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Abstract: With distributed generation (DG) being continuously connected into distribution net-

works, the stochastic and fluctuating nature of its power generation brings ever more problems than 

before, such as increasing operating costs and frequent voltage violations. However, existing robust 

scheduling methods of flexible resources tend to make rather conservative decisions, resulting in 

high operation costs. In view of this, a two-stage robust optimal scheduling method for flexible dis-

tribution networks is proposed in this paper, based on the pairwise convex hull (PWCH) uncertainty 

set. A two-stage robust scheduling model is first formulated considering coordination among on-

load tap changers, energy storage systems and flexible distribution switches. In the first stage, the 

temporal correlated OLTCs and energy storage systems are globally scheduled using day-ahead 

forecasted DG outputs. In the second stage, FDSs are scheduled in real time in each time period 

based on the first-stage decisions and accurate short-term forecasted DG outputs. The spatial corre-

lation and uncertainties of the outputs of multiple DGs are modeled based on the PWCH, such that 

the decision conservativeness can be reduced by cutting regions in the box with low probability of 

occurrence. The improved column-and-constraint generation algorithm is then used to solve the 

robust optimization model. Through alternating iterations of auxiliary variables and dual variables, 

the nonconvex bilinear terms induced by the PWCH are eliminated, and the subproblem is signifi-

cantly accelerated. Test results on the 33-bus distribution system and a realistic 104-bus distribution 

system validate that the proposed PWCH-based method can obtain much less conservative sched-

uling schemes than using the box uncertainty set. 

Keywords: flexible distribution network; flexible distribution switch; pairwise convex hull;  

column-and-constraint generation; robust optimization 

 

1. Introduction 

With distributed generation (DG) being continuously connected into distribution 

networks, the stochastic and fluctuating nature of its power generation brings ever more 

problems than before, such as increasing operating costs, voltage violations, etc. There-

fore, exploiting the potential of flexible resources to improve the DG penetration level and 

reduce the carbon emission level is urgent. 

Dispatchable flexible resources, such as mechanical switches, on-load tap changers 

(OLTCs) and capacitor banks in traditional distribution networks, can neither be fast nor 

continuously adjusted. At the same time, they cannot be frequently controlled due to the 

life span reason, which limits their ability to cope with the increasing integration of DG. 

In recent years, the back-to-back voltage source converter (VSC)-based flexible distribu-

tion switch (FDS) has picked up momentum to overcome the drawbacks of mechanical 

devices [1,2]. The replacement of traditional mechanical switches with FDSs converts 
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traditional distribution networks into flexible distribution networks (FDN), where fast 

and accurate power flow control can be realized. 

The scheduling problem of FDNs has been studied for years. In [3], a coordinated 

voltage and VAR control method based on FDSs is proposed for distribution networks to 

minimize operation costs and eliminate voltage violations. The nonconvex mixed-integer 

nonlinear optimization model is converted into a mixed-integer second-order cone pro-

gramming (MISOCP) model, which can be efficiently solved. In [4], an FDS-based opera-

tion strategy for unbalanced distribution networks is proposed to simultaneously reduce 

power losses and mitigate the three-phase unbalance problem. The nonconvex, nonlinear 

optimization model is converted into a semidefinite programming formulation. 

However, deterministic scheduling neglects the uncertainty of load demands and in-

termittent DG outputs and may lead to inappropriate control schemes and even result in 

the violation of security constraints. Thus, it is required that these uncertainties are dealt 

with to ensure the feasibility and reliability of the system operation. Current research on 

dispatch methods of distribution networks with DG uncertainties mainly fall into two cat-

egories, i.e., stochastic optimization (SO) and robust optimization (RO) [5–7]. Compared 

with SO, which depends on the probability density function of uncertain parameters, the 

only information needed for RO is the ranges of uncertain parameters, which are much 

easier to obtain in reality. In [8], a two-stage RO model is proposed to coordinate the OLTC 

ratios, reactive power compensators and charge–discharge power of energy storage sys-

tems (ESSs). The column-and-constraint generation (CCG) algorithm is applied to solve 

the two-stage RO model. In [9], a two-stage robust optimal dispatch model is presented 

for an islanded AC/DC hybrid microgrid, where the first stage determines the 

startup/shutdown state of the diesel engine generator and the operating state of the bidi-

rectional converter of the microgrid, while the second stage optimizes the power dispatch 

of individual units in the microgrid. In [10], an RO model is established for AC/DC distri-

bution networks to co-optimize the slopes of active and reactive power droop control of 

VSCs, with the aim to minimize the total network loss while ensuring the system security. 

In [11], a two-stage RO model is built for day-ahead dispatching of FDSs to tackle the 

uncertainties of PV outputs, eliminate voltage violations and reduce power losses. How-

ever, the FDS is considered to be the only flexible resource, while the coordination with 

other control devices is neglected. In [12], a bilevel RO model is proposed for the service 

restoration problem of FDNs to obtain the optimal service restoration scheme, i.e., the 

switch statuses and range of power transmitted by FDS terminals. 

Uncertain parameters in RO are usually modeled using uncertainty sets such as box, 

ellipsoid, polyhedron and convex hull. The box uncertainty set cannot characterize the 

correlation among random variables, and the results tend to be conservative. The polyhe-

dral uncertainty set (or the budget uncertainty set) and the ellipsoidal uncertainty set can 

take the correlation among uncertain parameters into account and at the same time have 

a linear structure; thus, they are widely used [5–7,9,11. However, polyhedral and ellipsoi-

dal uncertainty sets cannot characterize the nonlinear correlation of uncertain parameters. 

Furthermore, the ellipsoidal uncertainty set converts linear constraints into quadratic con-

straints and the original linear programming model is transformed into a quadratic pro-

gramming model and the complexity increases a lot. In [13], an RO-based economic dis-

patch method is proposed for active distribution networks based on extreme scenarios to 

adapt to historical data sets and reduce the decision conservativeness. However, it still 

assumes that the uncertainty data lie in a specified uncertainty set and the complex, asym-

metric correlation among uncertain parameters cannot be handled. The convex hull is the 

smallest convex set that can cover the historical data set and enjoys the least decision con-

servativeness. However, it has limited application due to excessive linear constraints, 

large computational effort and computational complexity in case of high-dimensional 

data. To this end, the pairwise convex hull (PWCH) is proposed in [14,15], which is com-

putationally efficient and is linearly expensive for high-dimensional data. 
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A comparative table on existing RO-based scheduling methods is shown in Table 1, 

in the aspects of first-stage decisions, second-stage decisions, uncertainty set and solution 

algorithm, to give a clearer clarity to this state-of-the-art method. 

Table 1. Comparison of existing RO-based scheduling methods. 

Reference First Stage Decision Second Stage Decision Uncertainty Set 
Solution  

Algorithm 

[5] Network topology \ Polyhedron CCG 

[6] Network topology \ Polyhedron CCG 

[7] 
Network topology, reactive output of VAR compen-

sators and OLTC ratios 

DG installation capac-

ity 
Polyhedron CCG 

[8] 
OLTC ratios, discrete VAR compensators and 

charge–discharge power of ESSs 

Continuous VAR com-

pensators 
Box CCG 

[9] 
Startup/shutdown state of diesel engine generator, 

operating state of the converters 
Individual units Polyhedron CCG 

[10] Slopes of power droop control of VSCs \ Box CCG 

[11] Power injection of soft open points \ Polyhedron CCG 

[12] 
Network topology and power injection of soft open 

points 

Power injection of soft 

open points 
Box CCG 

[13] Switching capacitor and OLTC ratios SVG 
Data-adaptive 

polyhedron 

Extreme 

Scenario 

[15] Non-AGC units AGC units PWCH CG 

[16] Capacitor banks and OLTC ratios PV inverters Polyhedron CCG 

In this paper, a two-stage robust optimal scheduling method is proposed for FDNs. 

The contributions are summarized as follows: 

(1) A two-stage robust optimal scheduling model is formulated for FDNs, consider-

ing coordination among OLTCs, ESSs and FDSs. In the first stage, the temporal correlated 

OLTCs and ESSs are globally scheduled using day-ahead forecasted DG outputs, while in 

the second stage, FDSs are scheduled in real time in each time period, based on the first-

stage decisions and accurate short-term forecasted DG outputs. 

(2) The spatial correlation of the outputs of multiple DGs is modeled based on the 

PWCH, such that the high-dimensional convex hull is relaxed into an intersection of finite 

PWCHs. By cutting regions in the box with low probability of occurrence, the decision 

conservativeness can be reduced. 

(3) The improved CCG algorithm is then used to solve the RO model. Through alter-

nating iterations of auxiliary variables and dual variables, the nonconvex bilinear terms 

induced by the PWCH are eliminated, and the subproblem is significantly accelerated. 

The rest of this paper is organized as follows. Section 2 presents the deterministic 

scheduling model for FDNs. Section 3 presents the PWCH uncertainty set. Section 4 pre-

sents the proposed two-stage robust optimal scheduling model and solution algorithm for 

FDNs. Section 4 describes the simulation results, and conclusions are drawn in Section 5. 

2. Deterministic Optimal Scheduling for FDNs 

2.1. Objective Function 

The objective is to minimize the daily loss of the distribution network as follows: 

T b FDS b( ) ESS

loss loss

, , ,FDS , ,ESS
min

v

i t i t i t

t i v i i

P P P t
    

+ + 
 
 
 

      (1) 

where Pi,t is the real power injection of bus i during time period t; 
loss

, ,FDSi tP  is the VSC power 

loss of the multiterminal FDS near the terminal of bus i during time period t; 
loss

, ,ESSi tP  is the 

charging and discharging power loss of the ESS installed at bus i during time period t; ΩT 
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is the set of all time periods; Ωb is the set of all buses; ΩFDS is the set of all FDSs; Ωb(v) is the 

set of all buses associated with the vth FDS; and ΩESS is the set of all buses with ESS in-

stalled; t is the interval (h) of each time period. 

2.2. Constraints 

2.2.1. Steady-State Operational Constraints of FDSs 

The multiterminal back-to-back FDS consists of multiple VSCs, and the control vari-

ables are the real and reactive power transmitted by each VSC, which is operated at the 

four-quadrant operation mode. Assuming the FDS power is positive, if it is injected into 

the network, then the following steady-state operational constraints need to be satisfied 

for the vth FDS: 

loss 2 2

, ,FDS loss,FDS , ,FDS , ,FDS b( )
( ) ( ) ,

i t i t i t v
P A P Q i= +    (2) 

b( )

loss

, ,FDS , ,FDS
( ) 0

v

i t i t

i

P P


+ =  (3) 

min,FDS , ,FDS max,FDS b( )
,

i t v
Q Q Q i     (4) 

2 2

, ,FDS , ,FDS max,FDS b( )
( ) ( ) ,

i t i t v
P Q S i+     (5) 

where Pi,t,FDS and Qi,t,FDS are the real and reactive power injections of the FDS into bus i 

during time period t, respectively; Aloss,FDS is the FDS loss factor; Qmin,FDS and Qmax,FDS are 

the upper and lower limits of the reactive power through each FDS, respectively; and 

Smax,FDS is the maximum apparent power allowed through the FDS. Equation (3) makes the 

sum of the real power injection into all associated feeders by the FDS and the power loss 

of the FDS come out to zero. Equation (4) makes the reactive power injection of the FDS 

not exceed its adjustable reactive power limit. Equation (5) makes the apparent power of 

the FDS not exceed its capacity. 

2.2.2. Steady-State Operational Constraints of ESSs 

During steady state, the following steady-state operational constraints need to be sat-

isfied for the ESS installed at bus i: 

ESS , ESS, , max , , ,max0 ,    0i t i i t iP P P P+ + − −     (6) 

ESS, , 1 , , , ,ESS(1/ )c d

i t i t i i t i i tE E P t P t + −

−= +  −   (7) 

,0 ,Ti iE E=  (8) 

, ,min ,ES , ,S S aS m xEi i i t i iE SOC E E SOC     (9) 

where ,E, SSi tP+
  and ,E, SSi tP−

  are the charging and discharging real power of the ESS in-

stalled at bus i during time period t, respectively; ,maxiP+
  and ,maxiP−

  are the maximum 

charging and discharging real power of the ESS installed at bus i, respectively; Ei,t is the 

remaining energy of the ESS installed at bus i during time period t; c

i  and d

i  are the 

charging and discharging efficiency of the ESS installed at bus i, respectively; Ei,ESS is the 

energy capacity of the ESS installed at bus i; and SOCi,max and SOCi,min are the maximum 

and minimum state of charge (SOC) of the ESS installed at bus i. Equation (6) makes the 

charging and discharging power not exceed the maximum value at any time period; Equa-

tion (7) makes the remaining energy satisfy the continuity constraint. Equation (8) makes 

the remaining energy at the end of each day equal to the initial energy of that day. Equa-

tion (9) makes the ESS free from deep charging or discharging. 
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2.2.3. Operational Constraints of OLTCs 

As shown in Figure 1, an OLTC is split into series of an impedance branch i-m and 

an ideal transformer branch m-j, and the following constraints need to be satisfied during 

operation: 

, ,, ij t j tm tV V=  (10) 

, ,min ,ij t iij j ijtN  = +   (11) 

, ,max0 ij t ijN N    (12) 

T

, , 1 ,max

, 1

ij t ij t ij

t t

N N −

 

−    (13) 

where τij is the ratio of the OLTC branch i-j; τij,min is the minimum ratio of the OLTC branch 

i-j; Nij,t is the tap position of the OLTC branch i-j during time period t; Nij,max is the maxi-

mum tap position number of the OLTC branch i-j; βij,max is the maximum allowed number 

of daily actions of the OLTC branch i-j; and τij is the difference in the ratios between 

adjacent tap positions of the OLTC branch i-j. For example, if there are five upper tap 

positions and five lower tap positions, then Nij,max = 11, Nij,t takes the integers 0~10 and τij 

takes the values 0.01~0.10. 

i m j

Sij,t=Pij,t+jQij,t

zij,t=rij,t+jxij,t

τij,t:1

 

Figure 1. Illustration of the OLTC. 

2.2.4. Power Flow Constraints 

Using the DistFlow model, the nodal power flow balance equation should be satisfied 

for each non-slack bus as follows: 

l l

l l

, , ,DG , ,L , ,FDS , ,ESS , ,ESS

, , ,L , ,FDS

2

, , , ,

( , ) ( , )

2

, , , ,

( , ) ( , )

2 2

, , , ,

( )

( )

2( ) (

i t i t i t i t i t i t

i t i t i t

ki t ij t ki ij t i t

k i i j

ki t ij t ki ij t i t

k i i j

j t i t ij t ij ij t ij ij

P P P P P P

Q Q Q

P I r P P

Q I x Q Q

V V P r Q x r

+ −

 

 

= − + − +

= − +

− − = −

− − = −

= − + +

 

 

2 2 2

,

2 2 2 2

, , , ,

)ij ij t

ij t ij t i t ij t

x I

P Q V I










 +

 + =

 (14) 

where Pij,t, Qij,t and Iij,t are the real and reactive power at the “from” end and current am-

plitude of branch i-j during time period t, respectively; Pi,t,DG and Pi,t,L are the DG real 

power injection and real power load at bus i during time period t, respectively; Qi,t,DG and 

Qi,t,L are the DG reactive power injection and reactive power load at bus i during time 

period t, respectively; rij and xij are the resistance and reactance of branch i-j, respectively; 

and Ωl is the set of all lines. 
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2.2.5. Thermal Limit Constraint 

The current amplitude of each branch should not exceed the ampacity: 

2 2

, ,max0 (  ) )(ij t ijI I   (15) 

where Iij,max is the ampacity of branch i-j. 

2.2.6. Bus Voltage Constraints 

The node voltage magnitude should not exceed the upper and lower bound: 

i i iV V V   (16) 

where 
iV and 

iV  are the upper and lower limits of the voltage magnitude of bus i, re-

spectively. 

2.3. Model Reformulation as a MISOCP Problem 

Since the power flow Equation (14) is nonconvex and, at the same time, nonconvex 

bilinear terms exist in the OLTC constraint (10), the optimization model (1)~(16) is a non-

convex mixed-integer nonlinear programming problem, which is difficult to solve. There-

fore, this section converts the original problem into a MISOCP model which can be effi-

ciently solved. 

2.3.1. Reformulation of the Power Flow Constraints 

First, auxiliary variables wij,t and ui,t are introduced to replace 
2

,ij tI and 
2

,i tV , and with 

the help of the big-M relaxation technique, the last two equations in Equation (13) become: 

T

, , , , , ,2

2 2

, , , , ,

2

, ,max

[2 2 ]

2( ) ( )

0  ( )

t ij t ij t ij t ij t ij t ij

i t j t ij t ij ij t ij ij ij ij t

ij t ij

P Q l u w u

u u P r

I

Q x r x w

w

 −  +


− = + − +

 



 (17) 

where M is a larger positive number. 

2.3.2. Reformulation of the FDS Constraints 

The FDS capacity constraint (5) can be relaxed as the following cone constraint: 

T loss

, ,FDS , ,FDS , ,FDS loss,FDS
2

/i t i t i tP Q P A     (18) 

2.3.3. Reformulation of the OLTC Constraints 

Using the square of the voltage magnitude and the square of the OLTC ratio, con-

straint (10) becomes: 

, ,,

2

ijm t t j tu u=  (19) 

For (11), the binary variable Bij,s,t is introduced as the flag of the sth tap position for 

the OLTC branch i-j during time period t. Then, Nij,t can be expressed as the cumulative 

sum of the Bij,s,t for each tap position, and the OLTC constraints become: 

,max

, ,, ,,

1

,    {0,1}
ij

ij t

N

ij s tij s t

s

N BB
=

=   (20) 

, , , 1, 0ij s t ij s tB B −−   (21) 
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,max,max

2 22 2
, ,min , , , , ,,min , , ,

1

,

1

ijij

j t ij j t ij s t j t ij sij ij s t ijm

s

NN

t s
s

u u B uBu   
==

= = 
 

+


 + 


  (22) 

where Bij,s,t is the flag of the sth tap position for the OLTC branch i-j during time period t; 

Bij,s,t = 1 indicates that the tap position s is lower or equal to the actual position; and Bij,s,t = 

0 indicates that the tap position s is higher than the actual position. The values of τs and 

τs2 for different tap position s are shown in Table 2. 

Table 2. OLTC tap positions. 

s 0 1 2 3 4 5 6 7 8 9 10 

τs 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 

τs / 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

τs2 0.9025 0.9216 0.9409 0.9604 0.9801 1 1.201 1.404 1.609 1.0816 1.1025 

τs2 / 0.0191 0.0193 0.0195 0.0197 0.0199 0.0201 0.0203 0.0205 0.0207 0.0209 

Constraint (22) still contains a nonconvex bilinear term Bij,s,t,uj,t, so we introduce λij,s,t 

= Bij,s,t,uj,t. Using the big-M relaxation technique, (22) becomes: 

,max

2 2

,min , , ,, ,

1

ij

ij j t ij s t i

N

jt sm

s

u u
=

+=     (23) 

, , , ,0 ij s t ij s tM B    (24) 

, , , , ,0 (1 )j t ij s t ij s tu M B −   −  (25) 

The final OLTC constraints include (12)–(13), (20)–(21) and (23)–(25), all of which are 

easily handled linear constraints. 

At this point, the deterministic optimal scheduling model is transformed into a 

MISOCP problem, which can be efficiently solved using a commercial solver. 

3. The PWCH Uncertainty Set 

3.1. The Convex Hull Uncertainty Set 

Assume that D buses in the distribution network are installed with DG, and N his-

torical data points (scenarios) are recorded in history for each DG bus. The ith scenario 

can be represented as a D-dimensional column vector ui = [ui,1, ui,2, ..., ui,D]TD, i.e., a point 

in the D-dimensional Euclidean space. Then, the N historical scenarios can be represented 

as a high-dimensional point set Ωu = {u1, u2, ..., uN}, consisting of N points in the D-dimen-

sional Euclidean space. A high-dimensional convex hull enclosing all the points can be 

constructed as: 

{ | ; , }D M D M=    u Au b A b  (26) 

The number of hyperplanes M of this convex hull will grow exponentially with in-

creasing D. If it is used for RO, the model solving will suffer a huge computational burden. 
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3.2. The PWCH Uncertainty Set 

The idea of the PWCH uncertainty set is that the points in the D-dimensional Euclid-

ean space are projected to different two-dimensional (2D) planes, which will yield 2

DC  = 

D(D − 1)/2 axial PWCHs. Then, the intersection of all PWCHs can be used as the outer 

approximation of the original convex hull, as shown in Figure 2 (D = 3), where the inter-

section of the red, black and blue PWCHs can be used as the outer approximation of the 

original convex hull. Specifically, after projecting to the 2D plane corresponding to the 

mth and the nth dimension (1 ≤ m < n ≤ D), a 2D convex hull can be constructed for the set 

of points in the 2D plane, and the range of all dimensions except m and n is relaxed to (−, 

+), denoted as 

 ( , ) ( , ) ( , ) ( , ) ,   [ ]  for { , }m n D m n m n m n

k k m n=   −  + u A u b u  (27) 

where u and u(m,n) are the scenario vectors in the D-dimensional Euclidean space and the 

2-D vectors after projection in the 2D plane corresponding to the mth and the nth dimen-

sion, respectively, and A(m,n) and b(m,n) are the coefficient matrices and the right-side vector 

of the to the linear inequality constraint for the corresponding 2D convex hull, respec-

tively. 

 

Figure 2. Illustration of the PWCH uncertainty set. 

It can be proved that the original high-dimensional convex hull is contained within 

the intersection of all PWCHs, and this outer-approximation is contained within a D-di-

mensional box, i.e., 

  
PWCH ( , )

Box

( , ) ( , )| 1

m n

m n m n m n D    

=   (28) 

The PWCH can relax the original high-dimensional convex hull into the intersection 

of finite PWCHs, which can significantly reduce the number of constraints and the com-

putational effort when used for RO. 
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4. Two-Stage Robust Optimal Scheduling for FDNs 

4.1. The Two-Stage Framework 

Based on the deterministic optimal dispatching model, a two-stage robust optimal 

scheduling model is established in this section using the PWCH uncertainty set. In the 

first stage, OLTC action strategy and ESS charging/discharging power are used as control 

variables to solve a multiperiod coupled model for the whole day, and the first-stage de-

cisions are passed to the next stage as a fixed value. In the second stage, the real and reac-

tive powers through the FDS are used as control variables for fast and continuous power 

regulation based on more accurate ultra-short-term forecasted DG outputs. The control 

variables in the first stage are selected due to the following considerations: 

(1) the ESS states and the OLTC tap positions are temporally coupled in different time 

periods; 

(2) Some ESSs do not belong to the utility and their charging/discharging power 

should be determined in advance; 

(3) OLTC is a slow-acting device that should avoid being controlled in real time. 

Therefore, global optimization is required for the first stage by integrating the day-

ahead DG prediction information of all time periods throughout the day and making de-

cisions of ESS charging/discharging power and OLTC action strategies before the next day 

comes. In addition, during the first stage, the real-time response capability of FDSs to DG 

output uncertainty in the intraday redispatch stage should also be considered, and FDS 

real and reactive power are also involved as control variables in the first stage, but the 

solved FDS power need not be passed to the second stage. 

4.2. Mathematical Formulation 

For simplicity of clarity, the RO model is built as the following compact form: 

PWCH PWCH

b

PW-CH

min max ( , ) min max min

. .
( , ),    

i

L f

s t

 


=




  


x x yd d

x d

x

y x d d

 (29) 

where x is the first-stage control variable vector; y is the joint vector of the second-stage 

control variables and the second-stage state variables; d is the scenario variable vector; 

L(x,d) is the objective function under the first-stage decision x and the scenario d;  is 

the set of all feasible day-ahead decisions, including OLTC action strategies and ESS 

charging/discharging power during each period; and ( , )x d  is the set of all feasible sec-

ond-stage solutions under the first-stage decision x and the scenario d, defined as 

T

2

( , ) :

  −
 

= = 
 
 

Dy f Ax

x d y Cy d

Gy g y

 (30) 

where the three equations present the linear inequality constraints, the linear equality con-

straints and the second-order cone constraints, respectively; D, f and A are the coefficient 

matrices and right-side vector after all linear inequality constraints are rewritten into the 

matrix-vector form; C is the coefficient matrix after all linear equality constraints are re-

written into the matrix-vector form; and G and g are the coefficient matrix and vector after 

all second-order cone constraints are rewritten into the matrix-vector form. 

4.3. Solution Algorithm 

Using the CCG algorithm framework [17], the model can be divided into a master 

problem and a subproblem, both of which are MISOCP problems. The master problem 

solves the first-stage decisions, considering the constraints of the worst-case scenarios 
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returned by the subproblem, and updates the lower bound of the objective function. The 

subproblem solves the worst-case scenario under the first-stage decisions, returns the 

worst-case scenario back to the master problem, and updates the upper bound of the ob-

jective function. The master problem is: 

( )

T
, ,

( )

( ) ( )

min

( , ),    1, ,
. .

( , ),    1, ,

0

s L
t

s

s s

L

L L s k
s t

s k

L






  =


  =
 


x y

x

x d

y x d

 (31) 

where k is the number of the worst-case scenarios returned by the subproblem, and is also 

used to indicate the current iteration index. 

Each time the master problem is solved, the lower bound of the objective function is 

updated, and the first-stage OLTC and ESS decisions are passed to the subproblem. In the 

second stage, the control variable is only the FDS power, so the subproblem is no longer 

temporally coupled among time periods and can be solved for each time period in parallel. 

The objective function of the subproblem is the sum of objectives for all time periods. The 

form of the subproblem is shown as follows: 

PWCH

T

T

*

T

2

( ) : max min

( )

. . ( )

( , )

t

L

s t




=

  −


=
 


yd

x b y

Dy f Ax λ

Cy d π

Gy g y σ μ

 (32) 

where b is the coefficient vector after the objective function is rewritten in the matrix-vec-

tor form; π, λ, σ  and μ are the Lagrange multiplier (dual variables) vectors of the corre-

sponding constraints; and the superscript * indicates the results of the master problem. 

Since the subproblem is a max–min problem, the min problem needs to be trans-

formed into the following max problem by constructing a Lagrangian function. The trans-

formed model is as follows: 

* * T T

, , , ,

T T T T

2

( ) : max ( )

( )

. .

, 0

L

s t

= − +

 + + + =









d π λ σ μ
x f Ax λ d π

D λ C π G y g μ b

σ μ

π μ

 (33) 

Once the subproblem is solved, the lower bound of the objective function is updated. 

If the termination condition is not satisfied, the solved worst-case scenario is returned to 

the master problem, and a group of variables and constraints for this worst-case scenario 

are added to the master problem. 

4.4. Subproblem Solution Algorithm 

It is noted that there is a nonconvex bilinear term dTπ in the objective function of 

model (33). For the nonconvex bilinear term, although the Gurobi 9 solver succeeds in 

solving the model solution through the spatial branching method, it is still rather time-

consuming. Therefore, we decompose the subproblem into a linear programming (LP) 

problem and a second-order cone programming (SOCP) problem by alternating direction 

iteration of auxiliary and dual variables. 
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The main parts of the algorithm are listed as follows, where, during the second stage, 

the outer loop is solved sequentially for 24 time periods, and the inner loop is an alternat-

ing direction iteration for each time period: 

(1) Use the forecasted scenario as the initial scenario in the master problem, i.e., set 

d* = d0. Set the upper bound of the objective function as a larger number. 

(2) Fix the dual variables (π, λ, δ and μ), solve the following inner LP problem, update 

the upper bound of the inner loop, and pass the solved auxiliary variable d to the inner 

SOCP problem: 

* * * *

* * T T *

0 0
, , ,

T * T * T T *

( , ) : max ( )

. . ( )

L

s t

= − +

+ + + =

π λ σ μ
x d f Ax λ d π

D λ C π G y g μ b

 (34) 

(3) Fix the auxiliary variable d, solve the following inner SOCP problem, update the 

lower bound of the inner loop and pass the solved dual variables (π, λ, δ and μ) to the 

inner LP problem: 

* * * T *T

, , ,

T T T T

2

( , ) : max ( )

( )

. .

, 0

L

s t

= − +

 + + + =









π λ σ μ
x d f Ax λ d π

D λ C π G y g μ b

σ μ

π μ

 (35) 

(4) If the inner loop iteration for time period t converges, solve the next time period 

until all time periods are completed; otherwise, return to step (2). 

If all 24 time periods are completed (i.e., the subproblem is completed), the upper 

bound of the outer loop is updated as the sum of the 24 problems’ optimal objective val-

ues, and the worst-case scenario solved by the subproblem is passed to the master prob-

lem for the next outer iteration. The overall flowchart of the improved CCG algorithm is 

shown in Figure 3. 
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Figure 3. Algorithm flowchart. 

5. Results 

5.1. The 33-Bus Distribution Network 

In this section, the modified 33-bus distribution network is used to test the proposed 

method. 

5.1.1. Simulation Settings 

Load, PV, ESS and FDS configurations are shown in Figure 4. Flexible interconnection 

is realized among buses 8, 22 and 33 through a three-terminal FDS, whose capacity and 

transmission efficiency are 1.5 MVA and 98%, respectively. OLTC is installed between 

buses 1 and 2 with 11 taps (±5 × 1%). The maximum permissible number of daily opera-

tions is five. Five PVs are installed at buses 4, 7, 16, 21 and 24 with capacity 2 MW. ESS is 

installed at bus 6. The capacity, maximum charging/discharging power, maximum/mini-

mum SOC and charging/discharging efficiency are 3 MWh, 1000 kW, 90%/20% and 95%, 

respectively. 

The proposed robust scheduling method based on the PWCH uncertainty set is com-

pared with an existing robust scheduling method based on the polyhedral uncertainty set. 

The budget parameter Г is set to five, such that it is equivalent with the box uncertainty 

set, which encloses all historical data points. The PV outputs are set to fluctuate ±15% from 

the forecasted values. The allowed range of voltage amplitudes is set to 0.95~1.05 p.u. Both 

methods are implemented using the AMPL modeling language [18] and the Gurobi 9.5.1 

solver [19]. The test environment is a desktop computer with i7-9700 CPU, 2.40 GHz and 

16 GB RAM. 
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Figure 4. The 33-bus distribution network. 

5.1.2. Worst-Case Scenario Analysis 

Figure 5 shows the historical data points of three PVs and the convex hull that enclose 

them. As seen from the figure, the convex hull uncertainty set is smaller in size compared 

to the minimal box uncertainty set that encloses this convex hull and has the potential to 

reduce decision conservativeness by cutting regions in the box with low probability of 

occurrence. 

 

Figure 5. Schematic diagram of the 3D convex hull. 

The worst-case scenarios selected by the CCG subproblem during the last iteration 

in the 8~16th time periods using the box uncertainty set and the PWCH uncertainty set 

are shown in Tables 3 and 4. It can be seen that the worst scenarios obtained by the two 

methods are different. Each worst scenario obtained by the box uncertainty set is a vertex 

of the box set of the corresponding time period, which corresponds to the upper limits of 

all PVs’ outputs in that time period and cannot reflect the geographical correlation among 

the PVs’ outputs. A 2-D illustration is shown in Figure 6, which intuitively describes the 

different worst scenarios obtained using two uncertainty sets. On the other side, each 

worst scenario selected by the PWCH uncertainty set is much worse, which, in fact, cor-

responds to a vertex of the intersection of all PWCHs in that time period. In other words, 

the worst scenario obtained from the box uncertainty set is worse and has a much lower 

probability of occurrence. If it is added to the CCG master problem, a more costly and 

conservative scheduling decision will be obtained, while if the worst scenario obtained by 

the PWCH uncertainty set is added to the CCG master problem, the scheduling decision 

will be less costly and conservative. 

Table 3. Worst scenarios using the PWCH uncertainty set. 

Time Period PV1 PV2 PV3 PV4 PV5 

8 0.684169 0.681293 0.679652 0.675548 0.671436 

9 1.227029 1.227765 1.213053 1.221142 1.196871 

10 1.552959 1.558479 1.534559 1.548357 1.50604 

11 1.746943 1.741806 1.731539 1.742832 1.698664 

12 1.950833 1.902491 1.940068 1.947342 1.883357 
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13 2.171167 2.089821 2.13277 2.068701 2.037691 

14 1.655152 1.650435 1.668362 1.609861 1.563627 

15 1.37165 1.347866 1.36587 1.360097 1.320059 

16 0.868731 0.86399 0.869861 0.867248 0.851022 

Table 4. Worst scenarios using the Box uncertainty set. 

Time Period PV1 PV2 PV3 PV4 PV5 

8 0.708400 0.708400 0.708400 0.708400 0.708400 

9 1.268833 1.268833 1.268833 1.268833 1.268833 

10 1.587000 1.587000 1.587000 1.587000 1.587000 

11 1.771767 1.771767 1.771767 1.771767 1.771767 

12 2.008667 2.008667 2.008667 2.008667 2.008667 

13 2.246333 2.246333 2.246333 2.246333 2.246333 

14 1.627633 1.627633 1.627633 1.627633 1.627633 

15 1.344733 1.344733 1.344733 1.344733 1.344733 

16 0.838733 0.838733 0.838733 0.838733 0.838733 

 

Figure 6. Comparison of the worst scenarios using two uncertainty sets. 

5.1.3. OLTC Scheduling Strategy Analysis 

Figures 7 and 8 show the OLTC action strategy and the ESS SOC for each time period 

obtained by the two scheduling methods, respectively. It can be seen that: 

(1) During time periods 0~6, the ESS discharges and the OLTC tap position is adjusted 

to the highest level so that the voltage at each bus is higher than the allowed lower limit; 

(2) During time periods 8~11, the OLTC turns down the tap position. This is because 

the PV outputs increase during these time periods and there is a risk that the voltage of 

the PV buses violate the upper limit. Therefore, the OLTC cooperates with the FDS to 

absorb the PV power. As the efficiency of the ESS is lower than the FDS, the ESS SOC 

remains unchanged, and the excessive PV power is only consumed by cooperated control 

of the OLTC and the FDS; 

(3) During time periods 12~16, the PV output reaches the maximum, and the cooper-

ation between OLTC and FDS cannot achieve full PV consumption, so the ESS joins to 

cooperate with the FDS to absorb the excessive real power and avoid the risk of voltage 

violation; 

(4) During time periods 17~24, the PV output gradually decreases to zero, while the 

load increases during these periods, so the OLTC turns down the tap position and coop-

erates with the FDS to consume the PV output; 

(5) During time periods 17~24, the PV output gradually decreases to zero, and the 

load continues to increase during these periods, so the OLTC tap position is adjusted back 

to a high level, while the ESS discharges to supply the load consumption. 
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Figure 7. OLTC strategy comparison using two scheduling methods. 

 

Figure 8. SOC comparison of the ESS using two scheduling methods. 

5.1.4. Analysis of Bus Voltage Levels 

The bus voltage levels at each time period under the two scheduling methods are 

shown in Figure 9. It can be seen that during all time periods, the voltage level of each bus 

obtained by the two scheduling methods are within the safe range, thanks to the coordi-

nation of the OLTC, ESS and FDS. 

  
(a) (b) 

Figure 9. Bus voltage levels using two scheduling methods. (a) Box uncertainty set; (b) PWCH 

uncertainty set. 

5.1.5. FDS Scheduling Strategy Analysis 

The scheduling strategies of the FDS using two scheduling methods for each time 

period are shown in Figure 10. Combining the ESS and OLTC scheduling strategies, it can 

be seen that: 
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(1) The FDS control strategies obtained by the two scheduling methods have basically 

the same trend during the PV unproductive periods, while there is a big difference be-

tween the two FDS scheduling strategies during time periods 10~13; 

(2) During time periods 8~17, the FDS mainly extracts real power from lightly loaded 

side at bus 18 and injects them into the heavily loaded side at bus 22, 33 so that the loading 

levels of both sides can be balanced, and the voltage violations can be removed; 

(3) During most time periods, both methods let the FDS inject reactive power to all 

sides to support the voltage levels; 

(4) Compared with the PWCH-based method, the box-based method transmits more 

real/reactive power and makes a more conservative decision. 

 
(a) 

 
(b) 

Figure 10. FDS power strategies using two scheduling methods. (a) real power; (b) reactive power. 

5.1.6. Daily Network Loss Comparison 

The overall results of the two scheduling methods are shown in Table 5. It can be seen 

that the scheduling strategy based on the box uncertainty set is more conservative than 

the optimal scheduling strategy based on the PWCH uncertainty set in terms of network 

loss, FDS loss and ESS loss. The reason is that the worst scenarios selected by the box 

uncertainty set are much worse that scarcely happen, so a more conservative scheduling 

strategy is made to handle this scenario. At the same time, the more conservative sched-

uling strategy also loses some economy and flexibility. In addition, the algorithm time of 

both methods are comparable in terms of computational efficiency. 
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Table 5. Results comparison of two scheduling methods. 

 PWCH Box 

Objective function (MW) 2.783 3.695 

CPU time (s) 483 511 

Iterations number 2 2 

ESS loss (MW) 0.175 0.195 

FDS loss (MW) 0.492 0.513 

Network loss (MW) 2.115 2.987 

5.2. A Realistic 104-Bus Distribution Network 

In this section, a larger 104-bus distribution network is used to test the proposed 

method. 

5.2.1. Simulation Settings 

The system comes from a realistic 10 kV distribution network from the China South-

ern Grid. Load, PV, ESS and FDS configurations are shown in Figure 11. The maximum 

and minimum real and reactive load are 22.26 MW and 10.48 MVar, respectively. Flexible 

interconnection is realized among buses 17, 46, 53 and 104 through a four-terminal FDS, 

whose capacity and transmission efficiency are 3 MVA and 98%, respectively. Five PVs are 

installed at buses 9, 32, 58, 91 and 92 with capacity 3 MW. Four ESSs are installed at buses 

7, 56, 76 and 90. The capacity, maximum charging/discharging power, maximum/mini-

mum SOC and charging/discharging efficiency are 1.5 MWh, 300 kW, 90%/20% and 97%, 

respectively. Similarly with the previous section, robust scheduling methods based on the 

PWCH uncertainty set and the box uncertainty set are compared under the same environ-

ment with that used by the 33-bus distribution network. 
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Figure 11. The realistic 104-bus distribution network. 

5.2.2. OLTC/ESS Scheduling Strategy Analysis 

Figures 12 and 13 show the OLTC action strategy and the ESS SOC of the 104-bus 

system using two scheduling methods, respectively. It can be seen that: 

(1) For ESS 1 at bus 7, both scheduling methods give the same charging/discharging 

strategies, which coincides with the loading patterns and PV output patterns such that 

peak shifting (the 13th time period when the PV output is the largest) and valley filling 

(the 20th time period when the load level is the heaviest) can be achieved; 

(2) For ESS 2 at bus 56, both scheduling methods prefer to not charge/discharge this 

ESS due to operation costs when no voltage violation exits; 

(3) For ESS 4 at bus 90, as this ESS is very close to PVs, the box-based strategy decides 

to release ESS 4′s energy in advance during time periods 1~10 to prepare for absorbing 

excessive PV output in time period 13. However, discharging ESS 4 only is not enough to 

fully prevent any voltage violation risk, thus the OLTC turns down the tap position during 

time period 13 and cooperates with the upstream ESS 3 at bus 76 to help consume the 

excessive PV output. On the other side, the PWCH-based strategy neither discharge ESS 

4 in advance nor operate the OLTC. The upstream ESS 3 at bus 76 also does not charge/dis-

charge for all time periods. This is because the worst scenario selected from the PWCH 

uncertainty set is not such harsh as that selected from the box uncertainty set. Therefore, 

the control strategy is less conservative. 
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In summary, the scheduling strategy based on the PWCH uncertainty set is clearly 

more flexible and leads to lower ESS losses. 

 

Figure 12. OLTC strategy comparison using two scheduling methods (the 104-bus system). 

  
(a) (b) 

  
(c) (d) 

Figure 13. SOC comparison of the ESSs using two scheduling methods (the 104-bus system). (a) 

ESS 1 at bus 7; (b) ESS 2 at bus 56; (c) ESS 3 at bus 76; (d) ESS 4 at bus 90. 

5.2.3. Analysis of Bus Voltage Levels 

The bus voltage levels at each time period under the two scheduling methods are 

shown in Figure 14. It can be seen that the voltages of all buses fall in acceptable ranges 

using both scheduling methods, although both strategies can find the optimal operation 

strategy to satisfy the voltage level constraints. However, it is obvious that the voltage 

profile based on the PWCH uncertainty set is smoother, i.e., it is closer to the rated voltage 

level of the system. 
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(a) (b) 

Figure 14. Bus voltage levels using two scheduling methods (the 104-bus system). (a) Box uncer-

tainty set; (b) PWCH uncertainty set. 

5.2.4. FDS Scheduling Strategy Analysis 

The FDS scheduling strategies of the 104-bus system using two scheduling methods 

are shown in Figure 15. It can be seen that: 

(1) Both scheduling methods give the same results during the PV unproductive time 

periods 1~8, i.e., the FDS does not need to transmit any real/reactive power, while there is 

a big difference between the two FDS scheduling strategies during PV productive time 

periods 10~13 and heavily loaded time periods 17~23. The real power scheduling shows 

an obvious bimodal distribution with the fluctuation of load and PV output, and coincides 

with the bimodal peak of load fluctuation; 

(2) During time periods 10~13, the FDS mainly extracts real power from lightly 

loaded side at bus 104 and injects them into the heavily loaded side at bus 46 so that the 

loading levels of both sides can be balanced, and the voltage violations can be removed. 

The FDS action strategy based on the PWCH uncertainty set only starts to act at time pe-

riod 10, while the FDS action strategy based on the box uncertainty set already starts to 

act at time period 8 (just after the appearance of light). The FDS control strategy based on 

the box uncertainty set reaches the transmission limit at the 13th time period, while the 

FDS control strategy based on the PWCH uncertainty set reaches the maximum transmis-

sion power but does not reach the transmission limit at this time. Although the FDS con-

trol strategy based on the box uncertainty set reduces the voltage peaks at the 13~14th 

time period by increasing the real power transfer, it still cannot make the voltages at the 

13~14th time period reach the ideal range due to the transmission capacity limit and the 

high PV output at noon, so the ESS charging power also reaches the maximum. 

(3) During time periods 17~23, the FDS mainly extracts real power from lightly 

loaded side at bus 53 and injects them into the heavily loaded side at bus 17, 46 so that the 

loading levels of all sides can be balanced, and the voltage violations can be removed; 

(4) During most time periods, both methods let the FDS inject reactive power to all 

sides to support the voltage levels; Unlike the real power strategy of the FDS, the PWCH 

uncertainty set-based FDS control strategy provides more reactive power compared to the 

box uncertainty set-based FDS control strategy when the PV output does not reach a 

higher maximum. 

(5) Compared with the PWCH-based method, the box-based method transmits much 

more real/reactive power and makes more conservative decisions. 



Sustainability 2023, 15, 6093 21 of 23 
 

 
(a) 

 
(b) 

Figure 15. FDS power strategies using two scheduling methods (the 104-bus system). (a) real power; 

(b) reactive power. 

5.2.5. Daily Network Loss Comparison 

Finally, the overall results of the 104-bus system using both scheduling methods are 

shown in Table 6. Similarly, it can be seen that the scheduling strategy based on the box 

uncertainty set is more conservative than the scheduling strategy based on the PWCH 

uncertainty set in terms of network loss, FDS loss and ESS loss. Specifically, the decision 

scheme with PWCH uncertainty set reduces the network loss by 6.53% compared with the 

decision scheme with box uncertainty set, which verifies again the effectiveness of the 

PWCH uncertainty set in reducing decision conservativeness and improving economy 

and flexibility over the box uncertainty set. 

Table 6. Results comparison of two scheduling methods (the 104-bus system). 

 PWCH Box 

Objective function (MW) 4.0734 4.3914 

Iterations number 2 2 

ESS loss (MW) 0.0281 0.0823 

FDS loss (MW) 0.1713 0.2976 

Network loss (MW) 3.8740 4.0115 

6. Conclusions 

In this paper, a two-stage RO model is established for flexible distribution networks 

based on a novel PW-CH uncertainty set, considering the coordination of energy storage 

systems, OLTCs and FDSs. The temporal correlated OLTCs and ESSs are globally sched-

uled in the first stage using day-ahead forecasted DG outputs, while FDSs are scheduled 

in the second stage in real time in each time period based on the first-stage decisions and 

accurate short-term forecasted DG outputs. An improved column-and-constraint 
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generation algorithm is used to solve the RO model in an efficient manner. Specifically, 

the geographical correlation of the outputs of multiple DGs is modeled based on the 

PWCH, such that the decision conservativeness can be reduced. 

Test results show that the worst scenarios selected from the box uncertainty set are 

much worse but scarcely happen. Therefore, a more conservative scheduling strategy 

should be made to handle this scenario, resulting in higher operation costs and low flexi-

bility. On the other side, by cutting regions in the box with low probability of occurrence, 

the proposed PWCH-based method can obtain much less conservative scheduling 

schemes with much lower operation costs. 

In the future, more advanced optimization algorithms, including hybrid heuristics 

and metaheuristics, adaptive algorithms, self-adaptive algorithms and island algorithms 

[20–25], can be used for scheduling of flexible resources in distribution systems with better 

performance. 
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