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Abstract: Cybersecurity continues to be a major issue for all industries engaged in digital activity
given the cyclical surge in security incidents. Since more Internet of Things (IoT) devices are being
used in homes, offices, transportation, healthcare, and other venues, malicious attacks are happening
more frequently. Since distance between IoT as well as fog devices is closer than distance between
IoT devices as well as the cloud, attacks can be quickly detected by integrating fog computing into
IoT. Due to the vast amount of data produced by IoT devices, ML is commonly employed for attack
detection. This research proposes novel technique in cybersecurity-based network traffic analysis
and malicious attack detection using IoT artificial intelligence techniques for a sustainable smart
city. A traffic analysis has been carried out using a kernel quadratic vector discriminant machine
which enhances the data transmission by reducing network traffic. This enhances energy efficiency
with reduced traffic. Then, the malicious attack detection is carried out using adversarial Bayesian
belief networks. The experimental analysis has been carried out in terms of throughput, data traffic
analysis, end-end delay, packet delivery ratio, energy efficiency, and QoS. The proposed technique
attained a throughput of 98%, data traffic analysis of 74%, end-end delay of 45%, packet delivery
ratio of 92%, energy efficiency of 92%, and QoS of 79%.

Keywords: cyber-attack; security; IoT devices; network traffic analysis; malicious attack detection;
artificial intelligence; sustainable smart city

1. Introduction

As physical systems become more interconnected with the internet, they become
vulnerable to cyber-attacks. More than 30 surveys on the cybersecurity issue in CPSs were
published, according to [1] published in 2017. With the rise of automated assaulting tools
and the increased sophistication of cyber-attacks, professional hacking groups have begun
to participate. Successful cyber-attacks could have disastrous, catastrophic, or even lethal
results on a CPS [2]. However, protecting CPSs from cyber-attacks is difficult. The lack
of cybersecurity features such as message authentication in many CPS systems makes it
difficult to determine fraudulent data injection attacks. It is difficult to protect against
eavesdropping assaults due to a lack of universal encryption, especially on systems using
antiquated technologies. To stop replay assaults, it is necessary to refer to system states.
Additionally, the majority of the time, an outdated method used in operation restricts
options for network traffic protection. Considering how the Internet of Things affects our

Sustainability 2023, 15, 6031. https://doi.org/10.3390/su15076031 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15076031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-6116-2132
https://orcid.org/0000-0001-8116-4733
https://orcid.org/0000-0001-6019-7245
https://doi.org/10.3390/su15076031
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15076031?type=check_update&version=1


Sustainability 2023, 15, 6031 2 of 14

daily lives and how swiftly its application areas are growing, it is most likely the greatest
modern invention [3].Deep learning (DL) outperforms conventional machine learning (ML)
solutions in terms of performance. When there is enough information, DL methods nearly
always produce great results. In contrast to other domains such as NLP, image processing,
software vulnerability, and many more [4], DL methods have just recently been used to
address the CPS cybersecurity issue. Additionally, it has been noted that a large number
of DL models have been suggested in recent articles to identify CPS cyber-attacks. The
degree of complexity when superimposing cybersecurity over CPSs was attributed as a
widely recognised explanation for why it is difficult to detect cyber-attacks on CPSs [5].
ML methods are utilised in tasks such as regression as well as classification because they
have the capacity to infer useful knowledge from data produced by humans or machines.
Similarly, ML can be applied to offer security services in an IoT network. ML is being
employed more and more in many applications in the cybersecurity industry and its usage
in attack detection difficulties is becoming a fiercely debated topic [6].

The contribution of this research is as follows:

1. To propose a novel method in cybersecurity-based network traffic analysis and malicious
attack detection using IoT artificial intelligence techniques for a sustainable smart city;

2. The traffic analysis has been carried out using a kernel quadratic vector discriminant
machine which enhances the data transmission by reducing network traffic;

3. The malicious attack detection is carried out using adversarial Bayesian belief networks.

The organization of this article is as follows: Section 2 gives existing technique based on
network traffic and attack detection, Section 3 gives proposed research and its experimental
analysis has been carried out in Section 4. The Section 5 concludes research with future scope.

2. Related Works

There are a few interesting deep learning-based research projects in the cybersecurity
field, despite the fact that deep learning research has currently prospered in fields such
as pattern recognition, image processing, and text processing. The earlier works of [7]
demonstrate that DLNN, either as a standalone method or in combination with optimization
or ML methods [8], can predict assaults with great accuracy. More specifically, [9] integrate
SVMs with ANNs, which dramatically improve detection rates over standalone DL or ML
techniques. In particular, [10] develops hybridization by fusing SVM and ANN, adding
a genetic algorithm (GA) and PSO to that fusion. A 99.3% accuracy rate is achieved by
this hybridization. The man shift technique was tested by [11] using the KDD99 network
traffic dataset to identify network invasion. The mean shift could, according to the authors,
identify an assault in the network dataset. However, user to root (U2R) and remote to local
(R2L) assaults were not picked up by the algorithm.

Serra and others offer a new method for adaptive clustering utilizing GANS, by [12]
introduced ClusterGAN. A network intrusion detection system (NIDS) was created by
Choi et al. using unsupervised learning versus unlabeled data. To identify FDI (False Data
Injection) assaults, work [13] assessed SVM, KNN, and ANN. According to the findings
of their trial, KNN and SVM were more accurate than ANN. A function that maps an
input to an output is learned through supervised learning using examples (labelled data)
of such input-output pairs. By using two open-source NIDS as well as two supervised ML
approaches on backscatter darknet traffic, [14–16] examined the effectiveness of various
supervised ML methods in recognizing cyber-attacks, notably SYN-DOS attacks on IoT
methods. The development of wireless sensor networks (WSN), correspondence innovation,
and IoT innovation was documented by the authors in [17].

IDS-applicable ML methods such KNN, SVM, DT, NB, NN, and RF were used by the
authors of [18]. On the Bot-IoT data collection, the authors compared ML methods for
multi- and binary-class combinations. These models were utilized to determine the F1
score, recall, precision, and accuracy. In [19,20], which compares ML with deep-learning
neural networks using an online dataset, the identification of assaults in FOG design is
investigated. One of the famous location frameworks, Grunt [21], is likewise a mark-based
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framework and utilizations assault signature rules to recognize the digital assaults. They
utilize an example search calculation, called AhoCorasick [22], to conclude the approaching
traffic design as assaults or not. Another location framework, Suricata [23], is a famous
public IDS, completely upholds multithreading engineering, and is more reasonable for
enormous scope network frameworks. The review utilized the Suricata to carry out the
discovery framework on the asset limitation gadget, Raspberry Pi. They expect to recognize
the port checking assault on the IoT climate. Different investigations [24] likewise proposed
the assault discovery framework for the IoT climate, and they zeroed in on port checking,
MITM, DNS store harming, and flood assaults. The review [25] referenced that Grunt is
lighter than Suricata. They likewise proposed the AI-based discovery structure to expand
the Grunt framework. Their outcomes showed that the recognition consequences of their
expansion are superior to the first Grunt. Table 1 shows comparison of energy analysis
with cyber-attack detection.

Table 1. Comparison of existing technique based on energy analysis with cyber-attack detection.

Author Description Dataset ML Algorithm

Work [8]

With the BoT IoT identification dataset being used,
a novel framework model and a hybrid algorithm

have been presented to address the difficulty of
ML algorithms for cyber attacks.

BoT_IoT dataset NB, bayesNEt, DT, RF

Work [9]

This paper suggests two semi-distributed and
distributed approaches that combine high

performance feature extraction and selection with
potential fog-edge coordinated analytics to solve

the drawbacks of centralised IDS for
resource-constrained devices.

AWID dataset SVM

Work [10]

Present an intelligent architecture that combines
CEP and machine learning (ML) to quickly and

accurately identify various IoT security breaches.
In particular, such an architecture may easily

manage event patterns whose criteria depend on
values obtained by ML algorithms.

MQTT regular traffic packets SVR

[11]

Using both datasets and actual network scenarios,
this study examines how well DAS CIDS performs

in the detection and false alarm reduction
categories.

KDD 99 KNN, SVM, RF, DT

[12]

In order to identify and classify malware, IoT
applications’ opcodes are converted into a vector

space and fuzzy and quick fuzzy pattern tree
methods are used.

IoT, Vx-heaven, Kaggle and
ransomware FPT

[14] Offers a new ELM-based ESFCM technique as well
as assault detection based on fog. NSL_KDD Fuzzy C-means algorithm

[15]
Proposes a machine learning (ML) based attack
detection model that can be trained on data and

logs obtained by PMUs for use in power systems.
ICS cyber-attack datasets KNN, SVM, DT, RF, XG boost

[16] Using several ML techniques, anomaly and attack
detection in IoT sensor data was compared.

Kaggle, message queuing telemetry
transport (MQTT) protocol LR, SVM, DT, RF

[17]

The authors suggest a network-centric,
behavior-based anomaly detection approach for

safeguarding IoT environments, where
predictability of TCP traffic from IoT devices may
be leveraged to quickly identify different DDoS
attacks using unsupervised machine learning.

IoT traffic SVM

3. System Model

This section discusses a novel technique in cybersecurity-based network traffic analysis
and malicious attack detection using IoT artificial intelligence techniques for a sustainable
smart city. The traffic analysis has been carried out using a kernel quadratic vector discriminant
machine which enhances the data transmission by reducing network traffic. This enhances
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the energy efficiency with reduced traffic. Then, the malicious attack detection is carried out
using adversarial Bayesian belief networks. The proposed model is shown in Figure 1.
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Pre-processing data transformation techniques are utilized to transform a dataset into
an ML-friendly structure. This step of cleaning the dataset also makes it more effective by
getting rid of bad or unnecessary data that could make the accuracy of the dataset worse.

3.1. Kernel Quadratic Vector Discriminant Machine Based Traffic Analysis

Finding a separation surface to accurately separate two classes of data from a given
dataset is the aim of binary classification. Data collection with two classes is mathematically
denoted for any binary classification issue by Equation (1).

D =

{(
x(i), y(i)

)
i=1,··· ,N

| x(i) ∈ Rn, y(i) ∈ {−1, 1}
}

(1)

Noting that N = N+ + N, denote their respective cardinalities as N+ and N. We assume
that M+ and M are both nonempty in this article. To truly segregate the data using a
classifier is the aim of binary classification. If u∈Rn and d∈R exist and are such that a
dataset D can be linearly separated, then by Equation (2).

uTx(i) + d > 0
(
i ∈ M+

)
, uTx(i) + d < 0,

(
i ∈ M−) (2)

The goal of SVM is to maximise the margin of separation when separating a given
linearly separable dataset D by a hyperplane. If you use the notation f(x) = uTxdx + d for
separation function, the width of the margin is equal to 2

‖u‖2
. The soft-margin idea is used

if dataset D is not linearly separable by introducing slack vector ξ = [ξ1,...,ξN ] T ∈ RN to
permit placement of points to violate constraints by Equation (3).

min
1
2
‖ u ‖2

2 +C ∑N
i=1 ξi (3)

We develop the following optimization job, where C > 0 is penalty parameter for data
points to create ideal hyperplane w ×·φ(x) + b = 0 by Equation (4).

minw,b,εi

1
2
(w·w) + C ∑n

i=1 εi (4)
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Hence, the trade-off between ww2 and ∑n
i=1εi is determined by the constant C and the

slack variable εi. The aforementioned optimization issue is similar to the following under
KKT conditions by Equation (5):

min
1
2 ∑n

i,j=1 aiajyiyjK
(
xi, xj

)
−∑n

i=1 ai (5)

where K(xi, xj) = φ(xi) · φ(xj) is an inner product in feature space. We are able to get w and
b by resolving the previous issue. The decision function is then expressed as Equation (6):

f (x, w, b) = sgn (w·φ(x) + b) = sgn
(
∑n

i=1 aiyiK(xi, x) + b
)

(6)

The unseen sample x is assigned to Class 1 if f(x, w, b) is positive; else, x is assigned
to Class 1. We can see that in the case of SVM, the dual issue and the decision function
are just wholly linked to the kernel of samples. Both histograms have m bins, and the jbth

bin is represented by x1jb and x2jb for jb = 1, . . . , m. In the event when x1 and x2 are both
N pixels in size, we have ∑∑m

jb=1 x1jb = N and ∑m
jb=1 x2jb = N. The following equation is

used to determine the histogram intersection by Equation (7):

KHIK(x1, x2) = ∑m
jb=1 min

{
x1jb , x2jb

}
(7)

The Hellinger’s kernel x1 and x2, the χ2 kernel are calculated as Equations (8) and (9).

Kχ2(x1, x2) = ∑m
jb=1

(
x1jb − x2jb

)2

x1jb + x2jb
(8)

KH(x1, x1) = ∑m
jb=1

√
x1jb x2jb (9)

The single-kernel SVM model FSK is written as follows, given a set of samples {xi, yi}
Ni=1 where xi is input vector and yi is its class label by Equation (10):

fSK(x) =
N

∑
i=1

αik(xi, x) + b (10)

where (α1, ..., αN) is weight vector, k(·) is kernel function, and b is bias. To implement
SVM, many kernel functions are used. The global kernel as well as local kernel are two
categories for these kernel functions with various characteristics. High-frequency time series
demand a local kernel function with strong local learning capabilities. On the other hand,
low-frequency time series demand a global kernel function with strong global learning
capabilities. The properties of the data time series are taken into account when choosing
the appropriate kernel function. The model’s capacity for prediction can be increased by
picking the right kernel function. Gaussian kernel kGAU , polynomial kernel kPOL, and linear
kernel kLIN are some of several kernel functions by Equations (11) and (12):

kUN
(
xi, xj

)
=
〈

xi, xj
〉

(11)

kPOL
(
xi, xj

)
=
(〈

xi, xj
〉
+ 1
)q

q is natural number.

kGAU
(
xi, xj

)
= exp

(
−‖ xi − xj ‖2

2
2s2

)
, s > 0 (12)

Different learning capacities exist among these three categories of kernel functions.
The ACF can reflect the lag, which is typically present in time series forecasting. In
contrast to high-frequency time series, low-frequency time series have a different lag. In
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general, as frequency rises, a time series’ decomposed component’s time lag shortens. More
complex time series with short lags call for methods with high local learning capabilities.
On the other hand, time series with significant lags call for models with robust global
learning capabilities.

Sb null space’s low-dimensional complement space, designated B, is first obtained.
Assuming that Sb and Sw are the scatter matrices between and within classes, respectively.
Let Vb be the M eigenvectors of Sb that correspond to M non-zero eigenvalues = [b1, ..., bM]
and M = min(C 1, J). As a result, Vb extends across the Sb subspace B and is scaled by
U = Vb1/2 b to produce UTSbU = I, where I denotes the identity matrix (M M) and b = diag()
denotes the diagonalization operator. To obtain the relevant feature representations, all
training samples zij are first projected into the subspace spanned by U, where yij is the
feature representation of zij in the subspace B. This prepares all training samples zij for
QDA in B by Equation (13).

Σ̂i(α, γ) =

[
(1− γ)L̂i(α) +

7
M

trΣ̂i(α)

]
I (13)

where the prior probability for class i is πi = Ci/N. The suggested approach entails
minimising a multivariate quadratic function subject to linear constraints in the manner
described Equations (14)–(16).

minx
1
2

xTQx− FTx (14)

stxi ≥ 0∀i = 1 . . . M (15)

‖ x ‖1= 1 (16)

where x is a d-dimensional vector, Q is a symmetric positive semidefinite matrix, and F
is an entry-free vector in R d. Redundancy among variables is represented by Q, and F
gauges how closely each feature is related to the target class (relevance). We decided to
normalise each feature’s contribution because the components of the solution vector x∗
represent the weight of each feature as shown in Equation (17).

δ(x) = xT
(
∑1 −∑2

)−1
x + 2

(
∑−1

2 µ2 −∑−1
1 µ1

)T
x (17)

3.2. Adversarial Bayesian Belief Networks Based Malicious Attack Detection

To drive the error into the
(
O(ε) + 2naσ2

µ

)
neighbourhood of the optimum7, α or to

achieve by Equation (18), let us identify the parameters p that lead to the fastest rate.

E
[
‖ xk − x(λ) ‖2] ≤ ε‖ x0 − x(λ) ‖2

+
2maσ2

µ
(18)

The parameter p∗ = λ
L+λ reduces the predicted number of communications for attain-

ing as well as the number of repetitions. For example, the ideal number of iterations is
2 L+λ

µ log 1
ε , and the ideal number of communications to expect is 2λ

λ+L
L
µ log 1

ε . We employ
the relativistic average discriminator DRa to render the output image virtually identical to
the original. Equation (19) represents the objective functions.

LRa−D = −EX [log(DRa(x))]−Ex,λ,[log(1− DRa(G(x, v, c)))] (19)

The likelihood that the produced image is more real than the real image can be
maximised by minimising the loss LRa−D. We subject the generator to a cycle consistency
loss, denoted by Equation (20):

Lcyc = Ex,p,∈[‖ x− G(G(x, v, c), v, 1− c) ‖1] (20)
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The source of the image is then determined by layering an auxiliary classifier called
Dind on top of the discriminator network. The following paired adversarial loss by
Equation (21) is included to further ensure fitting of picture translation method:

Lpis = −Ex0,,xv

[
log
(

Dpis(x0,xv)
)]
−Ex,0, f

[
log
(
1− Dpis (x, G(x, v, c))

)]
(21)

Dpis is employed in this situation to determine whether two photos belong to the same
class. Our objective is to remove variation v from input image xv using operation (v, c = 10).
To accomplish this, we layer an additional classifier called Dvar on top of discriminator
network to identify various types of variation in images. Classification loss during training
discriminator network is as Equation (22):

Lτ
our = −Ex,p[log(Dvar (v | x))] (22)

Discriminator network may categorise real image x into variant type v by minimizing
the aforementioned formula. The following Equation (23) is utilized to represent the final
output image,

xout = x +
(

x f − x
)
� xm (23)

element-wise product is � located where. The following equation is added for the mask
xm (24):

Lmask =

(
1

W ∑k |xm|k ‖
)2

(24)

where W is number of pixels and xm|k| is k-th pixel of xm. The formula shown above
promotes minimising alterations to the source image. For computing unbiased estimates of,
L, with one w.r.t. p under reparameterization ELBO is equivalent to (25):

Lθ,φ(x) = Eqφ(z|x)
[
log pθ(x, z)− log qφ(z | x)

]
(25)

where z = g(ε,φ, x). As a result, using a single noise sample obtained ε from p(ε) by
Equations (26)–(28), we may create a straightforward Monte Carlo estimate L̃θ,φ(x) of
individual data point ELBO.

ε ∼ p(ε) (26)

z = g(φ, x,ε) (27)

L̃θ,φ(x) = log pθ(x, z)− log qφ(z | x) (28)

As a result, a structural learning strategy can be used to reduce the maximum in-
degree. In practice, we examine the following equation’s result: (29) Gi optimization to
minimize specific class-to-feature arcs:

G*
i = argmaxGi⊂G⊂Gi logP(G | D) (29)

where it should be intended for sets of graphs to include one another in the arcs space, and
by Equation (30):

logP(G | D) = ∑n
i=1 ψa[Ci, Pa(Ci)] + ∑m

j=1 ψα

[
Fj, Pa

(
Fj
)]

(30)

according to G, Pa
(

Fj
)

denotes Fj parents, whereas Pa(Ci) denotes Ci parents. Additionally,
a BDEu score with the same sample size is available, where the first sum includes all of
its parent states and the second sum includes all of Fj possible states. Additionally, the
number of records required to ensure that Fj is in its kth state and that its parents are in
their ith configuration is Nji, which is equal to PkNjik. This indicates that the first sum on
the right side remains constant. Therefore, the optimization in (31) can be achieved by
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only considering the features. A feature’s parents set can be chosen from any subset of C,
reducing the problem to m separate local optimizations. G asserts that Fj parents are in fact.

CFj = argPa(Fj)⊆Cψa
[
Fj, Pa

(
Fj
)]

(31)

Bipartite separation of class events and features makes this possible for each time
j = 1, but directed cycles are typically found in a graph that maximizes all local scores.
Assume that k is number of mixture components, that X is set of query variables, that Z is
other variables, and that is the number. By equating C and Z, we can determine marginal
distribution of X (32):

P(X = x) =
k

∑
c=1

∑
z

P(C = c, X = x, Z = z) (32)

where previous equality holds true because, for any j, j 1 zj P c z. As a result, it is straight-
forward to disregard non-query variables Z when calculating P(X = x), and regardless of
|Z|, the calculation of P(X = x) takes O(|X|k). In contrast, Bayesian network inference is
worst-case exponential in |Z|. By Equation (33), the visible unit x and the hidden layers of
length l make up the joint distribution.

p
(

x, h1, · · · , hl
)
= p

(
hl−1, hl

)(l−2

∏
k=1

p
(

hk | hk+1
))

p
(

x | h1
)

(33)

min
θL ,θDBN

1
|D|

|D|

∑
i=1

[
−ρlogp

(
x(i); θDBN

)
(34)

Remember that layer-wise updating necessitates fixing every problem from the bottom
hidden layer to the top visible layer. The following optimization issue is fixed by Equation
(35) for the fine-tuning phase.

min
θL ,θDBN

1
|D|

|D|

∑
i=1

[
L
(

θL; y(i), h
(

x(i)
))
− ρlogp

(
x(i); θDBN

)]
(35)

where the classifier’s parameters are, L() is a loss function, and h denotes the final hidden

features at layer l. For the sake of simplicity, we will set
.

h
(

x(i)
)
= h

(
x(i)l
)

. We first aggre-
gate training and fine-tuning goals using a simple model. The model’s definition(DBN+loss)
is given by Equation (36),

minθL ,θDBN Ey,x[L(θL; y, h(x))] + ρEx[−logp(x; θDBN)] (36)

based on training samples D, and experimentally by Equation (37),

min
θL ,θDBN

1
|D|

|D|

∑
i=1

[
L
(

θL; y(i), h
(

x(i)
))
− ρlogp

(
x(i); θDBN

)]
(37)

where the underlying parameters are θL, θDBN . We initially develop an anticipated loss
model using the conditional distribution p(h|x) generated by DBN. This paradigm is
used to classify the hidden space. Because it reduces the expected loss, it should be more
dependable and, as a result, produce better accuracy on data that has not been observed.
The attack detection model is given by Figure 2.



Sustainability 2023, 15, 6031 9 of 14
Sustainability 2023, 15, x FOR PEER REVIEW 10 of 16 
 

 

Figure 2.Architecture of proposed attack system. 

4. Experimental Analysis 

On a server running a 32-bit operating system at 2.80 GHz, a Core E7400 processor, 

3.00 GB of RAM, and the proposed architecture with fog and cloud nodes are tested. 

Dataset description: Although many of those datasets are still kept private, mostly 

for security reasons, some of them, such DARPA 98, KDD99, and UNSW-NB15, are now 

open to the public. Although many datasets have been created, there have not been many 

realistic IoT and network traffic datasets that incorporate fresh Botnet instances. What is 

more, some databases do not include IoT-generated traffic, and others do not add any 

new features. 

A set of examples used to adjust a classifier’s hyperparameters, or architecture, is 

called a validation dataset. Development set or “dev set” are other names for it. For arti-

ficial neural networks, number of hidden units in each layer is an example of a hy-

perparameter. The hyperparameter tuning process makes use of the validation set. The 

best model is ultimately evaluated using the test set. If hyperparameter tuning is not 

going to be carried out, then the validation set is redundant and not required. 

Table 2 analysis is based on various malicious attack datasets. Here, the datasets 

analysed are DARPA 98, KDD99,UNSW-NB15 dataset. The parametric analysis is carried 

out in terms of throughput, data traffic analysis, end-end delay, packet delivery ratio, 

energy efficiency, and QoS. 

Table 2.Analysis based on various malicious attack datasets. 

Dataset Techniques Throughput 

Data 

Traffic 

Analysis 

End-En

d 

Delay 

PDR 
Energy 

Efficiency 
QoS 

DARPA 

98 
SVM 89 59 45 81 82 71 

 SYN-DOS 92 62 44 83 85 75 

 CS_NTA_MADML 93 63 42 85 88 77 

KDD99 SVM 92 65 48 82 89 72 

Figure 2. Architecture of proposed attack system.

4. Experimental Analysis

On a server running a 32-bit operating system at 2.80 GHz, a Core E7400 processor,
3.00 GB of RAM, and the proposed architecture with fog and cloud nodes are tested.

Dataset description: Although many of those datasets are still kept private, mostly for
security reasons, some of them, such DARPA 98, KDD99, and UNSW-NB15, are now open to
the public. Although many datasets have been created, there have not been many realistic
IoT and network traffic datasets that incorporate fresh Botnet instances. What is more, some
databases do not include IoT-generated traffic, and others do not add any new features.

A set of examples used to adjust a classifier’s hyperparameters, or architecture, is
called a validation dataset. Development set or “dev set” are other names for it. For artificial
neural networks, number of hidden units in each layer is an example of a hyperparameter.
The hyperparameter tuning process makes use of the validation set. The best model is
ultimately evaluated using the test set. If hyperparameter tuning is not going to be carried
out, then the validation set is redundant and not required.

Table 2 analysis is based on various malicious attack datasets. Here, the datasets
analysed are DARPA 98, KDD99,UNSW-NB15 dataset. The parametric analysis is carried
out in terms of throughput, data traffic analysis, end-end delay, packet delivery ratio,
energy efficiency, and QoS.

Table 2. Analysis based on various malicious attack datasets.

Dataset Techniques Throughput Data Traffic Analysis End-End Delay PDR Energy Efficiency QoS

DARPA 98 SVM 89 59 45 81 82 71

SYN-DOS 92 62 44 83 85 75

CS_NTA_MADML 93 63 42 85 88 77

KDD99 SVM 92 65 48 82 89 72

SYN-DOS 94 68 46 84 92 74

CS_NTA_MADML 96 72 44 86 93 76

UNSW-NB15 SVM 95 58 52 85 85 75

SYN-DOS 96 72 50 88 88 77

CS_NTA_MADML 98 74 45 92 92 79
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The Figure 3a–f shows the analysis for DARPA 98 dataset. The proposed technique
attained throughput of 93%, data traffic analysis of 63%, end-end delay of 42%, packet
delivery ratio of 85%, energy efficiency of 88%, QoS of 77%; existing SVM attained through-
put of 89%, data traffic analysis of 59%, end-end delay of 45%, packet delivery ratio of
81%, energy efficiency of 82%, QoS of 71%; and SYN-DOS attained throughput of 92%,
data traffic analysis of 62%, end-end delay of 44%, packet delivery ratio of 83%, energy
efficiency of 85%, QoS of 75%.
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The Figure 4a–f shows a KDD99 dataset based comparative analysis between the
proposed and existing techniques. The proposed technique attained throughput of 96%,
data traffic analysis of 72%, end-end delay of 44%, packet delivery ratio of 86%, energy
efficiency of 93%, QoS of 76%; existing SVM attained throughput of 92%, data traffic
analysis of 65%, end-end delay of 48%, packet delivery ratio of 82%, energy efficiency of
89%, QoS of 72%; and SYN-DOS attained throughput of 94%, data traffic analysis of 68%,
end-end delay of 46%, packet delivery ratio of 84%, energy efficiency of 92%, QoS of 74%.
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The Figure 5a–f analysis for UNSW-NB15 dataset. The proposed technique attained
throughput of 98%, data traffic analysis of 74%, end-end delay of 45%, packet delivery
ratio of 92%, energy efficiency of 92%, and QoS of 79%; existing SVM attained throughput
of 95%, data traffic analysis of 58%, end-end delay of 52%, packet delivery ratio of 85%,
energy efficiency of 85%, and QoS of 75%; and SYN-DOS attained throughput of 96%, data
traffic analysis of 72%, end-end delay of 50%, packet delivery ratio of 88%, energy efficiency
of 88%, QoS of 79%.
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5. Discussion

Different combinations of features are obtained when cyber virus attacks are detected
utilising network traffic features and neural networks. For the purpose of learning, this
study employs a dataset containing 442,240 data points that combines existing datasets with
the findings of laboratory trials. It is advised that malware in IoT devices be detected using
the current neural network model. With a lower false alarm rate, the system can identify
aberrant network activity and create alarms for it. We evaluated the binary categorization
of network traffic using the DARPA 98, KDD 99, and UNSW-NB15 datasets. The outcomes
demonstrated that association rule-based filtering might significantly increase the system’s
detection precision. In addition, our detection method performed well in an experimental
setting with multiple classes. In terms of detection results, this two-level detection system
that first classifies and then filters network traffic provides higher precision and fewer
false positives.

6. Conclusions

This research proposes a novel method in cybersecurity based on IoT artificial intelli-
gence techniques for a sustainable smart city. A traffic analysis has been carried out using a
kernel quadratic vector discriminant machine which enhances the data transmission by
reducing network traffic and the malicious attack detection is carried out using adversarial
Bayesian belief networks. The proposed technique attained throughput of 98%, data traffic
analysis of 74%, end-end delay of 45%, packet delivery ratio of 92%, energy efficiency of
92%, and QoS of 79%.A deep neural network’s structure still has a lot of space for improve-
ment, and future work can solve the difficulty of boosting precision while maintaining
recall. The proposed method will be expanded in the future to incorporate information
from other attack kinds and sources to improve its capacity for making decisions and to
counter future attempts. Studying a network evolutionary algorithm, such as the imperi-
alist competitive algorithm, is thought to be of utmost importance for future research on
complementing the proposed technique.
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Notations

List of Notations Used Meaning
Rn Feature space
γ Class label set
C Base classifier
H Proposed classifier
η Number of training examples
DT = {Pi, Yi}n

i=1(Pi ∈ Rn, Yi ∈ γ) Training dataset
K Divide DT into K equal parts subset
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