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Abstract: At container terminals, quay cranes, yard trucks, and yard cranes are mainly used to transfer
containers. Driven by the demand for a green and low-carbon economy, an integrated scheduling
problem considering three types of handling equipment of container handling systems is studied. As
the task of transferring each container is completed by the three handling equipment sequentially,
the optimal solution may not be found by only studying one type of equipment separately from a
green operations perspective. The inter-dependency of different equipment should be considered
to guarantee the overall performance of container handling systems with low-carbon operations so
as to reduce energy consumption. In this paper, this integrated problem is formulated as a mixed
integer linear programming (MILP). Since the MILP cannot be applied to solve large-sized practical
problems, a genetic algorithm (GA) is developed. In the proposed GA, a three-dimension chromosome
representation is proposed, which integrates the coordination of three handling equipment. A new
mechanism including three pairs of crossover and mutation is used in parallel in GA with the aim
of enhancing the efficiency of searching for good solutions. Each pair of crossover and mutation is
specific to one dimension of a solution. Moreover, a novel heuristic mutation is developed to diversify
solutions. The computational results indicate that the developed solution method for the integrated
scheduling problem is promising and the heuristic mutation can highly improve the solution quality.

Keywords: integrated scheduling; low-carbon; container handling systems; mixed integer linear
programming; genetic algorithm

1. Introduction

The efficiency and low-carbon operations of container terminals (CTs) have a direct
impact on the success of international trade and a nation’s green economy [1]. Meanwhile,
governments introduce policies and regulations for organizations such as CTs to reduce
carbon emissions [2–4]. The efficiency of CTs is usually indicated by the ship turnaround
time. Terminals with shorter ship turnaround times and low-carbon operations can keep
pace with the world trade competition. Thus, the cooperation of different activities with
respect to three types of integrated handling equipment in CTs is needed to be considered.

Containers are boxes in a standard size (i.e., forty-foot-equivalent unit, twenty-foot-
equivalent unit) in most CTs [5]. They are mainly handled and transferred by three types of
equipment which are quay cranes (QCs), yard trucks (YTs), and yard cranes (YCs). In the
studies of Abdelmaguid et al. [6], Deroussi et al. [7], and Zheng et al. [8], the importance of
the integrated scheduling of cooperated resources in flexible manufacturing systems (FMS)
has been addressed. The key difference in the operations of material handling equipment
between FMS and CTs lies in the buffer space. There is buffer space between machines and
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material handling equipment but no buffer space between container handling equipment in
CTs. Due to the absence of buffer space between cranes and YTs, a blocking situation may
happen during the process of transferring containers. When a QC or YC lifts a container, it
must place the container onto an available YT instead of placing it on the ground. As such,
QCs and YCs cannot continue their next task until an empty YT has arrived. In another
aspect, containers have to remain on YTs until QCs or YCs lift the containers off YTs. Such
a blocking situation happens because of the poor coordination between cranes and YTs.
The ignorance of interaction between cranes and YTs would lead to local optimality and
consequently result in the loss of performance. Therefore, the overall performance with
good efficiency and low-carbon emission can be guaranteed when QCs, YTs, and YCs are
simultaneously considered in an integrated model.

This paper studies an integrated problem of concurrently scheduling QCs, YTs, and
YCs with low-carbon operations, named P_QYY. The objective is to minimize the ship
turnaround time (i.e., makespan) from the low-carbon perspective. As introduced by Zeng
& Yang [9], the solution methodologies were applied to schedule the loading operations for
outbound containers and the unloading operations for inbound containers, respectively. In
this paper, the process of loading operations is studied. However, the proposed solution
approach is not limited to loading operations, also valid for unloading operations. In
our problem, QCs assignment to ships and locations of containers in ships are known in
advance. The sequence of handling containers by each QC is to be determined. Meanwhile,
the determination on YTs assignment to containers and YCs assignment to blocks is to
be made. YCs shared by different blocks could enhance the utilization of YCs and then
reduce potential investment costs [10]. Thus, the purpose of P_QYY is to resolve three
sub-problems: the sequence of loading containers on ships by each QC, YTs assignment to
containers, and YCs assignment to blocks.

A mixed integer linear programming (MILP) model is formulated to determine the
optimal solution for P_QYY. However, since even the sub-problem YT scheduling problem
is of NP-hard class [11], P_QYY is also an NP-hard problem as it can be reduced to a YT
scheduling problem when the other two sub-problems are treated as the input data. To
solve large-sized practical problems, a solution method based on a genetic algorithm (GA)
is developed. The experimental results reveal that the proposed algorithm is efficient to
find good solutions for P_QYY.

2. Literature Review

Considerable research has been conducted in the field of CTs as a result of the increas-
ing importance of port container terminal systems. Previous research mainly focused on
only one aspect of terminal scheduling problems, such as QC scheduling problems, YT
scheduling problems, and YC scheduling problems.

Meisel & Bierwirth [12] stated diverse models for QCs scheduling problems. A unified
approach and a new platform were presented for the evaluation of distinct models and
solution procedures. Liu et al. [13] proposed the QC scheduling problem with non-crossing
constraints for QCs and precedence constraints for container tasks. The authors also studied
the computational complexity of the problem and developed a GA to get near-optimal
solutions. AI-Dhaheri et al. [14] studied the QC scheduling problem while considering the
dynamics and the uncertainty inherent to the container handling process. A simulation-
based GA was presented to solve this problem.

Ng et al. [11] studied a fleet of trucks scheduling problem with the constraints of
different ready times and sequence-dependent processing times with the goal of minimizing
the makespan. A GA with a greedy crossover was proposed to search the effective schedules.
He et al. [15] addressed the scheduling problem for the internal trucks (IT) in CTs with
the consideration of IT assignment strategy. Specially, an approach that dealt with the
sharing of ITs among multiple CTs were designed and investigated. To efficiently solve this
problem, the rolling-horizon approach together with a simulation optimization method
was presented and verified.
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Ng & Mak [16] made a study on a single YC scheduling problem with the objective
of minimizing the sum of job waiting times. In their problem, both inbound containers
and outbound containers were involved. In the study of Jung & Kim [17], a single YC
scheduling problem was extended to multiple YC scheduling problems. Multiple YCs
operating in the same block were addressed and only loading operation was considered.
He et al. [10] proposed a hybrid GA to deal with the YCs scheduling problem. The necessity
of YC movement among blocks was introduced. Wu et al. [18] studied the multiple YC
scheduling problems while considering the operational constraints in practice such as the
crane non-crossing constraint. A clustering-reassigning approach was developed to find
satisfactory near-optimal solutions.

The studies addressed above focused on the scheduling problem of one single-handling
equipment. The interrelation between cranes and trucks/vehicles was not involved by
these authors, which resulted in poor performance of CTs with much energy consumption
and low working efficiency. In recent years, integrated problems of concurrently studying
the interrelated decision-making processes in CTs are considered.

Bierwirth & Meisel [19] made a survey of berth allocation and QC scheduling problems
in CTs. They remarked that the integration models would receive much attention and be
a new trend of future research in CTs. Rodrigues & Agra [20] surveyed the integrated
problem of berth allocation and QCs assignment problem. They addressed the research
trends and future study direction together with the limitation of published papers. In the
study of Tang et al. [21], a solution method incorporating the discretization strategy and
a MILP was presented to deal with the continuous berth allocation and QCs assignment
problem. Cho et al. [22] developed an integrated method for berth allocation and QCs
assignment problems, of which the reassignment of the vessel to other terminals was
allowed. In Kaveshgar & Huynh [23], an integrated model for jointly scheduling QCs and
YTs was proposed. A GA combined with a greedy algorithm was designed to solve this
integrated scheduling problem. He [24] addressed an integrated berth allocation and QC
assignment problem, in which the trade-off between time-saving and energy-saving at
the operational level was studied. An integrated simulation and optimization method
was used to solve the problem. Luo et al. [25] integrated vehicle scheduling and container
storage problems in the unloading process in an automated container terminal. A MIP
model and a GA were employed to solve this problem with the objective of minimizing the
ship’s berth time.

The importance of integrating various types of handling equipment in CTs has been stated
in the literature ([1,26]). A tabu search algorithm was developed in the paper of Chen et al. [1] to
solve the integrated scheduling problem of QCs, yard vehicles, and YCs. In their problem, each
YC served at only one block. In the work of Lau & Zhao [26], an integrated model of scheduling
QCs, automated guided vehicles, and automated YCs was introduced. In their model, each
block was assumed to have a specified YC. These above-mentioned two models improved the
coordination of different handling equipment in CTs.

The classification of scheduling problems in CTs are shown in Table 1.

Table 1. Classification of scheduling problems in CTs.

Scheduling Problems in CTs Related Literature

QC scheduling problem Meisel & Bierwirth [12], Liu et al. [13], AI-Dhaheri et al. [14]

YT scheduling problem Ng et al. [11], He et al. [15]

YC scheduling problem Ng & Mak [16], Jung & Kim [17], He et al. [10], Wu et al. [18]

Berth allocation and QC scheduling problem Bierwirth & Meisel [19], Rodrigues & Agra [20], Tang et al. [21],
Cho et al. [22], He [24]
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Table 1. Cont.

Scheduling Problems in CTs Related Literature

Integrated QC and YT scheduling problem Kaveshgar & Huynh [23]

Integrated vehicles scheduling and containers storage problem Luo et al. [25]

Integrated QC, yard vehicles, and YC scheduling problem Chen et al. [1], Lau & Zhao [26]

This paper addresses the integrated problem of scheduling QCs, YTs, and YCs, where
YCs assignment to different blocks is considered. The proposed model is a generalization of
real practice in CTs where a dedicated YC is used for each block—a special case of P_QYY.
For this special case, a YCs assignment is not needed. This model can also be applied to CTs
where dedicated YCs are used if a restriction is given on the selection of YCs. In some CTs,
not every block has a specified YC and thus YCs need to be shared among blocks. One such
widely used YCs is the rubber-tired gantry cranes (RTGC). It moves on rubber-tired wheels
and needs to move to another block after it finishes the task in the current block to well
utilize RTGCs [27]. Due to its mobility and flexibility, RTGC is the one of most commonly
used handling equipment in the port of Hong Kong and other CTs all over the world [28].
To fully utilize YCs, the movement of YCs among different blocks is necessary. This is also
helpful to relax workload congestion and imbalance [10]. Moreover, the schedule of YCs is
generally made by port managers based on their experience before yard operations, which
cannot guarantee the efficiency of the YC schedule. As an inefficient YCs schedule could
result in the loss of productivity in the storage yard thus affecting the performance of CTs,
YCs movement among blocks and YCs assignment are considered in our integrated model.

3. MILP Model for P_QYY

The typical layout of most CTs is given in Figure 1. In a CT, there are mainly two
working areas: the ship’s operation area and the storage yard. QCs are located in the ship
operation area and YCs serve at blocks in the storage yard. In front of each QC and each
block, a transfer point is set for YTs to load/unload containers. For outbound containers,
the task is to load containers in the storage yard onto ships along the seaside. Three phases
are successively included to complete the loading process. First, YCs move into the storage
yard to get containers and place them onto the assigned YTs. Then, YTs transfer containers
to the transfer points of QCs. Finally, QCs are responsible for loading containers onto ships.

In P_QYY, a job is referred to as the complete process of transferring a container from
a block to a QC. For each container, the block and QC are assigned in advance. The distance
between any two transfer points is also known. In the integrated model, the following
assumptions for P_QYY are adopted:

1. YTs/YCs employed in CTs are identical.
2. YTs/YCs are driven at a specific speed.
3. Each YT has a unit capacity, i.e., only one container can be moved by a YT for a job.
4. The average handling time is set to be the handling time for each QC/YC. The time

spent in transferring process from YC/YT to YT/QC is included in the handling time
of YC/QC.

5. Containers assigned to one QC are loaded onto ships according to the first come first
served rule. Special containers are not considered in this study.

6. Traffic congestion or conflict of YTs/YCs is not taken into consideration.



Sustainability 2023, 15, 6035 5 of 21Sustainability 2023, 15, x FOR PEER REVIEW 5 of 22 
 

 

 

Figure 1. The layout of a CT. 

In P_QYY, a job is referred to as the complete process of transferring a container from 

a block to a QC. For each container, the block and QC are assigned in advance. The dis-

tance between any two transfer points is also known. In the integrated model, the follow-

ing assumptions for P_QYY are adopted: 

1. YTs/YCs employed in CTs are identical. 

2. YTs/YCs are driven at a specific speed. 

3. Each YT has a unit capacity, i.e., only one container can be moved by a YT for a job. 

4. The average handling time is set to be the handling time for each QC/YC. The time 

spent in transferring process from YC/YT to YT/QC is included in the handling time 

of YC/QC. 

5. Containers assigned to one QC are loaded onto ships according to the first come first 

served rule. Special containers are not considered in this study. 

6. Traffic congestion or conflict of YTs/YCs is not taken into consideration. 

The processing time of each job is the sum of the handling times of QC and YC, the 

travel time of YT from the origin to the destination of the job, and the waiting time. A job 

is in the condition of waiting when the required handling equipment is not available or in 

a blocking situation. The efficiency can be improved by reducing the waiting time of each 

job and the empty trips of YTs and YCs. Appropriate loading sequences of QCs as well as 

appropriately dispatching YTs and YCs to containers can significantly decrease the empty 

trips and the waiting time. 

To describe P_QYY, notations are demonstrated as follows: 

Indices: 

i, j: Jobs, i, j = 1, 2, …, Njob, Njob is the total number of jobs 

q: QCs, q = 1, 2, …, Nqc, Nqc is the total number of QCs 

k: YTs, k = 1, 2, …, Nyt, Nyt is the total number of YTs 

e: YCs, e = 1, 2, …, Nyc, Nyc is the total number of YCs 

m, n: Locations of QCs and blocks 

Parameters: 

QC(i): QC preassigned the container of job i 

B(i): Block where the container of job i is placed 

iptk: The initial position of YT k 

Figure 1. The layout of a CT.

The processing time of each job is the sum of the handling times of QC and YC, the
travel time of YT from the origin to the destination of the job, and the waiting time. A job is
in the condition of waiting when the required handling equipment is not available or in a
blocking situation. The efficiency can be improved by reducing the waiting time of each
job and the empty trips of YTs and YCs. Appropriate loading sequences of QCs as well as
appropriately dispatching YTs and YCs to containers can significantly decrease the empty
trips and the waiting time.

To describe P_QYY, notations are demonstrated as follows:
Indices:

i, j: Jobs, i, j = 1, 2, . . . , Njob, Njob is the total number of jobs
q: QCs, q = 1, 2, . . . , Nqc, Nqc is the total number of QCs
k: YTs, k = 1, 2, . . . , Nyt, Nyt is the total number of YTs
e: YCs, e = 1, 2, . . . , Nyc, Nyc is the total number of YCs
m, n: Locations of QCs and blocks

Parameters:

QC(i): QC preassigned the container of job i
B(i): Block where the container of job i is placed
iptk: The initial position of YT k
ipce: The initial position of YC e
Dmn: Distance between m and n
hqc: Handling time spent by a QC
hyc: Handling time spent by a YC
syt: Driving speed of YTs
syc: Driving speed of YCs
M: A very large positive constant

Sets:

L: Set of outbound containers
SQ: Set of QCs
ST: Set of YTs
SC: Set of YCs
SPq: Set of pairs of jobs (i,j) where QC(i) = QC(j) = q

Decision variables:
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Cmax: Makespan
Tyti: Arrival time of the container of job i at QC(i) by YT
Tyci: Arrival time of the container of job i at B(i) by YC
ci: Completion time of job i

uik =

{
1, if job i is assigned to YT k
0, otherwise.

vie =

{
1, if job i is assigned to YC e
0, otherwise.

xijq =

{
1, if job i precedes job j on QC q and (i, j) ∈ SPq
0, otherwise.

yijk =

{
1, if job i is immediately before job j on YT k
0, otherwise.

zije =

{
1, if job i is immediately before job j on YC e
0, otherwise.

f 1ik =

{
1, if job i is the first task of YT k
0, otherwise.

f 2ie =

{
1, if job i is the first task of YC e
0, otherwise.

The objective of P_QYY is the minimization of the makespan described in Constraint (1).

Minimize Cmax (1)

Constraint (2) defines the makespan.

Cmax ≥ ci, ∀i ∈ L (2)

In Constraint (3), the completion time of each job is calculated. The container is
handled by its preassigned QC after the container arrives at this QC.

ci − hqc ≥ Tyti, ∀i ∈ L (3)

Constraint (4) implies that the container of each job is handled by the assigned YT
after the container arrives at the transfer part of the block by its assigned YC. Tyti −
DB(i)QC(i)/syt is the beginning time of YT’s working on this container.

Tyti − DB(i)QC(i)/syt ≥ Tyci, ∀i ∈ L (4)

Constraints (5a), and (5b) define the blocking situation. Constraint (5a) describes the
situation where job i is handled before job j on YC e. Constraint (5b) describes the situation
where the container of job i is handled before the container of job j on YT k. The handling
equipment (YC or YT) can handle its next task job j after this equipment is released by the
next handling equipment of job i. The container of job i will have to remain on the current
handling equipment until the next equipment of job i takes this container off the current
handling equipment.

Tycj − hyc + M(1− zije) ≥ Tyti − DB(i)QC(i)/syt + DB(i)B(j)/syc, ∀i, j ∈ L, ∀e ∈ SC (5a)

Tytj − DB(j)QC(j)/syt + M(1− yijk) ≥ ci − hqc + DQC(i)B(j)/syt, ∀i, j ∈ L, ∀k ∈ ST (5b)

Constraint (6a)/(6b) ensures that YTs/YCs begin their first task from the initial position.

Tyti + M(1− f 1ik) ≥ (Diptk B(i) + DB(i)QC(i))/syt, ∀i ∈ L, ∀k ∈ ST (6a)
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Tyci + M(1− f 2ie) ≥ DipceB(i)/syc + hyc, ∀i ∈ L, ∀e ∈ SC (6b)

Constraint (7a)/(7b) forces the containers of job (i, j) on QC q cannot be handled at the
same time.

cj − ci + M(1− xijq) ≥ hqc, ∀(i, j) ∈ SPq, ∀q ∈ SQ (7a)

ci − cj + Mxijq ≥ hqc, ∀(i, j) ∈ SPq, ∀q ∈ SQ (7b)

Constraint (8a)/(8b) makes sure that the container of each job must be assigned to one
YT/YC.

Nyt

∑
k=1

uik = 1, ∀i ∈ L (8a)

Nyc

∑
e=1

vie = 1, ∀i ∈ L (8b)

Constraint (9a)/(9b) describes the relationship between the YT k/YC e assignment and
the handling sequence on YT k/YC e.

uik + ujk − 2yijk ≥ 0, ∀i, j ∈ L, ∀k ∈ ST (9a)

vie + vje − 2zije ≥ 0, ∀i, j ∈ L, ∀e ∈ SC (9b)

Constraint (10a)/(10b) determines the first task for each YT/YC.

Njob

∑
i=1

f 1ik = 1, ∀k ∈ ST (10a)

Njob

∑
i=1

f 2ie = 1, ∀e ∈ SC (10b)

Constraint (11a)/(11b) describes the relationship between the YT k/YC e assignment
and the first task of job i.

f 1ik − uik ≤ 0, ∀i ∈ L, ∀k ∈ ST (11a)

f 2ie − vie ≤ 0, ∀i ∈ L, ∀e ∈ SC (11b)

In Constraints (12a)–(12c), the handling sequence of containers on each YT is determined.

Nyt

∑
k=1

yijk +
Nyt

∑
k=1

yjik ≤ 1, ∀i, j ∈ L (12a)

Nyt

∑
k=1

( f 1ik + ∑
∀j ∈ L
i 6= j

yjik) = 1, ∀i ∈ L (12b)

Nyt

∑
k=1

∑
∀j ∈ L
i 6= j

yijk ≤ 1, ∀i ∈ L (12c)

In Constraints (13a)–(13c), the handling sequence of containers on each YC is deter-
mined.

Nyc

∑
e=1

zije +
Nyc

∑
e=1

zjie ≤ 1, ∀i, j ∈ L (13a)
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Nyc

∑
e=1

( f 2ie + ∑
∀j ∈ L
i 6= j

zjie) = 1, ∀i ∈ L (13b)

Nyc

∑
e=1

∑
∀j ∈ L
i 6= j

zije ≤ 1, ∀i ∈ L (13c)

Constraint (14) defines the binary variables.

xijq, uik, vie, yijk, zije, f 1ik, f 2ie ∈ {0, 1}, ∀i, j ∈ L, ∀q ∈ SQ, ∀k ∈ ST, ∀e ∈ SC (14)

4. Solution Method

Due to the NP-hardness of P_QYY, solving large-sized problems by exact methods
is intractable. In this paper, a solution method based on a GA is designed to find the
optimal or satisfactory solutions. The problem P_QYY is to simultaneously solve the three
integrated sub-problems: the handling sequence of containers on QCs/YTs assignment
and YCs assignment. To match this problem structure, a solution representation with three
dimensions in GA is designed. It integrates that three sub-solution by considering the
cohesive relation of QCs, YTs, and YCs. Accordingly, the three sub-solutions are searched
by the three pairs of crossover and mutations. Furthermore, a novel heuristic mutation
is designed to improve the possibility of finding high-quality solutions. The effect of the
proposed algorithm is to shorten the empty ships and reduce the waiting time to improve
the utilization and coordination of the handling equipment, and thereby finish all jobs as
soon as possible.

The flowchart of the proposed GA is depicted in Figure 2. GA starts with reading the
input data. The initial population is generated according to the given input data. In each
generation, three pairs of crossover and mutation are implemented in parallel to generate
offspring which are then evaluated. The new population is formed using a mixed selection
strategy. GA searches solutions iteratively and is stopped when the stopping criterion is
satisfied.

4.1. Chromosome Representation

For P_QYY, the chromosome is represented as a 3 × Njob array, named π, which has
3 rows and Njob columns. The rows from top to bottom are named π(1), π(2), and π(3),
respectively. π(h) is set as π(h) = {π(h)(1), π(h)(2), . . . , π(h)(Njob)}(h = 1, 2, 3). π(1)gives
the loading sequence of containers on QCs. π(2) shows the assignment of YTs to jobs in
π(1). π(3) demonstrates the assignment of YCs to jobs in π(1). The loading sequence of
containers on YTs and YCs are determined from π(2) and π(3). The gene in each column of
π describes YT/YC assignment to the job.

The potential benefit of this three-dimension representation is that it builds the links
of the handling process of QC, YT, and YC for each job by combining them in the same
column (as each job has a predefined QC). These links may be helpful for maintaining the
highly fit chromosome patterns after performing crossover and mutation operators. The
survival of these good chromosome patterns more facilitates the convergence of GA than
an independent single-dimension solution representation.
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An example problem is given below to illustrate the chromosome representation.
Consider a CT with three QCs and a storage yard consisting of three blocks. There are
10 jobs each of which has a predefined QC and block in Table 2. Numbers 1–10 in the first
row indicate the jobs. The second and third rows give the information on the assigned QCs
and blocks, with numbers 1–3 standing for QCs and 4–6 for blocks. There are a total of
three YTs and two YCs. The initial position of each YT and YC is given in Table 3, where
the numbers indicate QCs (1–3) or blocks (4–6).

Table 2. Assigned QCs and blocks for 10 jobs in the example problem.

Job i 1 2 3 4 5 6 7 8 9 10

QC(i) 2 3 2 1 3 3 2 2 3 1
B(i) 4 6 5 5 6 4 4 5 6 4

Table 3. The initial positions for YTs and YCs in the example problem.

YTs YCs

YT 1 YT 2 YT 3 YC 1 YC 2

Initial position 5 4 6 4 5

For this example problem, a feasible chromosome π can be defined as a 3 × 10 array
with π(1) = {2,4,1,6,3,8,9,7,10,5}, π(2) = {2,1,1,3,2,3,1,2,2,3}, and π(3) = {1,1,2,2,1,2,1,2,2,1},
which is shown in Figure 3a. π(1) is the loading sequence of jobs, π(2) represents YTs
assignment to jobs in π(1), and π(3) represents YCs assignment to jobs in π(1). For example,
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in the first column, YT 2 and YC 1 are assigned to job 2. According to the given information
on the preassigned QC and block for each job, this chromosome gives the loading sequences
of jobs on QCs, YTs, and YCs in Figure 3b.
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Figure 3c shows the trips of YTs and YCs needed to complete 10 jobs. It can be seen
that empty trips occur when YTs head for a new task or YCs move between different blocks
to pick up the required containers.

4.2. Initial Population

In this paper, the initialization of each chromosome in the population includes three
parts: π(1) initialization, π(2) initialization, and π(3) initialization. π(1) is randomly
initialized as a loading sequence of Njob jobs. For each gene in π(2), a YT k (k∈ST) is
randomly created. For each gene in π(3), a YC e (e∈SC) is randomly created.

4.3. Fitness Evaluation

For each chromosome, the objective function value is the completion time of the
last job. Since P_QYY is a minimization problem and the objective function value (i.e.,
makespan) is always positive, the fitness value fitness(n) associated with each chromosome
πn is the reciprocal of makespan, i.e., fitness(n) = 1/Cmax.
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The procedure of calculating the completion time of job π(1)(i) (i = 1,2, . . . , Njob) in
solution π is described below. The notations are first introduced as follows.

pyc[π(3)(i)]: Current position of YC π(3)(i)
pyt[π(2)(i)]: Current position of YT π(2)(i)
ayc[π(3)(i)]: Arrival time of YC π(3)(i) for job π(1)(i)
ayt[π(2)(i)]: Arrival time of YT π(2)(i) for job π(1)(i)
ryc[π(3)(i)]: Released time of YC π(3)(i) for job π(1)(i), i.e., the
ryt[π(2)(i)]: Released time of YT π(2)(i) for job π(1)(i)
fyc[π(3)(i)]: Finish time of job π(1)(i) on YC π(3)(i)
fyt[π(2)(i)]: Finish time of job π(1)(i) on YT π(2)(i)
fqc[QC(π(1)(i))]: Finish time of job π(1)(i) on QC(π(1)(i))

As a generated chromosome π satisfies the constraints (7a)–(13c) of the MILP model in
Section 3, the completion times of jobs π(1)(i) (i = 1, 2, . . . , Njob) are calculated one by one
according to the loading sequence of jobs in π(1) based on the constraints (2)–(6b). Since
each job is successively handled by three handling equipment YC, YT, and QC, the core
procedure of calculating the completion time consists of three steps: (1) the calculation of
the finish time on YC, (2) the calculation of the finish time on YT, and (3) the calculation
of the finish time on QC. The completion time of each job is equal to the finish time on its
assigned QC. The blocking situation can be circumvented by the procedure of calculating
the mekespan of each three-dimension solution representation. The containers in π(1)
are handled one by one. The released time together with the finish time of the handling
equipment for its processing container is calculated. The released time of YTs/YCs means
the unloading time of the current container away from YTs/YCs. It is influenced by two
factors: one is the finish time to complete the current job of YT/YC, and the other is the
time when next handling equipment in secession QC/YT can take the job away from this
YT/YC. After the handling equipment is released, its operation on the next container will
start. A small example is given to show the calculation procedure in Appendix A. The
calculation procedure is described as follows.

Step 0 Initialization.
0.1 Set i = 1.
0.2 Set pyc[e] = ipce for ∀e∈SC, and pyt[k] = iptk for ∀k∈ST.
0.3 Set fyc[e] = fyt[k] = fqc[q] = ryc[e] = ryt[k] = 0 for ∀e∈SC, ∀ k∈ST, ∀q∈SQ.

Step 1 Calculation of the finish time of job π(1)(i) on YC π(3)(i).
1.1 The arrival time and finish time of YC π(3)(i) are calculated.

ayc[π(3)(i)] = ryc[π(3)(i)] + Dpyc[π(3)(i)],B(π(1)(i))/syc
fyc[π(3)(i)] = ayc[π(3)(i)] + hyc

1.2 The new position of YC π(3)(i) is updated as B(π(1)(i)).
pyc[π(3)(i)] = B(π(1)(i))

Step 2 Calculation of the finish time of job π(1)(i) on YT π(2)(i).
2.1 The arrival time YT π(2)(i) is calculated.

ayt[π(2)(i)] = ryt[π(2)(i)] + Dpyt[π(2)(i)],B(π(1)(i))/syt
2.2 YC π(3)(i) is released when job π(1)(i) is loaded onto YT π(2)(i). Thus, the released

time of YC π(3)(i) is calculated below.
ryc[π(3)(i)] = max{ayt[π(2)(i)], fyc[π(3)(i)]}
The finish time of YT π(2)(i) is then calculated.
fyt[π(2)(i)] = ryc[π(3)(i)] + DB(π(1)(i))QC(π(1)(i))/syt

2.3 The new position of YT π(2)(i) is updated as QC(π(1)(i)).
pyt[π(2)(i)] = QC(π(1)(i))

2.4 YT π(2)(i) is released when the assigned QC is available to pick up job π(1)(i)
away from this YT. Thus, the released time of YT π(2)(i) is calculated below.

ryt[π(2)(i)] = max{fyt[π(2)(i)], fqc[QC(π(1)(i))]}

Step 3 Calculation of the finish time of job π(1)(i) on QC.
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cπ (1)(i) = fqc[QC(π(1)(i))] = ryt[π(2)(i)] + hqc

Step 4 Calculation of Cmax. If i = Njob, then the makespan is calculated as Cmax =
max{cπ (1)(i)| i = 1,2, . . . , Njob}, otherwise, i = i + 1 and go to Step 1.

4.4. Generation of New Population

In the proposed GA, based on the three-dimension chromosome, three pairs of crossover
and mutation (Crossover_1 & Mutation_1, Crossover_2 & Mutation_2, Crossover_3 & Muta-
tion_3) are accordingly designed to wildly search the solution space. Crossover_1 and Muta-
tion_1 are used for π(1) while keeping the assignment of YTs and YCs to each job unchanged.
Crossover_2 and Mutation_2 are performed on π(2) while keeping π(1) and π(3) unchanged.
Crossover_3 and Mutation_3 are performed on π(3) while keeping π(1) and π(2) unchanged.
In each generation, the three pairs of crossover and mutation are applied in parallel to generate
the offspring. By doing so, the exploration of GA is improved and the possibility of missing the
solutions with good attributes is decreased.

4.4.1. Crossover

Based on the characteristics of π(a) (a = 1, 2, 3), three crossover operators are developed
for different purposes. For π(1), as the simple crossover fails to generate valid permutation-
structured offspring, Crossover_1 is implemented on the basis of order crossover to guaran-
tee that the loading sequence of jobs remains feasible. For π(2) and π(3), Crossover_2 and
Crossover_3 adopt simple two-point crossover. The detail of order crossover and two-point
crossover is introduced in [29].

Figure 4 illustrates the order crossover for π(1). Based on Parent 1, Child 1 is produced
by performing Crossover_1 on two selected parent chromosomes Parent 1 and Parent
2. In Figure 4a, a sub-sequence of π(1) in Parent 1 is randomly selected and copied to
the corresponding positions in Child 1. The rest positions of Child 1 are filled with the
remaining jobs of π(1) in Parent 2. The filling jobs in Parent 2 are copied to Child 1 in
accordance with the sequence of jobs in Parent 2. Note that Child 1 inherits YTs and YCs
assignments to jobs from Parent 1. For example, in Parent 1, YT 1 and YC 2 are assigned
to job 4. Thus, job 4 of Child 1 has the same assignments YT 1 and YC 2. In the same way,
Child 2 is generated based on Parent 2 by performing Crossover_1 on Parent 1 and Parent
2 as shown in Figure 4b. Crossover_1 keeps the links of YT and YC assignments to each job
when changing the loading sequence in π(1).

Figure 5 illustrates the two-point crossover for π(2). Taking Parent 1 as a base, Child 1
is produced by performing Crossover_2 on two selected parent chromosomes Parent 1 and
Parent 2. In Figure 5a, two cut points: cut point 1 and cut point 2 are randomly determined.
For the jobs between these two cut points, the YTs assignment in π(2) of Parent 1 is copied
to Child 1. YTs assignment to other jobs in Child 1 is the same as that of Parent 2. Child 1
inherits π(1) and π(3) directly from Parent 1. In the same way, Child 2 is produced based
on Parent 2 by performing Crossover_2 on Parent 1 and Parent 2 as shown in Figure 5b.

For π(3), Crossover_3 is the same as Crossover_2 using the two-point crossover but
keeping π(1) and π(2) unchanged.
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4.4.2. Mutation

Mutation ensures that GA will have a chance to search other regions of the solution
space and thus maintain genetic diversity from one generation to the next. Here different
mutation operators are designed for π(a) (a = 1, 2, 3). For π(1), Mutation_1 is implemented
based on the swap mutation (Goldberg 1989) [30] which mutates the selected parent
chromosome by exchanging two randomly chosen jobs in π(1) as well as their assigned
YTs and YCs. Figure 6 shows Mutation_1 for π(1).
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Mutation_2 and Mutation_3 are specifically designed for π(2) and π(3), respectively.
These two operators are based on a new heuristic mutation that seeks improvement and
avoids local optimum by selecting the best-mutated chromosome as the offspring among all
mutated neighbor chromosomes. In the proposed heuristic mutation, a specified number of
neighbors are generated based on one chosen parent chromosome to find a more suitable
schedule through the following procedure. In Mutation_2 (or Mutation_3), fixing π(1) and
π(3) (or π(1) and π(2)) of the parent chromosome, neighbors are created by changing a YT
(or YC) assigned to job π(1)(i) (i = 1,2, . . . Njob) to any one of other (Nyt − 1) YTs (or (Nyc −
1) YCs). In this way, (Nyt − 1) neighbors are created by changing the YT assignment of one
job in Mutation_2 (or (Nyc− 1) neighbors in Mutation_3). Thus, Njob× (Nyt− 1) neighbors
are totally generated in Mutation_2 and Njob × (Nyc − 1) neighbors in Mutation_3. After
implementing Mutation_2 or Mutation_3, all obtained neighbors are evaluated and the
neighbor with the minimum makespan is chosen as the mutated offspring chromosome.
It can be seen that the number of generated neighbors depends on the size of integrated
problems, i.e., the total number of jobs and the total number of YT or YC.

The reason for developing this heuristic mutation is that the quality of the chromo-
some in each generation has an important impact on the overall performance of the next
generation. This operator behaves as a local search to improve the chromosome quality
and to avoid the local optimum by exploiting better-mutated chromosomes in the way of
searching neighbors of parent chromosomes in each generation.

4.4.3. Selection

A mixed selection strategy including the deterministic selection and roulette wheel se-
lection is used. The last population and all generated offspring are ranked in non-ascending
order in terms of fitness value. Part of the new population is formed by deterministic
selection which selects the best K chromosomes with different fitness values. Here popsize
denotes the population size in GA. The remaining popsize–K chromosomes are generated
using one of the most commonly used selection rules roulette wheel selection.

Based on the preliminary experiments, the drawback of only using the deterministic
selection (i.e., K = popsize) is that the disappearance of worse individuals may result in
losing the useful attributes and thereby cause premature convergence. In another aspect,
by only using roulette wheel selection, the elite individuals may be lost or destroyed by
crossover and mutation operators. The deterministic selection forces GA to retain K elite
individuals in each generation. The significant role of elitism in improving GA performance
has been verified by many researchers [31]. Another shortcoming of only using roulette
wheel selection is that many same chromosomes may be selected in the next generation.
The phenomenon that too many same chromosomes exist in the population is another
cause of premature convergence [32]. Therefore, this mixed selection strategy overcomes
the shortcoming of only using the deterministic selection or roulette wheel selection.
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4.5. Stopping Criterion

In this paper, the stopping criterion is the allowed maximum number of generations
(Max_Gen). When Max_Gen is reached, GA is stopped.

5. Computational Experiments and Analysis

The MILP model and the solution method described in the above sections have been
applied to 25 (ex1–ex25) problem instances. The experimental data was generated based
on the published studies [26,32]. In the CT, 6 QCs berth along the seaside and 20 blocks
are set in the storage yard. For each container, the preassigned QC and block are created
in a random way. YTs and YCs start at their initial positions which are set randomly. YTs
drive at the speed of 4 m/s, and YCs at 3 m/s. The handling time of QCs is 60 s, and the
handling time of YCs is 100 s. Other information about 25 problem instances including the
total number of jobs, the total time of QCs, the total number of YTs, and the total number of
YCs are given in Table 4.

Table 4. Details of 25 problem instances.

Problem Instances Njob Nqc Nyt Nyc

ex1 6 1 2 2
ex2 6 2 2 2
ex3 8 1 2 2
ex4 8 2 2 2
ex5 8 2 3 2
ex6 10 2 2 2
ex7 10 2 3 2
ex8 20 2 3 2
ex9 20 3 4 3

ex10 30 3 6 3
ex11 30 3 8 4
ex12 50 3 8 4
ex13 50 4 10 4
ex14 80 3 8 4
ex15 80 4 10 5
ex16 100 4 10 6
ex17 100 5 14 6
ex18 200 4 16 6
ex19 200 5 18 8
ex20 200 6 20 8
ex21 400 4 20 8
ex22 400 5 24 10
ex23 500 5 20 10
ex24 500 6 24 12
ex25 500 6 28 12

The proposed algorithm has been implemented using C++ language. The MILP
model has been solved using ILOG CPLEX 12.2. All computation examples have been
carried out on the personal computer with Inter Core 2, 3.30 GHz CPU. The parameters
of the proposed algorithm include the population size popsize, probability of crossover
Pc, probability of mutation Pm, and the number of elite chromosomes to be chosen in
each generation K and Max_Gen. To determine the values of parameters, preliminary
experiments were conducted. The best set of parameters chosen for the computational
experiments is popsize = 100, Pc = 0.8, Pm = 0.2, K = 50, and Max_Gen = 1000 for ex1–ex15;
Max_Gen = 2000 for ex16–ex25.

To assess the performance of the solution method, the results found by GA are com-
pared with the results from MILP in terms of makespan and CPU time. For each instance,
the algorithm has been conducted ten times. The best result obtained together with its
CPU time was set to be the final result, which was reported in Table 5. For ex1 and ex2, the
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optimal solution has been found by MILP, since the problem size of these two instances
are small. For other instances, the running time of CPLEX was set to 36 h. The best result
obtained during that time period was recorded for MILP. As seen from Table 5, the computa-
tional effort required for MILP to solve even small-sized problem instances is prohibitively
large. For large-sized problems, the feasible solutions cannot be found by MILP within 36 h.
MILP could find the optimal or feasible solutions for seven out of 25 problem instances.
For ex3–ex7, the solutions found by GA in a few seconds are better than the solutions found
by MILP within 36 h. Gaps between the results from MILP and GA are also calculated.
Results in Table 5 indicate that MILP cannot solve medium-sized or large-sized P_QYY
within reasonable time periods. The proposed GA can efficiently find good solutions for
P_QYY.

Table 5. Comparison of results between MILP and the proposed GA.

Problem Instances

MILP GA Gap (%)

Makespan (A1) CPU Time Makespan (A2) CPU Time
(Seconds) (A1–A2)/A2

ex1 1328.33 64.45 s 1328.33 0.80 0.00

ex2 1335.33 38.36 s 1335.33 0.91 0.00

ex3 1408.00 36 h 1356.00 1.57 3.83

ex4 1363.00 36 h 1363.00 1.56 0.00

ex5 1374.33 36 h 1359.00 1.61 1.13

ex6 1988.33 36 h 1798.67 1.75 10.54

ex7 1661.00 36 h 1547.33 1.83 7.35

ex8 – 36 h 1565.67 2.11 –

ex9 – 36 h 1928.00 3.49 –

ex10 – 36 h 1575.00 4.18 –

ex11 – 36 h 1813.13 5.63 –

ex12 – 36 h 3149.67 11.84 –

ex13 – 36 h 2669.67 12.40 –

ex14 – 36 h 4809.67 26.08 –

ex15 – 36 h 3898.33 31.28 –

ex16 – 36 h 4412.33 105.44 –

ex17 – 36 h 3975.00 127.12 –

ex18 – 36 h 7881.67 547.49 –

ex19 – 36 h 6136.00 635.98 –

ex20 – 36 h 6011.33 662.59 –

ex21 – 36 h 12,447.00 2680.81 –

ex22 – 36 h 9843.00 3103.88 –

ex23 – 36 h 13,613.00 4304.06 –

ex24 – 36 h 10,305.33 5157.29 –

ex25 – 36 h 9685.00 5704.66 –

“–” indicates that the feasible solution is not obtained.

To validate the effectiveness of the proposed heuristic mutations, comparative experi-
ments are carried out between the proposed GA with heuristic mutations (GA_HM) and
GA with simple mutations (GA_SM). In GA_SM, heuristic mutations are replaced with
simple mutations, which mutate the selected parent chromosome by randomly changing
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the assigned YT (or YC) of a randomly chosen job to a different YT (or YC). Thus, GA_HM
can be considered an enhanced version of GA_SM. The same parameter set is used for
two versions of GA. Table 6 shows the results obtained from GA_HM and GA_SM. Each
problem instance is executed ten times and the best results are reported for comparison.
The gaps between the results of the two GAs are given in Table 6.

Table 6. Comparison of results between GA_HM and GA_SM.

Problem
Instances

GA_HM GA_SM Gap (%)

Makespan (B1) CPU Time
(Seconds) Makespan (B2) CPU Time

(Seconds) (B2–B1)/B1

ex1 1328.33 0.80 1328.33 0.72 0.00
ex2 1335.33 0.91 1335.33 0.85 0.00
ex3 1356.00 1.57 1356.00 1.66 0.00
ex4 1363.00 1.56 1363.00 1.63 0.00
ex5 1359.00 1.61 1359.00 1.38 0.00
ex6 1798.67 1.75 1798.67 2.08 0.00
ex7 1547.33 1.83 1547.33 2.22 0.00
ex8 1565.67 2.11 1565.67 2.42 0.00
ex9 1928.00 3.49 1931.33 4.06 0.17
ex10 1575.00 4.18 1592.33 3.21 1.10
ex11 1813.13 5.63 1875.00 3.70 3.41
ex12 3149.67 11.84 3258.00 4.94 3.44
ex13 2669.67 12.40 2877.33 5.13 7.78
ex14 4809.67 26.08 5294.00 7.03 10.07
ex15 3898.33 31.28 4214.67 7.20 8.11
ex16 4412.33 105.44 4704.33 17.06 6.62
ex17 3975.00 127.12 4222.33 13.26 6.22
ex18 7881.67 547.49 8854.67 25.43 12.35
ex19 6136.00 635.98 7480.33 24.27 21.91
ex20 6011.33 662.59 7269.67 23.89 20.93
ex21 12,447.00 2680.81 15,674.00 56.09 25.93
ex22 9843.00 3103.88 13,254.00 57.25 34.65
ex23 13,613.00 4304.06 17,192.67 80.53 26.30
ex24 10,305.33 5157.29 13,287.67 79.29 28.94
ex25 9685.00 5704.66 13,202.33 80.92 36.32

From Table 6, it is shown that GA_HM and GA_SM can find the same solutions for
the small-sized problem instances (ex1–ex8) in a short time period. However, the gaps
become bigger from 0.17% to 36.32% as the problem size increases. GA_HM provides
better results than GA_SM, especially for very large-sized problems. The improved results
do come at the cost of CPU time. This is because the number of neighbor chromosomes
generated in the heuristic mutations is enlarged as the problem size increases. For the
largest problems (ex23–ex25), it takes more than 1 h to get the solutions with approximately
30% improvement. Given that a detailed loading schedule should be made a few hours
before the ship arrives at the terminal, such CPU time is still justified in practical situations.

The convergence speed of GA_HM and GA_SM is examined by revealing the value
of makespan changing with each generation for the largest problem instance ex25 in
Figure 7. Both GA_HM and GA_SM could reach convergence within 1000 generations.
Nevertheless, GA_HM could find much better solutions than GA_SM. This is because the
heuristic mutations improve solutions quality by finding the best neighbor chromosome
that possesses potential good patterns. In conclusion, the comparison results indicate that
two GAs are efficient for solving P_QYY and GA_HM can efficiently find better solutions
than GA_SM for large-sized practical problems.
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6. Conclusions

From a low-carbon operations perspective, this paper studies the integrated scheduling
problem of QCs, YTs, and YCs in CTs by considering the interconnections between the
three types of handling equipment. To solve this integrated model, a MILP is formulated
in this paper. Due to large numbers of variables and constraints, the MILP model is
intractable for large-sized practical problems. A GA with three-dimension chromosome
representation is developed, which links the interrelation of the three sub-problems. Based
on the chromosome representation, a mechanism with three pairs of crossover and mutation
is introduced. Each pair of crossover and mutation is specific to one dimension of a
chromosome. This mechanism in GA well matches the property of the integrated problem.
Moreover, to enhance the performance of the proposed solution method, a new heuristic
mutation is proposed. Better solutions are found by applying the three pairs of crossover
and mutation in parallel. The efficiency of the proposed algorithm as well as the heuristic
mutation is shown by the computational results.

The developed solution method is not limited to the integrated model presented in this
paper. Moreover, the proposed algorithm with a multi-dimension solution representation
and a combined crossovers and mutations mechanism can be flexibly applied to other
integrated problems with some modifications. In our future research, more practical
constraints will be taken into consideration to consummate the P_QYY model, such as
YTs/YCs conflicts, the allocation of storage space, the due date or the ready time of
containers, etc. In addition, the effort on extending our proposed solution method for
integrating problems in other related research fields will be made.
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Appendix A

To be simplicity, a small example is given of which the input data is described in
Tables A1–A3. In this example, 2 QCs, 2 blocks, 2 YTs and 2 YCs are used to finish 4 jobs
and the speeds of YTs and YCs are set to be 1. The average handling time of QCs and YCs
are 60s and 100s, respectively. QCs are numbered as 1, 2 and blocks as 3, 4. Assume that
the chromosome π to be evaluated is the one as shown in Figure A1.

Table A1. Distance matrix for the example problem.

Dmn 1 2 3 4

1 − 100 150 200
2 100 − 200 150
3 150 200 − 100
4 200 150 100 −

Table A2. Assignment of QC and block for each job.

Job i 1 2 3 4

QC(i) 2 1 2 1

B(i) 3 3 4 4

Table A3. The initial position of each YT/YC.

YT 1 YT 2 YC 1 YC 2

Initial position 3 4 4 3
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Based on the fitness evaluation in Section 4.3, the procedure of calculating Cmax is
detailed below.

(1) Initialization

According to Table 3, set pyc[1] = ipc1 = 3, pyc[2] = ipc2 = 4 and pyt[1] = ipt1 = 4,
pyt[2] = ipt2 = 3.

Set fyc[1] = fyc[2] = fyt[1] = fyt[2] = fqc[1] = fqc[2] = ryc[1] = ryc[2] = ryt[1] = ryt[2] = 0

(2) i = 1: π(1)(1) = 2, π(2)(1) = 2, π(3)(1) = 1.

The arrival time of YC 1: ayc[1] = ryc[1] + Dpyc[1],B(2)/1 = 0 + D33 = 0 + 0 = 0
The finish time of YC 1: fyc[1] = ayc[1] + hyc = 0 + 100 = 100
The new position of YC 1: pyc[1] = B(2) = 3
The arrival time of YT 2: ayt[2] = ryt[2] + Dpyt[2],B(2)/1 = 0 + D43 = 0 + 100 = 100
The released time of YC 1: ryc[1] = max{ayt[2], fyc[1]} = max{100, 100} = 100
The finish time of YT 2: fyt[2] = ryc[1] + DB(2)QC(2)/1 = 100 + D31 = 100 + 150 = 250
The new position of YT 2: pyt[2] = QC(2) = 1
The released time of YT 2: ryt[2] = max{ fyt[2], fqc[QC(2)]} = max{ fyt[2], fqc[1]} =

max{250, 0} = 250
The completion time of job 2 and the finish time of QC(2):
c2 = fqc[QC(2)] = fqc[1] = ryt[2] + hqc = 250 + 60 = 310

(3) i = 2: π(1)(2) = 4, π(2)(2) = 1, π(3)(2) = 1.
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The arrival time of YC 1: ayc[1] = ryc[1] + Dpyc[1],B(4)/1 = 100 + D34 = 100 + 100 = 200
The finish time of YC 1: fyc[1] = ayc[1] + hyc = 200 + 100 = 300
The new position of YC 1: pyc[1] = B(4) = 4
The arrival time of YT 1: ayt[1] = ryt[1] + Dpyt[1],B(4)/1 = 0 + D34 = 0 + 100 = 100
The released time of YC 1: ryc[1] = max{ayt[1], fyc[1]} = max{100, 300} = 300
The finish time of YT 1: fyt[1] = ryc[1] + DB(4)QC(4)/1 = 300 + D41 = 300 + 250 = 550
The new position of YT 1: pyt[1] = QC(4) = 1
The released time of YT 1: ryt[1] = max{ fyt[1], fqc[QC(4)]} = max{ fyt[1], fqc[1]} =

max{550, 310} = 550
The completion time of job 4 and the finish time of QC(4):
c4 = fqc[QC(4)] = fqc[1] = ryt[1] + hqc = 550 + 60 = 610

(4) i = 3: π(1)(3) = 1, π(2)(3) = 1, π(3)(3) = 2.

The arrival time of YC 2: ayc[2] = ryc[2] + Dpyc[2],B(1)/1 = 0 + D33 = 0 + 0 = 0
The finish time of YC 2: fyc[2] = ayc[2] + hyc = 0 + 100 = 100
The new position of YC 2: pyc[2] = B(1) = 3
The arrival time of YT 1: ayt[1] = ryt[1] + Dpyt[1],B(1)/1 = 550 + D13 = 550 + 150 = 700
The released time of YC 2: ryc[2] = max{ayt[1], fyc[2]} = max{700, 100} = 700
The finish time of YT 1: fyt[1] = ryc[2] + DB(1)QC(1)/1 = 700 + D32 = 700 + 200 = 900
The new position of YT 1: pyt[1] = QC(1) = 2
The released time of YT 1: ryt[1] = max{ fyt[1], fqc[QC(1)]} = max{ fyt[1], fqc[2]} =

max{900, 0} = 900
The completion time of job 1 and the finish time of QC(1):
c1 = fqc[QC(1)] = fqc[2] = ryt[1] + hqc = 900 + 60 = 960

(5) i = 4: π(1)(4) = 3, π(2)(4) = 2, π(3)(4) = 2.

The arrival time of YC 2: ayc[2] = ryc[2] + Dpyc[2],B(3)/1 = 700 + D34 = 700 + 100 = 800
The finish time of YC 2: fyc[2] = ayc[2] + hyc = 800 + 100 = 900
The new position of YC 2: pyc[2] = B(3) = 4
The arrival time of YT 2: ayt[2] = ryt[2] + Dpyt[2],B(3)/1 = 800 + D14 = 800 + 200 = 1000
The released time of YC 2: ryc[2] = max{ayt[2], fyc[2]} = max{1000, 900} = 1000
The finish time of YT 2: fyt[2] = ryc[2] + DB(3)QC(3)/1 = 1000 + D42 = 1000 + 150 = 1150
The new position of YT 2: pyt[2] = QC(3) = 2
The released time of YT 2: ryt[2] = max{ fyt[2], fqc[QC(3)]} = max{ fyt[2], fqc[2]} =

max{1150, 960} = 1150
The completion time of job 3 and the finish time of QC(3):
c3 = fqc[QC(3)] = fqc[2] = ryt[2] + hqc = 1150 + 60 = 2210

(6) Makespan Cmax = max{cπ(1)(1), cπ(1)(2), cπ(1)(3), cπ(1)(4)} = max{960, 310, 2210, 610} = 2210
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