
Citation: Dalal, S.; Seth, B.;

Radulescu, M.; Cilan, T.F.;

Serbanescu, L. Optimized Deep

Learning with Learning without

Forgetting (LwF) for Weather

Classification for Sustainable

Transportation and Traffic Safety.

Sustainability 2023, 15, 6070.

https://doi.org/10.3390/su15076070

Academic Editors: Athanasios (Akis)

Theofilatos, Ioanna Pagoni and

Apostolos Ziakopoulos

Received: 15 February 2023

Revised: 30 March 2023

Accepted: 30 March 2023

Published: 31 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Optimized Deep Learning with Learning without Forgetting
(LwF) for Weather Classification for Sustainable Transportation
and Traffic Safety
Surjeet Dalal 1 , Bijeta Seth 2, Magdalena Radulescu 3,4,*, Teodor Florin Cilan 5 and Luminita Serbanescu 3

1 Department of Computer Science and Engineering, Amity University Haryana, Gurugram 122412, India;
sdalal@ggn.amity.edu

2 Department of Computer Science and Engineering, B. M. Institute of Engineering & Technology,
Sonipat 131001, India; bijetaoberoi@gmail.com

3 Department of Finance, Accounting and Economics, University of Pitesti, 110014 Pitesti, Romania;
luminita.serbanescu@upit.ro

4 Institute of Doctoral Studies, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
5 Department of Economics, Aurel Vlaicu University of Arad, 310032 Arad, Romania; teodor.cilan@uav.ro
* Correspondence: magdalena.radulescu@upit.ro

Abstract: Unfortunately, accidents caused by bad weather have regularly made headlines throughout
history. Some of the more catastrophic events to recently make news include a plane crash, ship
collision, railway derailment, and several vehicle accidents. The public’s attention has been directed
to the severe issue of safety and security under extreme weather conditions, and many studies have
been conducted to highlight the susceptibility of transportation services to environmental factors. An
automated method of determining the weather’s state has gained importance with the development
of new technologies and the rise of a new industry: intelligent transportation. Humans are well-suited
for determining the temperature from a single photograph. Nevertheless, this is a more challenging
problem for a fully autonomous system. The objective of this research is developing a good weather
classifier that uses only a single image as input. To resolve quality-of-life challenges, we propose
a modified deep-learning method to classify the weather condition. The proposed model is based
on the Yolov5 model, which has been hyperparameter tuned with the Learning-without-Forgetting
(LwF) approach. We took 1499 images from the Roboflow data repository and divided them into
training, validation, and testing sets (70%, 20%, and 10%, respectively). The proposed model has
gained 99.19% accuracy. The results demonstrated that the proposed model gained a much higher
accuracy level in comparison with existing approaches. In the future, this proposed model may be
implemented in real-time.

Keywords: deep learning; weather classification; accidents; sustainable transportation; traffic safety;
weather challenges; accuracy

1. Introduction

Weather phenomenon analysis plays a critical role in environmental monitoring,
weather forecasting, and ecological quality evaluation [1], not to mention that various
weather events have multiple impacts on farming. Hence, it is beneficial to agricultural
planning if meteorological events are correctly differentiated [2]. In addition, weather
phenomena dramatically affect car-assisted driving systems and our day-to-day lives,
impacting things such as the technology we wear, use to travel, and rely on for energy [3–5].
Many visual designs, including outdoor video surveillance, are similarly vulnerable to the
effects of weather on their functioning [6]. As a result, it is easy to deduce that establishing
clear categories for weather occurrences is crucial for gaining insight into climate conditions
and making more accurate weather predictions [7].
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Making a weather forecast involves observation, analysis, and prediction. Weather
conditions, such as barometric pressure, temperature, humidity, wind speed, and cloud
cover, are all considered throughout these times [8]. The number of clouds in the sky, also
known as cloud coverage, cloudage, cloud amount, or cloudiness, is a significant influ-
ence [9]. Traditional meteorology typically employs cloud coverage during the observation
phase by dispatching personnel to the field to take pictures, during the analysis phase by
stationing expert personnel to analyze the images taken during the observation phase, and
during the prediction phase by calculating the desired outcome of a weather forecast using
all of the data mentioned above, including cloudage [10]. It is generally accepted that a
conventional weather service can make predictions with an accuracy of around 90% for five
days, 80% for seven days, and 50% for ten days. Advanced technologies and techniques
are used in the apparatus and methods of analysis and prediction [11]. However, the result
is still far from near-zero mistakes, especially over extended periods. When humans are im-
pacted by extraordinary conditions, such as the current COVID-19 pandemic, human-based
systems become much more error-prone than typical. During the pandemic, meteorology
mistakes increased since field workers and specialists at meteorology stations did not show
up to work consistently, causing difficulties in making accurate weather forecasts.

Meteorological agencies worldwide use various methods to calculate cloud cover
manually, but in Turkey, the process goes as follows. The first step is for field observers
to send cloud photos to the stations from the ground, which can be observation towers
or balloons. The gathered images are then divided into eight sections, each of which is
reviewed separately by human specialists. Each component might end up in one of three
ways: To determine whether or not it is cloudy, experts look at the percentage of cloud
cover in the sky; if it is more than 50%, the weather forecasters consider the day dirty;
if it is less than 50%, the weather forecasters consider the day clear [12]. The image is
discarded as noisy if the picture contains no sky parts and only data unrelated to weather
forecasting. Once the cloudiness of each fragment has been established, the non-noise
pieces are reassembled into the original picture. The picture is deemed cloudy if cloudy
components constitute fifty percent or more of the total or precise otherwise [13].

Instead of collecting picture data daily or weekly and evaluating it with human
specialists, training a large dataset with steadily rising volume and processing it via a
well-founded deep learning architecture will provide a fresh viewpoint and vastly improve
prediction accuracy. With big data and AI technology, a task that previously required
specialized human labour may be reduced to a simple computation [14].

Systems trained using deep learning may automatically assign tags to new data
based on what it has learnt from previously tagged data sets. The next iteration of ML,
called “deep learning”, is built from interconnected layers of computation that learn
to make predictions and processes using the data they have been given. While deep
learning, machine learning, and artificial intelligence (AI) each have distinct meanings,
they may all be understood as subsets of each other thanks to their shared methodology
and architecture [15].

Conventional techniques of meteorological phenomenon categorization often rely
on human observation. However, the time-consuming and error-prone process of using
artificial visual differentiation between meteorological occurrences is a problem. There-
fore, it is critical to advance accurate, effective, and automated methods of categorizing
meteorological events. In recent years, a collaborative learning method has been employed
for the two-class weather categorization (sunny and cloudy). Not only has that but a
straightforward linear classifier has been used to divide scenes into those with and without
fog correctly. Recent advances in machine learning have opened up new avenues of inquiry
for its potential use by scholars. Through the use of feature extraction and K-Nearest Neigh-
bor, it has accomplished weather condition detection, a necessary step in the process of
identifying meteorological occurrences. However, traditional machine learning approaches
to weather phenomenon detection cannot successfully learn the specifics of weather events.
The research question that arises here is, “Can the modified Yolov5 model classify the
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weather for the sake of avoiding road accidents in improving quality of life?” The critical
contribution of this research is as follows:

• This research aims to suggest an automated workflow that can automatically accurately
identify and classify weather. The proposed Model’s initial training images were
compiled using the autoargumention, which can determine the textural connection
among an image’s pixels. This research utilizes the online weather dataset.

• The modified Yolov5 Model distinguishes the different classifications of weather.
• The proposed technique and existing methods, i.e., Yolov5 model and SDG optimizer,

hybrid Learning without forgetting, were implemented over Google Cololab and
compared based on comparison parameters, i.e., Sensitivity, precision, Accuracy, and
similarity index values.

• The proposed Model achieves better precision, Accuracy, and Sensitivity than
existing methods.

The complete research is organized as follows: Section 2 covers the related work,
Section 3.1 covers the details of the Dataset, Section 3.2 explains the proposed method,
Section 3.3 explains Proposed Methodology, Section 4.1 covers the experimental settings,
Section 4.2 covers Weather-specific Features and Section 4.3 describe Classification Mea-
sures, and Section 5 covers the conclusion and future works.

2. Review of Literature

Wang et al. [16] described and assessed a nonlinear Support Vector Machine-based
model for predicting atmospheric visibility based on continuous data from the unique
autonomous weather stations ROSA along the Beijing airport expressway in 2006 and 2007.
According to the evaluation, the Support Vector Machine-based forecast model performed
admirably. More than 90% of forecast categorization errors are within one level, while pre-
dictions of air visibility are only 40% accurate based on actual data (including equality). In
addition, future 3–48 h projected atmospheric visibility functioned consistently. These flaw-
less predictions prove that the Support Vector Machine approach is well-suited to handling
the nonlinear connection between atmospheric transparency and climatic variables.

Hongwei et al. [17] offer a new categorization learning system that employs multi-
objective GA. Machine learning is first made more generalizable and interpretable by using
a supervised segmentation approach to make judgments about the continuous properties of
samples. As a bonus, multi-objective GA incorporates a comparison and selection process
derived from partial order in set theory. They improve one’s capacity to choose favourable
chromosomes. The novel method is employed for microthermal weather forecasting in
northern Zhejiang province. Based on the results of the experiments, it possesses superior
intelligence and precision.

It is proposed by Hongwei et al. [18] that algorithms be developed to predict the power
production of PV systems using weather categorization and support vector machines (SVM).
Implementation at a 20 kW capacity PV station in China demonstrates the efficacy and
promise of the suggested forecasting model for grid-connected PV systems.

Zhang et al. [19] describe a technique for multi-class weather classification in every
circumstance. Their methods can extract many meteorological characteristics and require
enough processing time. They use multiple kernel learning to train an adaptable classifier to
combine these characteristics into high-dimensional vectors. The MWI (Multi-class Weather
Image) set is a collection of 20,000 photographs taken in various weather conditions. The
suggested technique has been shown to successfully recognize weather conditions on the
MWI dataset.

Four examples from forthcoming films with lousier weather circumstances were
included in their newly developed railway transportation dataset to increase the safety
of railway transportation in real-world weather situations. Considering the nature of
railway transportation photos, which consist primarily of a single item against a uniform
background, the available options for identifying the weather are restricted. Wang et al. [20]
also gathered a multi-class meteorological dataset to enhance the classification model’s
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generalization capability. For the purpose of avoiding enlisting complex pre-processing
processes and collecting a discriminating characteristic for each weather scenario, they
showed on publicly available meteorological datasets and their dataset that the proposed
framework outperformed the current gold standard approaches.

To render their method immune to global intensity transfer, Lu et al. [21] suggest a new
data augmentation scheme to significantly enhance the training data, which is then utilized
for training a latent SVM framework. Extensive experimental work has been done to prove
the efficacy of their approach. This article enhances accuracy by up to 7–8% compared to
their earlier work, which relied solely on a CNN classifier. The classifier’s executable may
be downloaded alongside the weather picture dataset.

Li et al. [22] propose utilizing generative adversarial networks (GAN) to supplement
existing data. It may complement and complete a wide variety of visual data. To address
this problem, they developed a system that uses deep convolution generative adversar-
ial networks (DCGANs) to produce pictures distributed evenly over the dataset and a
Convolutional Neural Network (CNN) model to check the accuracy of the generated classi-
fications. They also provide an assessment approach on three benchmark datasets to test
DCGAN’s accuracy. The empirical findings show that high-quality weather images may be
created using DCGAN on weather data sets. Classification accuracy also increased when
we implemented the DCGAN-based data augmentation technique.

Zhang et al. [23]’s multimodal adaptive regression spline (MARS) model accounted
for complex weather conditions over the year. Its excellent computing efficiency and ability
to be updated progressively make it suitable for EIM activities. The outcomes of the tests
and analysis show that the innovative model is more accurate, flexible, and efficient.

According to Wang et al. [24], it is crucial to industry and human survival to quickly
and accurately identify different types of weather. The dataset used in this paper consists
of nine different categories of ground-level weather photographs, each of which was
gathered and categorized. It has been shown experimentally that the strategy outperforms
state-of-the-art methods in weather recognition.

Five types of meteorological elements were identified in the photographs by Bai et al. [25].
We propose a novel satellite image classification framework called a multimodal auxiliary
network that takes advantage of these different modalities for detecting clouds and weather
systems (MANET). MANET’s three components are a convolutional neural network for
extracting features from images, a perceptron for extracting features from weather data,
and a layer-level multimodal fusion module. Meteorological components and satellite
photos are only two examples of multimodal data that MANET effectively combines. Based
on the findings of the experiments, it is clear that MANET can improve the categorization
of satellite photos of weather systems, clouds, and land cover.

Alem et al. [26] recommended constructing a convolutional neural network feature ex-
tractor (CNN-FE) for the LCLU classification system from scratch, transferring knowledge
from other models, and then fine-tuning it using remotely sensed pictures for evalua-
tion and comparison. This study examines and compares deep learning techniques for
distant sensing picture categorization. They created and trained many deep learning
models using the UCM dataset and then reached their results using several measures to
assess performance.

To forewarn the time duration and specific magnitude of peak load, Deng et al. [27]
offer a model based on the Bagging-XGBoost algorithm for identifying extreme weather
and making short-term load forecasts. To begin, they add the concept of Bagging to
the Extreme Gradient Boosting (XGBoost) method to lower output variance and increase
generalization capacity. After then, the input weight of the model is tweaked by analyzing
the mutual information (MI) between weather-influencing components and load to follow
weather shifts better. The next step is to develop the extreme weather detection model
by considering the load, weather, and timing elements to find the peak load occurrence
range. Finally, a very accurate short-term load forecasting model is constructed by selecting
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a customized training set based on weighted similarity. Table 1 depicts the summary of
existing work.

Table 1. Summary of existing work.

S. No. Paper Method Dataset Result

1 Wang et al. [16] SVM Weather stations ROSA 90% of forecast
classification errors

2 Hongwei et al. [17] GA Meteorological data in
Northern Zhejiang 75% correct rate

3 Shi et al. [18] SVM PV power system in south China 8.64 MREdata (%)

4 Zhang et al. [19] multiple kernel learning MWI (Multi-class Weather Image) Accuracy 0.5944

5 Wang et al. [20] Multitask learning multi-class weather dataset MSE 0.79167

6 Lu et al. [21] CNN weather dataset having
10,000 images Accuracy 91.4%

7 Li et al. [22] Generative adversarial
networks (GAN) MWI, MWD datasets Accuracy 0.9809

8 Zhang et al. [23] multivariate adaptive
regression spline China radiation date dataset MAE 0.689

9 Wang et al. [24] ResNet and DenseNet 12,000 pictures dataset Accuracy 72.25%

10 Bai et al. [26] Multimodal Information
Fusion LSCIDMR dataset Accuracy 98.46%

11 Alem et al. [25] Convolutional Neural
Network UCM dataset Precision 0.89

12 Deng et al. [27] XGBoost algorithm 1120 pictures dataset MAPE 10%

3. Dataset and Experiment
3.1. Dataset

This dataset includes five weather classes gleaned from the aforementioned diverse
sources; nevertheless, given the nature of the data, any weather classification system must
be able to process photos with varying degrees of naturalism. Including the validation
photos, the dataset has around 1500 labels [28]. Prints range in size because images do
not have uniform proportions. Images captured during different types of weather are
stored in their respective folders according to the labelled class [29]. The following weather
conditions have been assigned numerical values, from 0 (very poor) to 4 (very good), for
each of the images:

0—Cloudy
1—Foggy
2—Rainy
3—Shine
4—Sunrise

3.2. Methods

Neural networks, part of the more significant subject of machine learning, are the
foundation of cutting-edge deep learning methods. Input, hidden, and output layers are
all components of a node layer [30]. Each network node is correlated with a weight and
a threshold. Even while feedforward networks were the primary subject of that article,
many other types of neural nets may perform better on specific tasks or with certain
inputs. Naturally, recurrent neural networks are more frequently utilized in NLP and
voice recognition tasks, whereas CNNs are more commonly used in computer vision
and classification applications. Picture object recognition was a time-consuming and
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arduous process that needed human feature extraction methods before the development
of CNNs [31].

This section will compare and contrast convolutional neural networks (CNNs) and
neural networks. Traditional neural networks have one major drawback compared to
artificial neural networks: they cannot be easily scaled [32]. Regular NNs may be adequate
for smaller pictures with fewer colour channels. However, a more extensive and expensive
NN is required as the size and complexity of an image raises the requirement for processing
power and resources. There’s also the issue of overfitting [33]. NN may pick up on the
background noise, which will negatively impact its performance on test data [34]. However,
a CNN’s nodes link to one another and are weighted at each layer. Parameter sharing
describes this scenario. As a result of this procedure, CNN systems use less processing
power than NN systems [35]. Multiple layers in a network can improve accuracy over
a single one. Depending on the task at hand, deep learning can employ either RNNs
or CNNs [36].

3.2.1. Architecture

As the object data travels through the CNN’s multiple levels, the CNN gradually
learns its features. Because of this direct (and deep) learning, feature extraction may be
done automatically (feature engineering) [37]. Due to their usage of shared parameters,
CNNs are far more efficient computationally than traditional NNs. The models are portable,
allowing them to function on anything from desktop computers to mobile phones. The
CNN’s last layer is an FC layer, where it learns to identify the picture or object it has been
given [38]. By using convolution, a picture is passed through several such filters. Each filter
performs its function on the image and then gives the results to the next filter in the chain.
As more and more layers are added and trained, the process of identifying characteristics is
repeated hundreds, if not thousands, of times. Finally, the CNN can recognize the complete
object thanks to all the picture data it has processed through its many layers [39]. When
compared to other types of neural networks, convolutional networks excel in processing
inputs that are images, voices, or sounds. Their layers come in three distinct varieties:

• Convolutional layer
• Pooling layer
• Fully-connected (FC) layer

The first layer of a convolutional network is the convolutional layer. The fully-
connected layer comes last in a neural network architecture, following any number of
layers that may or may not be convolutional or pooling layers [40]. Adding more layers to
the CNN allows it to recognize more subtle differences in a picture. Initial layers analyze
data for essential characteristics, such as colours and edges [41].

3.2.2. Convolutional Layer

The convolutional layer is the first layer. Input data is taken as a 3D pixel matrix
with RBG factors, a filter/kernel as a feature detector, and a feature map. Part of the
image is represented by a weighted array that takes up two dimensions (2D) in the feature
detector [42]. Dot products between the input and filter are convolved to produce the
final output.

To further refine the results, we may add a second convolution layer on top of the first
one, as discussed before. Because the last layers may now access the information in the
earlier layers’ receptive fields, CNN’s structure can take on a hierarchical form [43].

3.2.3. Pooling Layer

Dimensionality reduction is carried out through pooling layers, also known as down-
sampling, by decreasing the number of input parameters. Instead, the kernel aggregates
the values in the receptive field to form the output array. Most forms of pooling fall into
one of two categories [44].
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Maximum pooling involves choosing the input pixel with the highest value and
sending it to the output array when the filter scans the input. As a side note, this method is
typically employed more frequently than average pooling [45]. Moving the filter over the
information causes it to moderate the values inside the receptive field and transfer those
averages to the output array. Despite the fact that the pooling layer causes the CNN to lose
a lot of information, it does have certain advantages. They aid in streamlining processes,
boosting productivity, and lowering overfitting danger [46].

3.2.4. Fully-Connected Layer

In the fully-connected layer, each node in the output layer directly connects to a node
in the layer below it. This layer categorizes using the characteristics of the preceding layers’
various filters [47]. In 2015, Joseph Redmond et al. introduced YOLO to address the issues
with object recognition models. The network must be run forward once for the predictions
to be made.

3.2.5. Disadvantages of YOLO

• It has comparatively low recall and more localization error compared to faster R_CNN.
• It struggles to detect close objects and detect small objects [27].

Learning-without-Forgetting (LwF) is a combination of distillation networks and
fine-tuning. The transfer learning technique is considered a particular case of incremental
learning. LwF is a technique in which the old and new tasks are different, whereas, in
incremental learning, the old and new jobs can also be the same, popularly called domain
adaptation [48]. Learning without forgetting is one of the methods to solve multitasking
learning. If a model is trained to solve problem X and then after sometimes we need the
model to solve new problem Y without forgetting the problem X, then we use LwF. Transfer
learning uses a trained model to solve another task and may ignore the initial charge. For
example, we use this model initially used to teach how to classify a cat or dog to a new job
that is now used to classify a goat or a cow. There are several approaches for multitasking
learning, but LwF seems to be the most appropriate one.

Figure 1 illustrates the working theory of familiar multitask learning methods. Let’s
assume a pre-trained model (a) with m old tasks, and we want to add a new job to this
pre-trained model. Fine-tuning approach inserts a branch for the new study at the end and
then retrains the backbone. Feature Extraction technique adds more layers in the new-task
addition and trains only this branch.

Figure 2 illustrates the working theory of the Learning-without-Forgetting (LwF)
method. To better understand the working of LwF, a flowchart is illustrated in Figure 3.

The joint Training method inserts a new branch for the novel task and retrains the
entire network. In the case of only new-task data, Learning without Forgetting (LwF), as
shown in Figure 3, learns a network that can perform well on both old and new tasks. LwF
strategy is a kind of continual learning technique that only uses the latest data and assumes
that past data (used to pre-train the network) is not available.

3.3. Proposed Methodology

YOLO recommends using an end-to-end neural network to anticipate both bounding
boxes and class probabilities simultaneously. A schematic depicting how YOLO may be
used to identify many objects simultaneously is shown in Figure 4.

Compared to other algorithms, YOLO’s predictions are performed entirely by a single,
fully linked layer. When running a picture via the YOLO algorithm, it is first divided into
N grids, each of which is an SxS square of the same size.
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The pseudocode for YOLO is given below.

Step 1. If many options exist, choose the one where the goal function is the highest.
Step 2. Next, it should examine this box’s overlap (Intersection over Union, IOU)

with others.

Intersection o f union =
Area o f overlap
Area o f union

(1)

Step 3. Any boxes whose boundaries overlap by more than half (intersection > union)
should be discarded.

Step 4. Follow it up by moving on to the next-highest objectiveness rating.
Step 5. Finally, do it again from step 4.

Every one of these N grids is in charge of finding and pinpointing whatever happens
in it. To that end, these grids provide predictions about the label and presence probability
of objects in a given cell and their bounding box coordinates relative to the cell’s own
coordinates for weather images.

4. Experimental Results
4.1. Experiment Setting

The Collaboratory’s Tesla K80 GPU was equipped with a laptop with an Intel Core
i3-4000M CPU (Intel Corporation, Mountain View, CA, USA) running at 2.40 GHz and 4 GB
of RAM for the experiments. For this experiment, we used the Python libraries Keras 2.20.0
and TensorFlow 2.12.0, both of which are open-source DL software packages. In addition,
we analysed the performance measures using the scikit-learn statistical program. Training,
validation, and testing sets are being partitioned into 70%, 20%, and 10%, respectively.

4.2. Weather-Specific Features

The edges of objects in a picture are often selected as features in the traditional image
classification procedure. However, this is impossible when attempting to classify images
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based on meteorological conditions. Therefore, we must adopt other standards. We
accessed the characteristics of photographs taken in various weather circumstances and
used that data to compile a set of six carefully selected attributes related to weather.

(1) Brightness: The level of illumination is a crucial characteristic of pixels. Pictures taken
on clear days tend to have a higher luminance than those taken in the presence of
clouds or fog. Luma Brightness was introduced by Sergey Bezryadin et al. [19] as
an efficient technique to compute brightness replacements, and its corresponding
formula is given in Equation (1):

B′ = 0.114b + 0.587g + 0.299r (2)

where B’ is the Luma brightness value, r, g, and b are stimulus RGB coordinates.

(2) Contrast is the difference between a picture’s brightest and darkest parts or the
range of pixel intensities. The greater the disparity between the two, the greater the
contrast. Using the encoded contrasts as a percentile in picture saturation, we may
determine the contrast. Equations (2)–(5) are a straightforward way to calculate the
contrast metric:

c′(n) = minx∈{r,g,b}l
x(n), b1(n) = maxx∈{r,g,b}l

x(n) (3)

c =
Σcl(n)

nεN∣∣Sn ∗ Sy
∣∣ (4)

b =
Σbl(n)

nεN∣∣Sn ∗ Sy
∣∣ (5)

g = c − b (6)

where c′(n) is the minimum pixel value in pixel r, g, b three channels, b′(n) is the maximum
value, c and b are the means of c′(n) and b’(n), respectively, and Sn ∗ Sy is the total pixel
count. g is the contrast value.

(3) Haze: The formula is as follows (Equations (6)–(8)):

w = exp{−1
2
(0.51x1 + 2.9x2)+0.2461}, (7)

wherex1 =
A0 − d

A0
andx2 =

c
A0

(8) (8)

A0 = λmaxxεXb1(x) + (1− λ)b, 0 ≤ λ ≤ 1(9) (9)

where λ = 1/3, w is the haze value and A0 is the global atmosphere light.

(4) Sharpness: It is calculated as:

U = Σi

√
S2

x(i) + S2
y(i)/Σi1 (10)

where U is the sharpness value, i = 1, 2 . . . all pixels, Sx and Sy are response o f sobel f ilter

Colour Histograms: Histograms of colour data (or “colour histograms”) quantify the
relative abundance of each colour in a given image.

Implications of Training and Validation Loss

Training and validation loss are often plotted together in deep learning applications.
The goal is to analyse the model’s current state and determine what needs to be adjusted for
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optimal performance. In this part, we will discuss a few examples where periods (x-axis)
and a certain kind of function (y-axis) are discussed.

• Loss: We describe YOLOv5 losses and metrics to help you make sense of the findings.
Three components make up the YOLO loss function:

1. box_loss—First, we have box loss, which is the bounding box regression loss
(Mean Squared Error).

2. obj_loss—Object loss (or obj loss) is the degree to which one doubts the presence
of an object.

3. cls_loss—The classification loss, or cls loss, is the third variable (Cross-Entropy).

Figure 5 shows training cls_loss of the proposed model and training box_loss has been
shown in Figure 6 with respective to existing model and proposed model. Red colour curve
represents existing model & Blue colour curve represents proposed model for all figures.

4.3. Classification Measure

The following parameters help better understand and analyze the model and its
performance.

a. Accuracy: It defines the percentage of accurate forecasts as all forecasts provided. The
formula gives it:

Accuracy =
TP + TN

TP + TN + FP + FP
=

Correct predictions
Total predictions

(11)

b. Precision: It may be defined as the fraction of valid positive classes relative to the total
number of anticipated actual positive classes. It is calculated as:

Precision =
TP

TP + FP
=

Predictions actually positive
Total predicted positive

(12)

c. Recall (TPR, Sensitivity): It is calculated as:

Recall =
TP

TP + TN
=

Predictions actually positive
Total actual positive

(13)
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Table 2 demonstrates the classification measure for different optimizers (SGD, Bayesian,
and LwF optimizers) with the YOLO model in classifying the weather conditions.

Table 2. Classification Measure.

Optimizer Images Precision Recall mAP@.5 mAP@.5:.95

SGD Optimizer 1499 0.857 0.816 0.055 0.019

Bayesian Optimizer 1499 0.935 0.830 0.704 0.349

LwF Optimizer 1499 0.988 0.908 0.819 0.569

Figures 7 and 8 shows precision and recall, respectively, as below.
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• Object detection accuracy is commonly measured using AP (average precision). The
area under the aforementioned precision–recall curve is one way to quantify this.

It is calculated using the formula:

AP =
∫ 1

0
p(r)dr (14)

Figure 9 illustrates mAP_0.95, and Figure 11 illustrates mAP_0.5.

• Training Loss evaluates how well a deep learning model fits the training data by
measuring the model’s error on the training set. Figure 10 shows train obj_loss.
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Figure 12 depicts the confusion matrix, and Figure 13 shows the confusion matrix for
the weather classification chosen.
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Table 3 demonstrates the results of various methods, and the proposed method regard-
ing accuracy performance metrics. It has been observed that the proposed model gained
higher accuracy than existing models.
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Table 3. Results comparison.

S. No. Paper Methods Accuracy (%)

1 Wang et al. [16] SVM 90

2 Hongwei et al. [17] GA 75

3 Zhang et al. [19] multiple kernel learning 59.44

4 Lu et al. [21] CNN 91.4

5 Li et al. [22] Generative adversarial networks (GAN) 98.09

6 Wang et al. [24] ResNet and DenseNet 72.25

7 Bai et al. [26] Multimodal Information Fusion 98.46

8 Proposed Model Yolo Model with LwF 99.19%

5. Conclusions

In this study, we develop a modified Yolo5 model with integration of Learning-without-
forgetting (LwF) that can classify weather images with little processing power. This model
enhances driving scenarios needed for weather picture categorization while assuring
accuracy, and proposed model has the reasoning power equivalent to deep CNN, and it
helps in minimizing road accidents. As part of our ongoing commitment to improving
people’s quality of life via research, we plan to continue to enhance CNN’s target feature
extraction capability, boost accuracy, and cut down on traffic accidents. The proposed
model gained the accuracy level of 99.19%. The proposed model gained a 0.988 precision
value, a 0.908 recall value, a 0.819 mAP@.5 value, and a 0.569 mAP@.5:.95, respectively. The
dataset consists of various weather classifications i.e., “Cloud”, “Fog”, “Rain”, “Snow”,
etc. The performance metric depicts the enhanced and improved performance level of the
proposed model.

Based on the findings of this model, the dataset might be increased to enable better
weather categorization in the future, acquire more valuable features, and boost the model’s
capacity for learning. Accurately recognizing weather types is the foundation for estimating
rain amounts.
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