation results and the daily streamflow observations of the
Dashankou station (Figure 1). Then, the model was run for the period of 1986–2002 with
the optimized model options, and the performance was evaluated with the observations.

2.3. Experimental Design

The WRF-Hydro model has several hydrological parameters that require adjustment
or calibration based on the hydrological characters of the study region. In this study, we
selected 12 parameters for calibration guided by prior studies [11,29,30,37]; details of the
parameters are listed in Table 1.

Among the parameters, the soil saturated hydraulic conductivity (dksat) regulates
the speed at which water moves through the subsurface and is commonly calibrated
in combination with the pore size distribution index (bexp) parameter, and the latter
parameter controls how actual conductivity is scaled from saturated conductivity based
on soil water content. The slope parameter, initially estimated from the land surface
topography, determines the openness or closure of the bottom boundary of the soil column.
The REFKDT parameter controls how easily precipitation reaching the surface infiltrates
into the soil column, with higher values of REFKDT leading to more infiltration and less
surface runoff. The RETDEPRTFAC parameter is a multiplier on the maximum retention
depth, whereas the LKSATFAC parameter is a multiplier on the prescribed lateral saturated
hydraulic conductivity values. The overland flow roughness parameter is regulated by the
OVROUGHRTFAC parameter, which, in turn, is determined by land use type and affects

https://www.hydrosheds.org
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the speed of overland transmitters downstream. Finally, the Mann parameter reflects the
influence of channel roughness on streamflow.

To calibrate the model, we utilized a stepwise approach outlined in [11], as automated
calibration methods, such as the dynamically dimensioned search algorithm [38], would
require a large number of simulations and considerable computational resources. In this
study, we calibrated each parameter listed in Table 1 individually and retained its calibrated
value for subsequent steps. Finally, we evaluated the model’s performance against observed
streamflow data by running the model with the calibrated parameters.

Table 1. List of the parameters tested in the sensitivity experiments.

Name Description Units Default Value Calibration
Factor

bexp Pore size distribution index ×1 multiple
expon Bucket drainage parameter 3
dksat Saturated hydraulic conductivity m/s ×1 multiple

smcmax Saturation soil moisture content fraction ×1 multiple
REFKDT Surface runoff parameter 3

slope Openness of bottom
drainage boundary 0.1

RETDEPRTFAC Multiplier on retention
depth limit 1

LKSATFAC Multiplier on lateral
hydraulic conductivity 1000

OVROUGHRTAC Multiplier on
Manning’s roughness 1

mann Channel Manning roughness ×1 multiple

Zmax Maximum groundwater
bucket depth mm 50

mfsno Melt factor for snow
depletion curve 2.5

2.4. Evaluation Metrics

The performance of the WRF-Hydro model is evaluated by four commonly used
metrics: correlation coefficient (CC), model bias (BS), root mean squared error (RMSE) and
Nash efficiency coefficient (NSE). The CC reflects the linear relationship between simula-
tions and observations. The NSE is a commonly used metric in hydrological evaluations
as it takes into account both the magnitude of errors and the variability of timeseries. The
RMSE is used to quantify the deviation between the simulations and observations. They
are defined as follows:

CC =
∑N

i=1

(
Mi − M

)(
Oi − O

)
√

∑N
i=1

(
Mi − M

)2
· ∑N

i=1

(
Oi − O

)2

BS = 100% × ∑N
i=1(Mi − Oi)

∑N
i=1 Oi

RMSE =

√
1
N ∑N

i=1(Mi − Oi)
2

NSE = 1 − ∑N
i=1(Oi − Mi)

2

∑N
i=1

(
Oi − O

)2
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Here, mi is the value of the model simulation, oi is the value of the observation, N
is the number of observations and O and M are the average of observation and model
simulations, respectively.

3. Results
3.1. Model Sensitivity to Key Parameters

Figure 2 shows the results of calibrating the bexp parameter by running the model
with a range of values from 0.1 to 10. During the calibration period of 1983–1985, the
peak discharge occurs approximately between June and August, while baseflows are
generally reached by October. The figure demonstrates that bexp has a significant impact
on streamflow simulation, where higher bexp values lead to lower streamflow. In the WRF-
Hydro model, bexp controls how actual conductivity is scaled from saturated conductivity
based on soil water content, and higher bexp values encourage more water to infiltrate
into the soil column, thereby reducing surface runoff, which delays and decreases the
runoff peaks. For example, the model run with a bexp value of 0.1 indicates runoff peaks
exceeding 2000 m3/s, while the model run with a bexp value of 1 indicates peaks of less
than 500 m3/s.
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gray bars, respectively.

For the statistical scores, the CCs range from 0.71 to 0.73, the BCs range from −71.75
to 75.13%, the RMSEs range from 43.39 to 566.79 m3/s and the NSEs range from 0.50 to
0.60 for all the simulations with different bexp values. Based on these scores, a lower
bexp value of 0.4 is considered an optimum value, with CC, BC, RMSE and NSE values of
0.71, 4.19 m3/s, 45.19% and 0.51, respectively. Similar diagrams for selecting the optimum
value of the expon parameter with values ranging from 0.01 to 100 are shown in Figure S2.
The simulated streamflow is not sensitive to expon, and there are few differences among
simulations with different expon values. According to the statistical scores, a value of 10
for expon is chosen as optimal, with a CC of 0.72, BC of 4.53%, RMSE of 43.01 m3/s and
NSE of 0.51.

Figure 3 depicts the calibration results of the dksat parameter with a range of values
from 0.01 to 100. In the WRF-Hydro model, dksat represents the saturated hydraulic
conductivity, which regulates the speed at which water moves through the subsurface. Al-
though initial values of dksat are based on soil texture, reported ranges exhibit considerable
variability. In general, higher values of dksat encourage faster soil water movement, which
consequently reduces runoff peaks. Statistical evaluation of the sensitivity runs yielded
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CCs of 0.59–0.72, BCs of −43.06–4.41%, RMSEs of 43.01–94.51 m3/s and NSEs of 0.35–0.51.
Based on these metrics, the default value of dksat (×1) is considered an optimum value.
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Figure 4 illustrates the results for smcmax parameter with values ranging from 0.1 to
100. In the WRF-Hydro model, smcmax represents the maximum soil moisture content
for each soil type, which has a large influence on flood generation. Generally, lower
values encourage flash floods. In this study, the simulated streamflow is sensitive to
smcmax, and the model spreads are large. The simulation with a value of 0.1 shows
significant overestimation on the runoff peaks, both in amounts and values. In contrast,
the simulation with a value of 100 underestimates the streamflow during the calibration
period. The statistical scores of CC, BC, RMSE and NSE for all the experimental simulations
are 0.68–0.80, −43.28–66.34%, 43.01–114.66 m3/s and 0.47–0.64, respectively. According to
the statistical scores, the default value (×1) is chosen as optimal, yielding CC, BC, RMSE
and NSE of 0.72, 4.53%, 43.01 m3/s and 0.51, respectively.
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The hydrographs obtained from the sensitivity simulations with REFKDT ranging
from 0.1 to 100 are shown in Figure 5. REFKDT is an important Noah-MP parameter
that controls how easily precipitation reaching the surface infiltrates into the soil column
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versus stays on the surface where it can become surface runoff. It can be observed from the
hydrographs in Figure 5 that lower values of REFKDT lead to less infiltration and more
surface runoff. For example, the simulation with lower REFKDT (0.01) indicates extremely
high runoff peaks of 1200 m3/s in 1984, while higher REFKDT substantially decreases the
runoff peak values. The statistical scores of CC, BC, RMSE and NSE for all the sensitivity
runs are 0.56–0.72, 1.56–4.57%, 42.93–96.04 m3/s and 0.31–0.51, respectively. Based on
these metrics, the default value of REFKDT (3) is chosen as optimal. The hydrographs for
selecting the optimum values of RETDEPRTFAC and LKSATFAC parameters are illustrated
in Figures S3 and S4. RETDEPRTFAC is a multiplier on the maximum retention depth,
and LKSATFAC is a multiplier on the prescribed lateral saturated hydraulic conductivity.
However, the simulated streamflow is not sensitive to the values of RETDEPRTFAC and
LKSATFAC in this study.
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Figure 6 illustrates diagrams for selecting the optimal value of the OVROUGHRT
parameter with a range of 0.01 to 100. In WRF-Hydro, OVROUGHRT is determined by
land use type and affects the downstream overland transmitter speed, with a default
value of 1.0. Lower values of OVROUGHRT lead to higher runoff peaks; for instance, the
simulated runoff peak is over 600 m3/s in the sensitivity run with a value of 0.01, while in
the simulation with a value of 100, the runoff peak is about 300 m3/s. The CCs range from
0.67 to 0.72, the BCs range from −1.91–7.08%, the RMSE range from 42.13 to 53.83 m3/s
and the NSEs range from 0.45 to 0.52 for all the sensitivity runs. Based on these metrics, an
OVROUGHRTFAC value of 2 is chosen as optimal, resulting in CC, BC, RMSE and NSE
values of 0.72, 5.75%, 42.13 m3/s and 0.52, respectively.

The slope parameter controls how open or closed the bottom boundary of the soil
column is. Lower values of slope retain more water in the soil column, resulting in higher
runoff peaks. On the other hand, higher values allow more water to drain to the channel or
to deeper baseflow, leading to higher baseflow (Figure S5). The default value of slope (0.1)
is chosen as optimal based on the statistical scores.

Figure 7 displays the hydrographs of sensitivity tests conducted for the mann parame-
ter. The mann parameter is adjusted by multiplying the initial values in WRF-Hydro codes
by the calibration factor, which is constrained between 0.1 and 10. This means that the
channel Manning roughness parameters themselves are not adjusted. For instance, if mann
has a value of 2, the initial value of channel Manning roughness is multiplied by 2 for all
channels to compute the new parameters. As a result, the spatial patterns of the parameters
are preserved. Figure 7 illustrates that the mann parameter has a significant influence on
the runoff peaks, and lower values of mann resulted in higher runoff peaks. The statistical
scores of CC, BC, RMSE and NSE for all the sensitivity runs range from 0.69 to 0.73, 5.03%
to 6.15%, 41.20 to 45.55 m3/s and 0.48 to 0.53, respectively. Based on the statistical scores, a
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multiplier of 2 is chosen as the optimum value, yielding CC, BC, RMSE and NSE values
of 0.73, 5.55%, 41.20 m3/s and 0.53, respectively. The simulated streamflow is found to be
insensitive to Zmax and mfsno parameters (Figures S6 and S7), and the differences among
simulations with different values are negligible. Based on the statistical scores, the lower
values of mfsno (2.5) and Zmax (10) are chosen as the optimum values, and the statistical
scores of CC, BC, RMSE and NSE are 0.73, 5.57%, 41.12 m3/s and 0.54, respectively.
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3.2. Sensitivity to Noah-MP Options

As the WRF-Hydro model is composed of the Noah-MP model, which describes the
lateral routing of surface and subsurface water, as well as groundwater storage, the perfor-
mance of Noah-MP plays a crucial role in streamflow simulations within the WRF-Hydro
model [39]. In this study, the impact of Noah-MP options on the streamflow simulations
is also investigated. Four physical parameterization options are tested, including the op-
tions for runoff, partitioning precipitation into rainfall and snowfall, glacier and surface
resistance parameterizations (Table 2).
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Table 2. List of Noah-MP physical parameterizations tested in this study.

Physical Parameterizations Option Description

Runoff options (run)
1 TOPMODEL with groundwater
2 TOPMODEL with an equilibrium water table
3 original surface and subsurface runoff
4 BATS surface and subsurface runoff

Partitioning precipitation into
rainfall and snowfall options (pcp)

1 Jordan
2 BATS: when SFCTMP < TFRZ + 2.2
3 SFCTMP < TFRZ

Glacier options (gla)
1 include phase change of ice
2 ice treatment more like original Noah

Surface resistance option (res)
1 Sakaguchi and Zeng [40]
2 Sellers
3 Adjusted Sellers to decrease RSURF for wet soil

4 Option 1 for non-snow; rsurf = rsurf_snow
for snow

The statistical scores of the sensitivity tests of Noah-MP options are presented in
Table S2. Across all simulations, the CCs range from 0.38 to 0.78, the BCs range from
−29.92% to 53.88%, the RMSEs range from 40.11 to 69.79 m3/s and the NSEs range from
0.14 to 0.61. Based on the statistical scores, the simulation of run3_pcp2_gla1_res3 (option 3
for runoff, option 2 for partitioning precipitation into rainfall and snowfall, option 1 for
glacier and option 3 for surface resistance) is considered optimal, with a CC, BC, RMSE and
NSE of 0.78, 41.79%, 54.16 m3/s and 0.61, respectively.

3.3. Model Performance Evaluation

To evaluate the model performance and examine the robustness of the model parame-
ters, the optimized parameter set was applied in the evaluation period of 1986–2002. The
simulated and observed daily streamflow time series and associated performance metrics
are presented in Figure 8, where streamflow shows significant interannual variation with
the peak flows ranging from about 200 m3/s in 1986 to about 800 m3/s in 1999. The WRF-
Hydro model reproduces the streamflow trend, as well as dry and wet periods. The timing
of simulated peak flows agrees with the observed ones, despite underestimation of peak
flow magnitude, especially for wet years with peak streamflow exceeding 400 m3/s. How-
ever, the simulated baseflows show overestimation after 1996. Overall, the simulated daily
flows agree with the observation, with CC and NSE values of 0.70 and 0.50, respectively.

The hydrographs of observed and simulated monthly streamflow for the evaluation
period are shown in Figure S8, the hydrographs are smoother compared to the daily ones
in Figure 8 and the WRF-Hydro model shows better performance in reproducing the
streamflow on a monthly time scale. During the first ten years of the evaluation period, the
model generally underestimates runoff peaks, especially for the wetter years of 1987, 1991,
1992 and 1994. For the years after 1996, WRF-Hydro reproduces the runoff peaks well; for
example, for the years 1999 and 2002, the simulated peaks are very close to the observed
ones. However, the model shows a significant overestimation of baseflow during the last
ten years of the evaluation period. The statistical scores are higher than those for the daily
time scale, with CC and NSE values of 0.76 and 0.58, respectively. According to previous
studies [41,42], monthly streamflow model simulations are considered ‘good’ when NSE is
greater than 0.65 and ‘satisfactory’ when NSE is greater than 0.50. Based on these metrics,
the model performance in the Kaidu River Basin is found to be ‘satisfactory’.
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4. Discussion and Conclusions

In this study, we calibrate and evaluate the physically based distributed WRF-Hydro
modeling system in the Kaidu River Basin of Northwest China, with a grid spacing of
250 m. We investigate the sensitivity of simulated streamflow to twelve key parameters,
including the pore size distribution index (bexp), bucket drainage parameter (expon),
saturated hydraulic conductivity (dksat), saturation soil moisture content (smcmax), surface
runoff parameter (REFKDT), openness of bottom drainage boundary (slope), multiplier
on retention depth limit (RETDEPRTFAC), multiplier on lateral hydraulic conductivity
(LKSATFAC), multiplier on Manning’s roughness (OVROUGHRTAC), channel Manning
roughness (mann), maximum groundwater bucket depth (Zmax) and melt factor for snow
depletion curve (mfsno). Additionally, we investigate four Noah-MP parameterizations
(runoff, partitioning precipitation into rainfall and snowfall, glacier and surface resistance
options) during the calibration period of 1983–1985. The model is manually calibrated
using the stepwise calibration approach, and the optimized model setting is evaluated for
the period of 1986–2002 using the correlation coefficient (CC), model bias (BS), root mean
squared error (RMSE) and Nash efficiency coefficient (NSE) against observed daily and
monthly streamflow.

The results indicate that the simulated streamflow is highly sensitive to variations in
bexp, dksat, smcmax, REFKDT, slope, OVROUGHRTAC and mann, while the remaining
five parameters exert minimal influence on the simulation. Furthermore, the selection of
options in Noah-MP has a substantial impact on streamflow simulation, with appropriate
choices leading to a 0.5 increase in the statistical scores of CC and a 1.1 increase in NSE.
Importantly, the optimal parameter values identified in this study differ from those found
in prior research conducted in other Chinese basins [29,30]. These discrepancies highlight
the unique hydrological characteristics of arid regions and underscore the importance of
model calibration prior to utilizing them for real streamflow simulations.

Our study demonstrates that the WRF-Hydro model, when optimized, reproduces the
temporal distribution of daily runoff in the Kaidu River Basin during 1986–2002 reasonably.
The model also captures the timing of runoff peaks. Our statistical analysis indicates only a
slight decrease in performance compared to the calibration period, with daily CC, NSE and
RMSE values of 0.70, 0.50 and 61.86 m3/s, respectively, and monthly CC, NSE and RMSE
values of 0.76, 0.58 and 50.27 m3/s, respectively. These results highlight the model’s efficacy
in simulating the hydrological characteristics of the Kaidu River Basin and its potential for
use in future studies.

According to the evaluation metrics, the performance of WRF-Hydro in the Kaidu
River Basin is classified to be ‘not good’, but ‘satisfactory’. However, streamflow simu-
lation in arid regions presents significant challenges, as demonstrated by a similar study
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conducted in the Heihe River Basin in Northwest China, which also achieved an NSE of
approximately 0.5 [24]. Nonetheless, such investigations are of great significance as they
can provide a useful reference for nearby regions, given that the calibrated parameters can
be successfully transferred to ungauged neighboring basins with similar physiography [11].
This is especially relevant for Northwest China where the availability of observations
is limited.

The primary goal of this study is to conduct pioneering research on physically based
streamflow simulations in the Kaidu River Basin. Given the strong human impacts in
the basin in recent years, we selected an earlier time period (1983–1985) as the calibration
period to better capture natural runoff processes and provide a scientific reference for
water resource management in the region. Although some uncertainties may be introduced
in this approach, such as the exclusion of some large flows in 1999 and 2000 from the
calibration period, a physically based simulation of natural runoff is essential for local
water resource management applications. In this study, biases in streamflow simulation
may be linked to errors in precipitation. Over Northwest China, meteorological stations
are sparse and mainly located in valley bottoms, introducing uncertainties in the forcing
precipitation dataset of CMFD [29]. This is particularly important for peak flows, where
model calibration already indicates some underestimation, and the potential missing
of extreme precipitation at the local scale may also contribute to significant streamflow
errors [39]. Liu et al. also reported the close relationship between the uncertainties of
streamflow and driving precipitation [30], highlighting the importance of developing better
precipitation forcing data for hydrological models.

Similar reductions in performance during the evaluation period have been observed in
other studies [11,29,30,39,43], indicating the need for more in-depth calibrations in future
work, which may involve the development of a new soil dataset for the arid regions of
Northwest China with higher quality and resolution, as well as assignment of dynamic
and distributed values to the newly developed soil dataset. To improve model perfor-
mance, variable soil depths across the simulation domain will be investigated in future
model versions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su15076175/s1, Table S1: Summary of default physical options
in Noah-MP model; Table S2: Scores of sensitivity tests of Noah-MP options, the options chosen for
each test are listed in the names; Figure S1: Stream order (a), flow direction (b) and land use (c) of the
study area; Figure S2: Simulated hydrographs with the sensitivity tests of expon ranging from 0.01 to
100. The precipitation and observed streamflow are shown in blue and gray bars, respectively.; Figure
S3: Same as Figure S2, but for the sensitivity tests of RETDEPRTFAC parameter ranging from 0.01
to 100; Figure S4: Same as Figure S2, but for the sensitivity tests of LKSATFAC parameter ranging
from 10 to 100000; Figure S5: Same as Figure S2, but for the sensitivity tests of slope ranging from
0.01 to 1; Figure S6: Same as Figure S2, but for the sensitivity tests of Zmax parameter ranging from 5
to 300, the calibration factor is multiplied; Figure S7: Same as Figure S2, but for the sensitivity tests of
mfsno parameter ranging from 0.1 to 100; Figure S8: Comparison of observed and simulated monthly
streamflow during the evaluation period.
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