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Abstract: By constructing a translogarithmic stochastic frontier production model, this study explores
the total factor productivity (TFP) of service-oriented manufacturing in 30 provinces in China during
2004–2020. We carried out decomposition analysis to understand in greater depth the potential drivers
of TFP growth. The results show that the overall TFP of service-oriented manufacturing continuously
improved during the sample period; however, the overall growth rate showed a significant slowing
trend, and the contribution of TFP growth to output growth is still low. The industrial growth of
service-oriented manufacturing is mainly driven by capital input, and the transformation of its growth
mode from extensive to intensive has not yet been realized. Furthermore, there exists significant
regional and sub-sectoral heterogeneity in the TFP growth of the industry. The decomposition of
TFP growth shows that technological progress and technical efficiency are the main sources of TFP
growth, but the growth rate of technological progress is declining gradually, and its driving effect on
TFP is weakening. The deterioration of both scale and allocation efficiency hinders the improvement
of TFP in service-oriented manufacturing, and there is still room for the industry to improve its TFP
level by improving scale efficiency and allocation efficiency.

Keywords: TFP growth; service-oriented manufacturing; stochastic frontier analysis; decomposition analysis

1. Introduction

With the intensification of international competition, China’s manufacturing indus-
try is facing increasing pressure to undertake structural transformation and upgrading.
The original competitive advantages of the manufacturing industry have been weakened,
and the traditional simple production mode can no longer meet the requirements of the
internationalization of the manufacturing industry. The necessity of accelerating the trans-
formation and upgrading of the manufacturing industry is becoming increasingly pressing.

As a new manufacturing paradigm integrating “products + service”, service-oriented
manufacturing is an effective way to achieve the innovative, cost-effective, and high-quality
development of the manufacturing industry, and to help manufacturing enterprises form
new competitive advantages in the international market [1]. Advanced manufacturing
countries, such as the United States and Germany, have already realized the servitization of
their manufacturing industries, which is a powerful trend in the development of the global
manufacturing industry [2]. To accelerate the transformation and upgrading of China’s
manufacturing industry, the Chinese government put forward the “Made in 2025” plan
in 2015, which clearly indicates that the development of service-oriented manufacturing
should be accelerated, driving the manufacturing industry to achieve the specialization and
high-end extension of the global value chain. Subsequently, in July 2016, the Chinese Min-
istry of Industry and Information Technology and the National Development and Reform
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Commission jointly formulated and issued the “Special Action Guide for the Development
of Service-oriented Manufacturing in China (2016–2018)”, which further emphasizes the
development of service-oriented manufacturing and plays an important guiding role in
promoting the development of each region’s service-oriented manufacturing.

Compared with the traditional simple production mode, service-oriented manufactur-
ing integrates the production-based economy and consumption-based service economy
and can better meet the needs of customers in an all-round way [3]. It improves the person-
alized production and services of enterprises, enhances their competitiveness, and extends
to two ends of the “smile curve”: that is, moving in the direction of high-added value
through service investment or R&D innovation and creating more economic profits and
a higher market share [4]. Furthermore, service-oriented manufacturing can overcome
the problems of low-level repetitive construction and overcapacity that are experienced
in the traditional manufacturing industry and guide the manufacturing industry to a new
industrial production mode oriented around differentiation, diversification, and service
efficiency [5]. Due to these clear advantages, it has attracted increasing attention from both
scholars and entrepreneurs all around the world. Many theoretical and technical studies
have been conducted on service-oriented manufacturing from different perspectives [6–9];
however, few studies have focused on the total factor productivity (TFP) of service-oriented
manufacturing, especially in the context of China, the largest manufacturing country in
the world.

Furthermore, to date, many scholars have proposed different methods and models
for the measurement of TFP growth [10–14]. However, there are still some research gaps
in this academic field. First, most of the studies adopt data envelopment analysis (DEA)
for the measurement of TFP growth in China; however, the DEA method requires the
construction of a production frontier for each cycle of the panel data, which requires high
data accuracy [15] and is easily affected by sample outliers [16]. Moreover, since China
is currently undergoing a rapid economic transition and is affected by some imperfectly
controllable factors, such as institutional transitions and the international market environ-
ment, there are inevitably random disturbances and unobservable factors involved in the
process of economic growth [17]. Therefore, a DEA method with deterministic boundaries
may not be fully applicable to the TFP problem in China. Second, although a few studies
have tried to evaluate TFP performance by utilizing stochastic frontier analysis (SFA), the
frontier production function of these studies takes the Cobb–Douglas (C-D) form, and the
assumptions of constant substitution elasticity and neutral technological progress are often
too harsh, which may cause model missetting [18]. Third, the existing literature considers
only two aspects of the decomposition of TFP growth: technological progress and efficiency
changes. However, in a transition economy such as China, due to the imperfection of the
factor market, the industrial sector has much more room to improve productivity through
factor reallocation and scale adjustment than in mature economies [19]. Therefore, it is
necessary to take factor allocation and the scale adjustment effect into account when ana-
lyzing the sources of TFP changes. Nevertheless, the existing literature often ignores these
two aspects.

Accordingly, this study aims to make marginal contributions to the existing literature
in the following three areas. First, following the work of Solow [20] and Kumbhakar
et al. [21], we constructed a translogarithmic stochastic frontier production function, which
has obvious advantages over the DEA method when dealing with statistical noise and the
heterogeneity of reaction technology. We use this to assess the TFP performance of service-
oriented manufacturing in China for the first time. Second, regarding the shortcomings of
the C-D production function in TFP measurement, the translogarithmic stochastic frontier
production function effectively addresses the binding of the functional form through a series
of strict hypothesis tests and selects the most appropriate model for the TFP evaluation
of China’s service-oriented manufacturing. Third, unlike previous studies that consider
only the two sources of TFP growth (i.e., technological progress and efficiency change),
this study further decomposed TFP growth into four components: the factor allocation
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efficiency change, the scale efficiency change, technological progress, and the technical
efficiency change. We analyzed the dynamic impacts of each component on TFP growth
from the national, regional, and sectoral perspectives. A comprehensive consideration
of the decomposition factors of TFP will help us to have a deeper understanding of the
driving factors behind the growth of TFP, so as to formulate more specific and targeted
policies to promote the growth of TFP in service-oriented manufacturing. Accordingly,
this study has important practical significance. It allows for a deeper understanding of
the dynamic evolution trend of TFP growth in China’s service-oriented manufacturing
industry and enables us to explore the potential drivers of TFP change and the reasons for
the unbalanced development of service-oriented manufacturing between different regions
and sub-sectors.

The remainder of the study is arranged as follows. Section 2 comprises a review of
the related literature, and Section 3 presents the materials and methods. In Section 4, we
carry out model hypothesis testing and analysis. Section 5 presents the empirical results
and offers further discussion. In the last section, the research conclusions and policy
implications are provided.

2. Literature Review
2.1. Overview of Service-Oriented Manufacturing

The research on service-oriented manufacturing can be considered an extension of
the study of the manufacturing industry and the service industry. Vandermerwe and
Rada [22] first proposed that service-oriented manufacturing is a new mode in which
manufacturing enterprises can add value to their products by providing customers with a
full range of services through continuous technological innovation and service extension
that meet customers’ individual needs. The research findings of Bathla [23] indicate that,
with the expansion of the economic scale of the manufacturing sector, the demand for
services will increase, and the interdependence of services and manufacturing will increase
the productivity of service-oriented manufacturing. These viewpoints are supported by
the work of Baines, et al. [24], who concluded that the adoption of service-integrated
manufacturing strategies is effective not only in gaining customer acceptance but also in
increasing revenue and reducing the cost of organizational change. Furthermore, another
strand of the literature explored the key factors that facilitate the development of service-
oriented manufacturing. For example, by studying Finland’s manufacturing industry and
service industry, Leiponen [25] found that research and development (R&D) can play a
major intermediary role in promoting the integrated development of the service industry
and the manufacturing industry. The research results of Lightfoot, et al. [26], show that the
widespread application of information and communication technologies (ICTs) accelerates
the integration of the manufacturing and service industries. In addition, a growing number
of technical studies have also focused on service-oriented manufacturing in terms of
system designs [1,27], supply chain management [6,8], key technologies [28,29], pricing
strategies [30,31], outsourcing of maintenance services [3,5], customer impact [4,32], etc.
However, there are few quantitative analyses of service-oriented manufacturing. Notably,
no studies have assessed the total factor productivity of service-oriented manufacturing to
date, even for China, the largest manufacturing country in the world.

2.2. Total Factor Productivity Measurement

Total factor productivity (TFP), also known as the “Solow residual”, was first proposed
by Solow [20]. It refers to the increase in output caused by technological progress and
capability realization beyond the input of various factors (such as capital and labor); it is
the residual obtained after excluding the contribution of factor inputs. In the literature,
there are three methods commonly used to estimate the TFP: Solow residual analysis (SRA),
data envelopment analysis (DEA), and stochastic frontier analysis (SFA). The traditional
SRA method assumes that the economic entity is technically effective; that is, the economic
entity under study is at the level of the optimum technological frontier of the production



Sustainability 2023, 15, 6027 4 of 20

function [13]. However, as elements such as the market environment, technological level,
and social institutions of most developing countries are imperfect and still need to be
improved [33], it is difficult for these countries to meet the requirements of economic
entities being at the forefront of technology [34]. For this reason, the SRA approach is not
applicable to China, which is currently undergoing rapid economic transition. With respect
to the DEA method, it evaluates the relative effectiveness of multiple inputs and outputs
of decision-making units at the same time [35]. It has the advantages of dimensional
processing and not needing to set a production function form [36]. However, this approach
has some limitations; it requires the construction of a production frontier for each cycle
of the panel data, which requires highly accurate data, and it is easily affected by sample
outliers [18]. Furthermore, since China is currently undergoing a rapid economic transition
and is affected by some imperfectly controllable factors, such as institutional transition
and the international market environment, there are inevitably random disturbances and
unobservable factors involved in the economic growth process [17,37]. Therefore, a DEA
method with deterministic boundaries may not be fully applicable to the TFP of China.
Unlike the SRA and DEA approaches, the SFA method requires the setting of a production
function while allowing for the existence of error terms; additionally, it constructs one
production front for the whole of the sample data, which is helpful for weakening the
influence of abnormal data on the overall estimation results, reducing errors [38]. Because
of these advantages, it has recently been endorsed by various scholars. For example,
Rawat and Sharma [39] measured the TFP growth of the Indian manufacturing industry
by employing the SFA approach and decomposed it into technical change and efficiency
improvement. Based on the same method, Baležentis and Sun [40] explored the TFP growth
of the Lithuanian dairy sector and found that the industry maintained an average annual
TFP growth of 2%; additionally, the main sources of TFP growth were technical change and
scale efficiency improvements. Although these studies attempted to calculate TFP growth
based on the SFA approach, the frontier production function of these studies takes the
Cobb–Douglas (C-D) form and the assumptions of constant substitution elasticity and neutral
technological progress are often too harsh [41,42], which may cause model missetting [14,43].
Furthermore, the decomposition of TFP growth in these studies accounts for only two
aspects: technological progress and efficiency changes. However, in a transition economy
such as China’s, due to the imperfection of the factor market, the industrial sector has much
more room to improve productivity through factor reallocation and scale adjustment than
in mature economies [44,45]. Therefore, it is necessary to take factor allocation and scale
adjustment effect into account when analyzing the sources of TFP changes. Nevertheless,
the existing literature often ignores these two aspects.

3. Materials and Methods
3.1. Model Setting

As discussed in Section 2.2, this study employs the SFA method to measure the
total factor productivity (TFP) growth of China’s service-oriented manufacturing industry.
According to the work of Aigner, et al. [38], we assume that the form of the stochastic
frontier production function is as follows:

yit = f (xit, t; β) exp(vit − uit) (1)

where yit indicates the output value of region (or industry) i in year t; xit refers to the
factor input of region (or industry) i in year t; and β is the parameter to be estimated in the
production function. The optimal output frontier of the production function is f (xit, t; β).
The random disturbance term includes the following two terms: vit and uit. Specifically, vit
is a general disturbance term composed of the measurement error or other uncontrollable
random factors, subject to the distribution of iidN

(
0, σ2

v
)
, and uit is the technical ineffi-

ciency term. These two disturbance terms are independent of each other. Furthermore,
TEit = exp(−uit) represents the technical efficiency, which measures the distance between
the actual output caused by production inefficiency and the production front.
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We construct the following translogarithmic stochastic frontier production function by
taking the logarithm of Equation (1):

ln yit = α0 +
2

∑
j=1

αj ln xitj +
1
2

2

∑
j=1

2

∑
i=1

αjl ln xitj ln xlit + β1t +
1
2

β2t2 +
2

∑
j=1

ρjt ln xitj + vit − uit (2)

where xitj and xitl denote the j and l input factors of region (or industry) i in year t,
representing capital and labor, respectively. t is the time trend variable that represents
the technological change. In Equation (2), the cross term (i.e., tlnxitj) of the time trend
and factor input is introduced to represent the possible non-neutral technological progress
in production.

The technical inefficiency term (i.e., uit) can be expressed as follows by referring to the
work of Battese and Coelli [46]:

uit = uiηit = ui exp[−η(t− T)] (3)

where ui follows a non-negative truncated normal distribution N+
(
µ, σ2

u
)
. η represents the

change rate of the technical efficiency index; if η > 0, it indicates that technical efficiency
is improving over time, and if η < 0, it indicates the deterioration of technical efficiency.
Meanwhile, η = 0 indicates that the technical efficiency does not change over time.

The maximum likelihood (ML) approach is employed to jointly estimate the param-
eters of the stochastic frontier model determined by Equations (2) and (3). The variance
parameters in the likelihood function can be constructed as follows:

γ = σ2
u/σ2 (4)

σ2 = σ2
u + σ2

y (5)

We separate the estimated value of the technical inefficiency term from the composite
error (eit = vit − uit) by following the work of Jondrow, et al. [47]:

ûit = E[uit|eit ] = E[uitηit|eit ] = E[ui|ei ]ηit =[u∗i + σ∗i
Φ(−µ∗i /σ∗i )

Φ(µ∗i /σ∗i )
] exp[−η(t− T)] (6)

µ∗i =
µσ2

v − σ2
u∑T

1 ηiteit

σ2
v + σ2

u∑T
1 η2

it
=

µ(1− γ)− γ∑T
1 ηiteit

(1− γ) + γ∑T
1 η2

it
(7)

σ∗i
2
=

σ2
v σ2

u

σ2
v + σ2

u∑T
1 η2

it
=

(1− γ)γσ2

(1− γ) + γ∑T
1 η2

it
(8)

Therefore, the estimated technical efficiency of region (or industry) i in year t can be
expressed as

TEit = E[exp(−uit)|eit ] =
Φ(µ∗i /σ∗i − ηitσ

∗
i )

Φ(µ∗i /σ∗i )
exp(−ηitu∗i +

1
2

η2
itσ
∗2

i ) (9)

Combined with the two main input factors in this study (i.e., capital (K) and labor
(L)), the specific form of the translogarithmic stochastic frontier production function can be
represented as follows:

ln yit = β0 + βK ln Kit + βL ln Lit + βTt + 1
2 βKK(ln Kit)

2 + 1
2 βLL(ln Lit)

2

+βKL ln Kit ln Lit +
1
2 βTTt2 + βTKt ln Kit + βTLt ln Lit + vit − uit

(10)

To test the rationality and feasibility of the translogarithmic stochastic frontier model
selected in this study, we proposed the following hypotheses:



Sustainability 2023, 15, 6027 6 of 20

(i) H0 : βKK = βLL = βKL = βTT = βTK = βTL = 0; this means that the frontier produc-
tion function should be in the form of the Cobb–Douglas (C-D) production function.

(ii) H0 : βT = βTT = βTK = βTL = 0; that is, there is no technological progress.
(iii) H0 : βTK = βTL = 0; this indicates that technological progress is Hicks-neutral.
(iv) H0 : γ = η = µ = 0; that is, there is no technical inefficiency term.
(v) H0 : η = 0; this indicates that technical inefficiency does not change with time.
(vi) H0 : µ = 0; this means that ui obeys the N+(0, σ2

u) distribution.
(vii) H0 : the terms with insignificant coefficients in the primary selection model are 0.

All hypotheses were tested using generalized likelihood ratio (LR) statistics. The
calculation formula of LR statistics is: LR = −2[L(H0)− L(H1)], where L(H0) and L(H1)
represent the likelihood function values of constrained and unconstrained models, respec-
tively. When the null hypothesis H0 is true, the LR statistics obey the mixed χ2 distribution,
and the degree of freedom is the number of constrained variables.

3.2. Decomposition of Total Factor Productivity Growth

By following the work of Kim and Han [48], we decompose the changes in TFP into
the following four parts: technological progress (TC), technological efficiency change (TEC),
scale efficiency change (SEC), and allocation efficiency change (AEC). We first take the
logarithm of both sides of the production function Equation (1), and then take the derivative
of t:

d ln yit
dt

=
∂ ln f (xit, t; β)

∂t
+

2

∑
j=1

∂ ln f (xit, t; β)

∂ ln xitj

d ln xitj

dt
− duit

dt
(11)

where εitj =
∂ ln f (xit ,t;β)

∂ ln xitj
indicates the output elasticity of the j th factor. Then, Equation (11)

can be expressed as

yit =
∂ ln f (xit, t; β)

∂t
+

2

∑
j=1

εitjxitj −
duit
dt

(12)

TFP is the part of output growth that cannot be explained by the growth of factor
input. Then, the TFP growth rate can be expressed as

TFPit = yit −
2

∑
j=1

sitjxitj (13)

where sitj = witjxitj/∑2
j=1 witjxitj represents the cost share of the j th input factor,

∑2
j=1 sitj = 1. Then, by substituting Equation (12) into Equation (13), we can obtain

TFPit =
∂ ln f (xit ,t;β)

∂t − duit
dt +

2
∑

j=1
(εitj − sitj)xitj

= ∂ ln f (xit ,t;β)
∂t − duit

dt + (RTSit − 1)
2
∑

j=1
λitjxitj +

2
∑

j=1
(λitj − sitj)xitj

(14)

where RTSit = ∑2
j=1 εitj represents the elasticity of the input scale, which measures the

scale effect. λitj =
εitj

RTSit
indicates the relative output elasticity of the input factor j.

By combining Equation (14) with Equation (10), we decompose the TFP growth into
the following four terms:

(1) Technical progress (TC). This refers to the change rate of output over time when the
input factors are fixed; that is, the output growth brought about by technological progress.

TCit =
∂ ln f (xit, t; β)

∂t
= βT + βTTt + βTK ln Kit + βTL ln Lit (15)
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(2) Technical efficiency change (TEC). This represents the change in the gap between
the actual output and the maximum possible output at a given level of technology and
factor inputs.

TECit =
∂ ln TEit

dt
= −duit

dt
(16)

(3) Scale efficiency change (SEC). This refers to the productivity changes caused by
economies of scale or diseconomies of scale.

SECit = (RTSit − 1)
2
∑

j=1
λitjxitj = (βK + βKK ln Kit + βKL ln Lit + βTKt + βL + βLL ln Lit + βKL ln Kit

+βTLt− 1)× ( βK+βKK ln Kit+βKL ln Lit+βTK t
βK+βKK ln Kit+βKL ln Lit+βTK t+βL+βLL ln Lit+βKL ln Kit+βTLt

.
Kit

+ βL+βLL ln Lit+βKL ln Kit+βTLt
βK+βKK ln Kit+βKL ln Lit+βTK t+βL+βLL ln Lit+βKL ln Kit+βTLt

.
Lit)

(17)

(4) Allocation efficiency change (AEC). This measures productivity changes caused by
structural changes in factor inputs.

AECit =
2
∑

j=1
(λitj − sitj)xitj =

( βK+βKK ln Kit+βKL ln Lit+βTK t
βK+βKK ln Kit+βKL ln Lit+βTK t+βL+βLL ln Lit+βKL ln Kit+βTLt − SitK)

.
Kit

+( βL+βLL ln Lit+βKL ln Kit+βTLt
βK+βKK ln Kit+βKL ln Lit+βTK t+βL+βLL ln Lit+βKL ln Kit+βTLt − SitL)

.
Lit

(18)

(5) Total factor productivity change (T
.
FP):

T
.
FP = TC + TEC + SEC + AEC (19)

3.3. Variable Selection and Data Sources

For empirical analysis, this study employs a panel dataset of the service-oriented
manufacturing industries in 30 Chinese provinces from 2004 to 2020. Due to the unavail-
ability of data, Tibet, Hong Kong, Macao, and Taiwan are not included in the sample.
Referring to the work of Wu, et al. [49] and Jiang, et al. [50], seven industries, including
communication equipment, computer and other electronic equipment manufacturing (I1),
transportation equipment manufacturing (I2), food manufacturing (I3), general equipment
manufacturing (I4), instrumentation and culture, office machinery manufacturing (I5), spe-
cial equipment manufacturing (I6), and electrical machinery and equipment manufacturing
(I7) were selected as the statistical objects. These manufacturing industries usually provide
more professional after-sales services and customized design than other manufacturing
industries, and their value-added services account for a high proportion [50].

We took the total output value of service-oriented manufacturing industry in each
province as the proxy of the output variable and converted it according to the 2003 fixed
price index to eliminate the impact of price fluctuation. The input variables included
capital (K) and labor (L). Labor input was proxied by the number of employees in the
service-oriented manufacturing industry at the end of the year, and capital input was
measured by capital stock. We employed the perpetual inventory method to estimate the
capital stock. In addition, it was also necessary to calculate the cost share of each input
factor when using the stochastic frontier approach. The cost of capital input was measured
by the depreciation of fixed assets and the interest expenditure of the service-oriented
manufacturing industry in each province, and the total labor remuneration was used to
measure the cost of labor input [51]. The data for all the above variables were taken from
the China Statistical Yearbook, the China Industrial Statistical Yearbook, the China Labor
Statistical Yearbook, and the China Science and Technology Statistical Yearbook.
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4. Model Hypothesis Test and Analysis

To create an effective and suitable model for the TFP evaluation of service-oriented
manufacturing, we carried out a series of model hypothesis tests using the maximum
likelihood estimation (MLE) method. All hypotheses in Section 2.1 were tested using the
generalized likelihood ratio (LR) statistics. The test results are shown in Table 1. From
Table 1, it can be seen that Hypothesis 1 is rejected at the significance level of 1%, which
indicates that the frontier production function in its translogarithmic form is more suitable
for explaining the production technology structure of service-oriented manufacturing than
the C-D production function. Hypotheses 2 and 3 are also rejected at the significance level
of 1%, indicating that there was technological progress in the sample period, and that
it was not Hicks-neutral. In other words, technology is not independent of production
factors but is embedded in them, and changes in input factors will also cause changes
in technological progress. Furthermore, the LR statistics of Hypothesis 4 caused the null
hypothesis to be rejected at the significance level of 1%, which implies that there exists a
technical inefficiency term in the benchmark model. This again supports the suitability of
adopting the stochastic frontier model. For Hypothesis 5, the null hypothesis is rejected
at the 1% confidence level, indicating that the time-varying efficiency model should be
selected if the technical efficiency changes with time during the sample period. Hypothesis
6 and Hypothesis 7 are both accepted at the significance level of 1%, indicating that ui
follows a semi-normal distribution. Therefore, µ = 0 should be set when estimating the
stochastic frontier model, and the non-significant coefficient in the primary model should
be excluded.

Table 1. Hypothesis test results of the stochastic frontier model.

Null Hypothesis H0 LR Statistic Critical Value (CV) Inspection Conclusion

1. H0 : βKK = βLL = βKL = βTT = βTK = βTL = 0 107.94 16.81 refuse
2. H0 : βT = βTT = βTK = βTL = 0 67.01 13.28 refuse

3. H0 : βTK = βTL = 0 11.75 9.21 refuse
4. H0 : γ = η = µ = 0 464.1 11.34 refuse

5. H0 : η = 0 80.87 6.63 refuse
6. H0 : µ = 0 0.94 2.71 accept

7. H0 : The coefficient insignificance term in the
primary model is 0. 1.64 4.61 accept

Note: the critical value corresponds to the significance level of 1%.

Based on the above hypothesis test results, we carried out model estimation for
Equation (10), and Table 2 reports the corresponding results. In Table 2, Model 1 is the
unrestricted model, Models 2 and 3 are restricted models, and the restraint conditions are
βL = 0, µ = 0, and βL = 0. The coefficients of parameter µ and ln Lit in Model 1 are not signif-
icant, and the coefficient of µ is still not significant after removing the non-significant term
(i.e., ln Lit) in Model 2. Therefore, Model 3 is selected as the benchmark model for the esti-
mation of the translogarithmic stochastic frontier production function (i.e., Equation (10)).
According to the estimation results of Model 3, it can be seen that the LR test results of the
translogarithmic stochastic frontier model are significant at the level of 1%, and the γ value
is above 95%, indicating that the production fluctuations under the given conditions of
factor input mainly arise due to technological inefficiency. Furthermore, the time-varying
parameter (i.e., η) of technical efficiency in Model 3 is significantly positive, indicating that
the technical efficiency of service-oriented manufacturing gradually improved during the
sample period.
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Table 2. Estimation results of the stochastic frontier model.

Variable Coefficient Model 1 Model 2
(βL = 0)

Model 3
(µ = 0, βL = 0)

Cons_ β0
1.5498 ***

(4.94)
1.5060 ***

(4.66)
1.4046 ***

(5.08)

ln Kit βK
0.9406 ***

(6.82)
1.0270 ***

(16.59)
1.0266 ***

(16.43)

ln Lit βL
0.0959
(0.70) 0 0

t βT
0.1461 ***

(6.49)
0.1391 ***

(6.86)
0.1441 ***

(7.55)

1
2 (ln Kit)

2 βKK
−0.3111 ***

(−5.72)
−0.3360 ***

(−8.55)
−0.3399 ***

(−8.80)

1
2 (ln Lit)

2 βLL
−0.4181 ***

(−7.46)
−0.4354 ***

(−8.80)
−0.4378 ***

(−8.87)

ln Kit ln Lit βKL
0.3520 ***

(6.51)
0.3742 ***

(8.74)
0.3790 ***

(9.05)

1
2 t2 βTT

−0.0114 ***
(−8.65)

−0.0114 ***
(−8.59)

−0.0116 ***
(−8.92)

t ln Kit βTK
0.0220 ***

(2.46)
0.0226 **

(2.55)
0.0233 ***

(3.62)

t ln Lit βTL
−0.0276 ***

(−3.20)
−0.0276 ***

(−3.18)
−0.0289 ***

(−3.47)

σ2 0.0847 **
(2.60)

0.0833 **
(2.72)

0.1346 ***
(3.72)

γ
0.9691 ***

(36.09)
0.9712 ***

(49.19)
0.9867 ***

(65.83)

µ
0.2043
(1.35)

0.2299
(1.57) 0

η
0.0583 ***

(9.71)
0.0570 ***

(9.44)
0.0578 ***

(9.91)

Likelihood function logarithm 171.75 169.79 169.21

LR statistics 468.49 *** 494.93 *** 493.80 ***
Note: **, *** represent the significance level at 5%, and 1%, respectively; T values in brackets.

In addition, we further carried out the hypothesis test and model selection procedure
for the sub-sectors of service-oriented manufacturing in the same way as described above.
The results are shown in Table 3. Table 3 shows that the LR test results of the stochastic
frontier final selection model are significant in all sub-sectors; the time-varying parameters
of technical efficiency are negative in the I1, I5, and I7 sub-sectors and positive in the
other sectors. This shows that, although the overall time-varying parameter (i.e., η) of the
service-oriented manufacturing industry is positive (as shown in Table 2), the development
of each sub-sector is different.
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Table 3. Estimation results of the subdivided service-oriented manufacturing industry.

Variable Coef. I1 I2 I3 I4 I5 I6 I7

Cons_ β0
2.2358 ***

(12.27)
2.3626 ***

(10.82)
1.1105 ***

(11.01)
1.3350 ***

(7.05)
0.8094 ***

(4.88)
1.5705 ***

(9.31)
1.0588 ***

(6.93)

ln Kit βK
0.6085 ***

(9.61)
0.3629 ***

(2.74)
0.6077 ***

(12.65)
0.4774 ***

(15.72)
0.6073 ***

(5.12) 0 0.6049 ***
(12.86)

ln Lit βL
0.4807 ***

(5.92)
1.2137 ***

(8.53)
0.3987 ***

(11.57)
0.7337 ***

(15.02)
0.7586 ***

(5.02)
1.1351 ***

(23.20)
0.2604 ***

(5.86)

t βT
0.1635 ***

(10.54)
0.3173 ***

(15.07)
0.1756 ***

(16.40)
0.2178 ***

(12.65)
0.2293 ***

(14.10)
0.2843 ***

(17.48)
0.3076 ***

(29.13)

1
2 (ln Kit)

2 βKK
−0.0221 ***

(−3.03)
0.6771 ***

(11.02)
0.0882 ***

(5.11) 0 0.0872 **
(2.91)

0.4186 ***
(6.51)

0.0987 ***
(8.32)

1
2 (ln Lit)

2 βLL
0.1528 ***

(10.89)
0.6660 ***

(10.68) 0 −0.2261 ***
(−7.24)

0.2525 ***
(2.96)

0.3508 ***
(3.86) 0

ln Kit ln Lit βKL 0 −0.6416 ***
(−10.49) 0 0.0620 ***

(5.09)
−0.1283 **

(−2.18)
−0.4032 ***

(−5.28) 0

1
2 t2 βTT 0 0 −0.0018 **

(−2.05)
−0.0123 ***

(−10.14)
−0.0061 ***

(−3.40)
−0.0086 ***

(−4.21)
−0.0082 ***

(−7.22)

t ln Kit βTK
−0.0266 ***

(−5.37)
−0.0897 ***

(−14.00)
−0.0235 ***

(−8.53) 0 −0.0216 ***
(−9.08)

−0.0432 ***
(−3.64)

−0.0317 ***
(−11.82)

t ln Lit βTL
0.0113 **

(2.11)
0.0841 ***

(12.78) 0 −0.0106 ***
(−4.67) 0 0.0352 ***

(2.49) 0

σ2 1.8694 ***
(3.57)

0.3012 ***
(3.55)

0.1367 ***
(4.01)

0.0648 ***
(6.29)

0.6422 ***
(3.56)

0.1869 ***
(3.37)

0.04726 **
(2.80)

γ
0.9213 ***

(40.40)
0.8032 ***

(12.88)
0.6448 ***

(6.59)
0.9275 ***

(48.03)
0.890 ***
(18.45)

0.748 ***
(6.98)

0.8848 ***
(21.23)

µ 0 0 0 0.2445 ***
(2.71) 0 0 0

η
−0.0371 ***

(−5.87)
0.0496 ***

(6.457)
0.0134 **

(2.33)
0.0800 ***

(7.56)
−0.0388 **

(−2.01)
0.0514 ***

(4.88)
−0.1908 **

(−2.61)

Likelihood function
logarithm value −208.91 −48.15 21.00 −62.70 −351.08 −59.47 −82.90

LR statistics 398.79 *** 351.44 *** 169.17 *** 275.89 *** 106.35 *** 244.36 *** 231.9 ***

Note: **, *** represent the significance level at 5%, and 1%, respectively; T values in brackets.

5. Empirical Results and Discussion
5.1. Changes in the TFP Growth of China’s Service-Oriented Manufacturing Industry

According to the estimation results of the translogarithmic stochastic frontier model
(i.e., Equation (10)) in Section 4, we can calculate the TFP growth of China’s service-oriented
manufacturing industry; Figure 1 shows the changing trend of TFP growth over the period
2004–2020. We can see from Figure 1 that TFP growth at the national and regional levels is
always positive during the study period, with the exception of some individual years. The
overall TFP keeps improving; however, the overall growth rate shows a significant slowing
trend. Nevertheless, it is noteworthy that the gap between different regions exhibits a
gradual narrowing trend. In addition, TFP declined sharply in 2008 due to the impact of
the financial crisis, and all three regions were affected to different degrees, with the largest
decline in the central region, followed by the western region, and the smallest decline in
the eastern region. Driven by a series of economic revitalization measures taken by local
governments in the face of the financial crisis, the TFP growth of each region rebounded
again in 2009. However, due to the continuity of the negative impacts of the financial crisis,
the TFP growth rate still experiences small fluctuations after 2009. Finally, when COVID-19
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broke out in 2020, it had a significant impact on the development of the manufacturing
industry and other economic sectors; therefore, the growth of TFP both at national and
regional levels (i.e., eastern, central, and western regions) fell again in 2020. In summary,
the TFP growth of service-oriented manufacturing in the east is very close to that of the
whole country; that of the western region is higher than the national average, while that
of the central region is lower than the national average. On the whole, the difference
in TFP growth between different regions exhibited a gradual narrowing trend over the
sample period.
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5.2. Decomposition of TFP Growth in the Service-Oriented Manufacturing Industry

According to the discussion in Section 2.1, we decompose TFP growth into the fol-
lowing four parts: technological progress (TC), technical efficiency change (TEC), scale
efficiency change (SEC), and allocation efficiency change (AEC). Table 4 displays the de-
composition results. Table 4 shows that the four decomposition terms of each province
have different characteristics. First, the technological progress (TC) in all provinces shows
positive values, indicating that service-oriented manufacturing in each province achieved
obvious technological progress during the sample period, playing a positive role in promot-
ing the growth of TFP. Second, the technical efficiency change (TEC) also shows positive
values in all provinces, a result that is consistent with the estimation results of the time-
varying parameter (i.e., η) (as shown in Table 2) of the final selection, Model 3, in Section 4;
this factor played a positive role in promoting the improvement of TFP. Third, the scale
efficiency change (SEC) varies among different provinces. Apart from six provinces and
cities, including Shanghai, Tianjin, Shanxi, Guizhou, Inner Mongolia, and Ningxia, which
exhibit positive SEC values, all other provinces are negative, and the decline in scale effi-
ciency hinders the growth of TFP. A moderate expansion of enterprise scale will reduce
the cost of unit product and help to achieve economies of scale, which is conducive to the
improvement of TFP, while an excessively small enterprise scale will increase the cost of
unit product, resulting in diseconomies of scale, which is not conducive to the improve-
ment of TFP. Fourth, the allocation efficiency change (AEC) presents negative values in
all provinces except for Shandong and Hubei, and the deterioration of factor allocation
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efficiency negatively contributes to the growth of TFP. In summary, technological progress
and technical efficiency contribute positively to the improvement of TFP in service-oriented
manufacturing in each province, while scale efficiency and allocation efficiency vary among
the different provinces.

Table 4. Decomposition of TFP growth in service-oriented manufacturing by provinces.

Province TFP TC TEC SEC AEC Province TFP TC TEC SEC AEC

Anhui 0.0631 0.0659
(1.046)

0.0196
(0.311)

−0.0029
(−0.046)

−0.0196
(−0.310) Jiangxi 0.0939 0.0647

(0.689)
0.0372
(0.396)

−0.0013
(−0.013)

−0.0067
(−0.072)

Beijing 0.0845 0.0613
(0.726)

0.027
(0.320)

−0.0018
(−0.021)

−0.0021
(−0.024) Liaoning 0.0872 0.0682

(0.782)
0.0294
(0.337)

−0.0008
(−0.010)

−0.0095
(−0.109)

Fujian 0.0529 0.0556
(1.050)

0.0051
(0.096)

−0.0028
(−0.054)

−0.0049
(−0.092) InnerMongolia 0.0987 0.0815

(0.826)
0.0228
(0.231)

0.0010
(0.010)

−0.0066
(−0.067)

Gansu 0.1130 0.0696
(0.616)

0.0625
(0.553)

−0.0006
(−0.005)

−0.0185
(−0.164) Ningxia 0.0961 0.0811

(0.844)
0.0491
(0.510)

0.0016
(0.016)

−0.0356
(−0.370)

Guangdong 0.0276 0.0421
(1.526)

0.0012
(0.042)

−0.0046
(−0.168)

−0.0110
(−0.400) Qinghai 0.1067 0.0858

(0.805)
0.0602
(0.564)

−0.0002
(−0.002)

−0.0391
(−0.366)

Guangxi 0.0191 0.0672
(3.517)

0.0200
(1.048)

−0.0006
(−0.030)

−0.0675
(−3.534) Shandong 0.0670 0.0571

(0.852)
0.0041
(0.061)

−0.0043
(−0.064)

0.0101
(0.151)

Guizhou 0.0726 0.0681
(0.939)

0.0536
(0.739)

0.0015
(0.021)

−0.0507
(−0.699) Shanxi 0.1178 0.0641

(0.544)
0.0618
(0.525)

0.0001
(0.0004)

−0.0081
(−0.069)

Hainan 0.0743 0.0875
(1.178)

0.0093
(0.125)

−0.0026
(−0.035)

−0.0199
(−0.268) Shaanxi 0.0996 0.0648

(0.651)
0.0439
(0.441)

−0.0008
(−0.008)

−0.0084
(−0.084)

Hebei 0.0793 0.0634
(0.799)

0.0324
(0.409)

−0.0022
(−0.027)

−0.0143
(−0.181) Shanghai 0.0596 0.0676

(1.134)
0.0043
(0.072)

0.0001
(0.001)

−0.0124
(−0.208)

Henan 0.0703 0.0556
(0.790)

0.0277
(0.394)

−0.0047
(−0.067)

−0.0083
(−0.117) Sichuan −0.0430 0.0757

(−1.762)
0.0029

(−0.068)
−0.0015
(0.035)

−0.1201
(2.795)

Heilongjiang 0.0942 0.0705
(0.748)

0.0404
(0.429)

−0.0002
(−0.002)

−0.0165
(−0.175) Tianjin 0.0689 0.0711

(1.032)
0.0059
(0.086)

0.0001
(0.001)

−0.0083
(−0.120)

Hubei 0.0901 0.0652
(0.723)

0.0254
(0.281)

−0.0015
(−0.017)

0.0011
(0.012) Xinjiang 0.0916 0.0932

(1.018)
0.0353
(0.385)

−0.0010
(−0.010)

−0.0360
(−0.393)

Hunan 0.0818 0.0641
(0.783)

0.0329
(0.403)

−0.0020
(−0.025)

−0.0132
(−0.161) Yunnan 0.0985 0.0681

(0.691)
0.0422
(0.428)

−0.0008
(−0.008)

−0.0109
(−0.111)

Jilin 0.0836 0.0765
(0.914)

0.0080
(0.095)

−0.00001
(−0.00003)

−0.0008
(−0.009) Zhejiang 0.0491 0.0506

(1.030)
0.0164
(0.335)

−0.0042
(−0.086)

−0.0137
(−0.279)

Jiangsu 0.0506 0.0558
(1.102)

0.0087
(0.172)

−0.0064
(−0.126)

−0.0075
(−0.148) Chongqing 0.0769 0.0629

(0.818)
0.0234
(0.305)

−0.0019
(−0.025)

−0.0075
(−0.097)

Note: The contribution of each decomposition term to the TFP growth is shown in brackets.

In addition, the contribution of these four decomposition terms to TFP growth also
varies significantly across different provinces, and the following four types can be obtained
by ranking the absolute value of the contribution rate: (i) 21 provinces and cities, such as
Zhejiang and Chongqing, present the TC > TEC > AEC > SEC order; (ii) 4 provinces and
cities (Shanghai, Tianjin, Hainan, and Xinjiang) present the TC > AEC > TEC > SEC order;
(iii) the order of TC > AEC > SEC > TEC includes Shandong and Guangdong provinces;
(iv) only Hubei province presents the TC > TEC > SEC > AEC order; and (v) the order
of AEC > TC > TEC > SEC includes Sichuan and Guangxi provinces. It can be seen that
most provinces present the first type of contribution ranking. The positive contribution
of TC and TEC to TFP growth is greater than the negative contribution of AEC and SEC,
indicating that technological progress and technical efficiency are the two main drivers
for TFP growth. Furthermore, only the Sichuan and Guangxi provinces experienced TFP
decrement due to the serious deterioration of allocation efficiency. Notably, Gansu, Shanxi,
and Qinghai provinces presented a relatively high TFP growth, which was driven by
significant technological progress and efficiency improvement.

We also decomposed the TFP growth of service-oriented manufacturing into three
typical regions (i.e., the eastern, central, and western regions) and conducted growth ac-
counting analysis. The results are shown in Table 5, which indicates that the average TFP
growth of service-oriented manufacturing at the national level was 0.0742. TC made the
largest contribution of 0.910, and TEC contributes 0.365; meanwhile, AEC and SEC make
negative contributions of −0.254 and −0.020, respectively. The contribution of the four
decomposition terms to TFP was in the order of TC > TEC > AEC > SEC. At the regional
level, the average growth rates of TFP in the central and western regions are close to each
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other and higher than that in the eastern region; this is mainly driven by technological
progress and technical efficiency change. However, the deterioration of allocation efficiency
and scale efficiency in the eastern region is relatively serious, hindering the growth of TFP.
Therefore, it can be concluded that the TFP growth of China’s service-oriented manufac-
turing mainly comes from technological progress and technical efficiency, among which
technological progress is the main driving source. In addition, the growth accounting
results show that China’s service-oriented manufacturing achieved relatively fast growth
during the sample period, with an average annual output growth of 16.58%; specifically,
the contributions of capital and labor input reached 7.47% and 2.80%, respectively, and
the contribution of TFP growth was 4.47%, far lower than the comprehensive contribution
of the input factors. From the regional perspective, capital input in all three regions (i.e.,
eastern, central, and western) made the largest contribution to output growth. This implies
that the growth mode of China’s service-oriented manufacturing is still in extensive growth
mode, and the rapid increase in output is mainly driven by capital input factors. There
is still room for the service-oriented manufacturing industry to improve the structure of
production factors and accelerate the transformation of the growth mode from extensive
to intensive.

Table 5. Decomposition of TFP growth in service-oriented manufacturing by regions and growth accounting.

Region
TFP Growth Decomposition Output

Growth Rate
Capital Growth

Rate and
Contribution

Labor Growth
Rate and

Contribution

TFP GrowthRate
and ContributionTC TEC SEC AEC

eastern 0.0632
(1.211)

0.0109
(0.209)

−0.0027
(−0.051)

−0.0192
(−0.369) 0.1582 0.1242

(0.785)
0.0544
(0.344)

0.0521
(0.330)

central 0.0658
(0.758)

0.0316
(0.364)

−0.0016
(−0.018)

−0.0090
(−0.104) 0.1856 0.1259

(0.678)
0.0374
(0.201)

0.0869
(0.468)

western 0.0731
(0.840)

0.0400
(0.460)

−0.0003
(−0.004)

−0.0257
(−0.295) 0.1818 0.1196

(0.658)
0.0237
(0.130)

0.0870
(0.479)

national 0.0675
(0.910)

0.0271
(0.365)

−0.0015
(−0.020)

−0.0189
(−0.254) 0.1658 0.1239

(0.747)
0.0465
(0.280)

0.0742
(0.447)

Note: In brackets are the contributions of each variable, of which the last three columns are the contributions
of capital, labor, and TFP growth to output growth, and the first four columns are the contributions of TFP
decomposition terms to TFP growth rate.

Furthermore, to better understand the dynamic impacts of the four decomposition
terms on TFP growth, we further depicted the changing trends of the four components
from 2004 to 2020 in different regions in China (as shown in Figure 2). It can be seen
in Figure 2 that there exists significant heterogeneity in the dynamic changing trends of
the four components. First, the technological progress (TC) rate of each region presents
a decreasing trend, and its driving role in TFP growth is gradually weakening. Second,
technical efficiency change (TEC) in each region also shows a decreasing trend; however,
unlike TC, it tends to gradually become flat over time, and, in the sample period, it
maintained a positive value. Although TEC has not entered the rising stage, the positive
value nevertheless implies that technical efficiency is still gradually improving and moving
closer to the production frontier. Third, the scale efficiency change (SEC) in different regions
is undergoing significant fluctuations and deteriorates in most years, which indicates that
the development of SEC is not ideal. Fourth, the allocation efficiency change (AEC) of each
region is negative for most years, indicating significant deterioration during the sample
period. The changing trend of AEC is generally consistent across different regions over the
years, with a more serious decline in 2008 and significant fluctuations after 2011. Although
AEC significantly improved in 2019, it dropped again in 2020 due to the impact of the
COVID-19 pandemic. The outbreak of COVID-19 in 2020 has had a great impact on all
aspects of the economy, and the production chain was almost in a state of stagnation during
the year, which resulted in a steep decline in TC, TEC, SEC and AEC. In summary, the
changing trends of technological progress and technical efficiency are relatively stable,
while scale efficiency and allocation efficiency show significant fluctuations. The gradual
decline of technological progress and the gradual stabilization of technical efficiency, on
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the other hand, imply the importance of improving both scale efficiency and allocation
efficiency to promote the industry’s TFP growth.
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5.3. Further Analysis of TFP Growth and Its Decomposition in Service-Oriented
Manufacturing Sub-Sectors

As discussed in Section 5.2, TFP growth and its four components exhibit significant
heterogeneity between different regions. To this end, some further interesting questions
arise: what is the changing trend of TFP growth and its components in the sub-sectors
of service-oriented manufacturing? How do they behave in different regions? What is
the contribution of each factor to output growth? To answer these questions, we further
calculated the TFP growth of each sub-sector and carried out a decomposition analysis.

Figure 3 displays the changing trend of TFP growth in certain sub-sectors. It shows that
the TFP growth of China’s service-oriented manufacturing shows significant differences
between sub-sectors, varying across industries at each time point, but generally exhibiting
the common characteristic of gradual decline over time. Hit by the financial crisis in 2008,
the TFP growth of each sub-sector showed a significant downward trend to some extent.
Among the sub-sectors, the I7 industry experienced the largest decline, from 0.2097 to
0.0662. After 2014, I1, I2, and I6 showed significant fluctuations, while I4 showed the most
obvious downward trend, decreasing from the maximum value (0.2295) to the minimum
value (−0.0216) during the sample period; additionally, the I5 industry showed the most
stable change. During the whole sample period, the I7 industry exhibited the highest TFP
growth, with an average of 0.1667, and the I3 industry showed the lowest (0.0696).



Sustainability 2023, 15, 6027 15 of 20

Sustainability 2023, 15, x FOR PEER REVIEW 16 of 21 
 

Figure 3 displays the changing trend of TFP growth in certain sub-sectors. It shows 
that the TFP growth of China’s service-oriented manufacturing shows significant differ-
ences between sub-sectors, varying across industries at each time point, but generally ex-
hibiting the common characteristic of gradual decline over time. Hit by the financial crisis 
in 2008, the TFP growth of each sub-sector showed a significant downward trend to some 
extent. Among the sub-sectors, the I7 industry experienced the largest decline, from 0.2097 
to 0.0662. After 2014, I1, I2, and I6 showed significant fluctuations, while I4 showed the most 
obvious downward trend, decreasing from the maximum value (0.2295) to the minimum 
value (−0.0216) during the sample period; additionally, the I5 industry showed the most 
stable change. During the whole sample period, the I7 industry exhibited the highest TFP 
growth, with an average of 0.1667, and the I3 industry showed the lowest (0.0696). 

 
Figure 3. Changing trend of TFP growth in service-oriented manufacturing sub-sectors. 

From a regional perspective, Figure 4 depicts the differences in the TFP growth of 
service-oriented manufacturing sub-sectors in different regions. As Figure 4 shows, the 
TFP growth rate of each sub-industry exhibits significant regional heterogeneity. Specifi-
cally, in the eastern region, the I3, I6, and I7 industries had higher TFP growth than in other 
regions; meanwhile, in the central region, the I3 industry exhibited the highest TFP 
growth. Additionally, the I1, I2, and I5 industries showed higher TFP growth in the western 
region than in the central and eastern regions. Notably, the TFP growth of I7 was higher 
than that of other industries in all the three regions. 

Figure 3. Changing trend of TFP growth in service-oriented manufacturing sub-sectors.

From a regional perspective, Figure 4 depicts the differences in the TFP growth of
service-oriented manufacturing sub-sectors in different regions. As Figure 4 shows, the TFP
growth rate of each sub-industry exhibits significant regional heterogeneity. Specifically,
in the eastern region, the I3, I6, and I7 industries had higher TFP growth than in other
regions; meanwhile, in the central region, the I3 industry exhibited the highest TFP growth.
Additionally, the I1, I2, and I5 industries showed higher TFP growth in the western region
than in the central and eastern regions. Notably, the TFP growth of I7 was higher than that
of other industries in all the three regions.
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Furthermore, we also decomposed the TFP growth of service-oriented manufacturing
sub-sectors into four components (i.e., TC, TEC, SEC, and AEC) and carried out growth
accounting analysis. Table 6 shows the corresponding results, and demonstrates that the
performance of the four decomposition terms varies among the different sub-sectors. First,
the technical progress (TC) of each sub-industry made the largest contribution to the growth
of TFP, which again supports the finding that TC is the main driver of TFP growth. In
terms of the technical efficiency change (TEC), the I1, I5, and I7 industries showed negative
values, which implies deterioration in technical efficiency in these sub-industries during the
sample period. Meanwhile, the I2, I4, and I6 industries showed positive values, indicating
a significant improvement in technical efficiency in these industries. However, the scale
efficiency change (SEC) and allocation efficiency change (AEC) are heterogeneous among
the different sub-industries. Except for the I1, I5, and I6 industries, which are positive,
all other sub-industries are negative; among them, the change in the scale efficiency in I4
and allocative efficiency in I7 deteriorated most seriously. Additionally, it is noteworthy
that the contribution of the four decomposition terms to the TFP growth in each industry
shows the order of TC > TEC > SEC > AEC, which again supports the conclusion that
technological progress and technical efficiency are the main drivers of the TFP growth. From
the accounting results of output growth, we can see that the comprehensive contributions
of capital and labor factors in each sub-sector are greater than the contribution of TFP
growth. What is more, the contribution of capital input represents a high proportion of
the input factors, which indicates that China’s service-oriented manufacturing is still in an
extensive growth mode, and the industrial growth is mainly driven by capital input factors.

Table 6. Decomposition of TFP growth in service-oriented manufacturing sub-sectors and growth accounting.

Sectors
TFP Growth Decomposition Output

Growth Rate
Capital Growth

Rate and
Contribution

Labor Growth
Rate and

Contribution

TFP Growth Rate
and ContributionTC TEC SEC AEC

I1
0.0797
(0.944)

−0.0042
(−0.050)

0.0042
(0.050)

0.0047
(0.056) 0.1663 0.1403

(0.844)
0.0921
(0.554)

0.0845
(0.508)

I2
0.0670
(0.811)

0.0213
(0.258)

−0.0014
(−0.017)

−0.0042
(−0.051) 0.1808 0.1283

(0.709)
0.0436
(0.241)

0.0826
(0.457)

I3
0.0710
(1.021)

0.0023
(0.034)

−0.0006
(−0.008)

−0.0032
(−0.046) 0.1118 0.0824

(0.737)
0.0093
(0.083)

0.0696
(0.622)

I4
0.0768
(0.754)

0.0406
(0.399)

−0.0063
(−0.062)

−0.0093
(−0.091) 0.1698 0.1161

(0.684)
0.0233
(0.137)

0.1018
(0.560)

I5
0.1268
(0.980)

−0.0146
(−0.113)

0.0016
(0.012)

0.0156
(0.121) 0.1526 0.1137

(0.745)
0.0348
(0.228)

0.1294
(0.848)

I6
0.0863
(0.696)

0.0249
(0.201)

0.0126
(0.102)

0.0001
(0.001) 0.1733 0.1297

(0.748)
0.0264
(0.153)

0.1240
(0.716)

I7
0.1933
(1.160)

−0.0081
(−0.049)

−0.0047
(−0.028)

−0.0138
(−0.083) 0.1714 0.1285

(0.749)
0.0589
(0.343)

0.1667
(0.972)

Note: In brackets are the contributions of each variable, of which the last three columns are the contributions
of capital, labor, and TFP growth to output growth and the first four columns are the contributions of TFP
decomposition terms to TFP growth rate.

6. Conclusions and Policy Implications

By constructing a translogarithmic stochastic frontier production model, this study
explored the TFP performance of China’s service-oriented manufacturing industry and
its sub-sectors from 2004–2020. To better understand the reasons behind the changes in
TFP, we further decomposed TFP growth into four components (i.e., TC, TEC, SEC, and
AEC) and analyzed the dynamic impacts of each component on TFP growth from national,
regional, and sectoral perspectives. The main conclusions are as follows.

First, the TFP of China’s service-oriented manufacturing improved to some extent in
the sample period, but the contribution of TFP growth to the output growth of the industry
is still low, at only 4.47%. Industrial growth is mainly driven by factor inputs (capital input,
to be exact) and has not realized the transformation of the growth mode from extensive
to intensive.

Second, technological progress and technical efficiency change are the main drivers
of TFP growth. However, the rate of technological progress is gradually declining and
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its driving effect on TFP growth is weakening, while the change of technical efficiency is
gradually tending towards stability. Furthermore, the deterioration of both scale efficiency
and allocation efficiency has hindered the improvement of the TFP; there is still room for
the service-oriented manufacturing to promote its TFP growth by improving in these areas.

Third, there exists significant heterogeneity in TFP growth between different regions
and sub-sectors. Specifically, the growth rates of TFP in the central and western regions
are relatively close and higher than that in the eastern region; this is mainly driven by
technological progress and technical efficiency change. However, the serious deterioration
of allocation efficiency and scale efficiency in the eastern region prevents the growth of
its TFP. From the sub-industry perspective, the TFP growth varied across sub-industries
over the years, but, over time, the overall trend shows a decrease. The electrical machinery
and equipment manufacturing industry reached the highest average TFP growth of 0.1667
during the sample period, while the lowest value was obtained by the food manufacturing
industry, at 0.0696. Regarding the decomposition of TFP growth, the heterogeneity of
each industry segment is also obvious. In addition to the positive effects of technological
progress in all the sub-industries, the changes of technical efficiency, scale efficiency, and
allocation efficiency were positive only in three industries, while the other four industries
showed different degrees of deterioration.

Based on the above research results, this study highlights several policy implications
as follows:

First, it is important for service-oriented manufacturing to accelerate the transforma-
tion of the growth mode from extensive to intensive. In particular, efforts should be made
to break away from excessive dependence on capital input and gradually shift from being
driven by factor inputs to the continuous improvement of the TFP. Manufacturing enter-
prises should enhance the allocation efficiency of production factors, increase investment
in high-end manufacturing technologies, and strengthen cooperation with advanced enter-
prises to enhance the exchange of development experience and technology introduction.
At the same time, local governments should encourage enterprises to increase investment
in TFP improvement through tax incentives, subsidies, and special funds.

Second, as technological progress and technical efficiency are the main sources of TFP
growth, it is of great significance for service-oriented manufacturing to innovate the path
of technological progress and improve technical efficiency. It is also necessary to accelerate
the transition of the technological innovation route from relying on external acquisition
modes, such as technology introduction and technology transformation, to internal modes,
such as independent research and development (R&D). An open cooperative network and
innovation system based on patent licensing, collaborative R&D, and technical standard
cooperation should be established to improve the level of innovation in service-oriented
manufacturing. On the one hand, it is necessary to strengthen the construction of innova-
tion carriers such as enterprise technology centers and industrial technology innovation
platforms, while improving the technical innovation service system for small and medium-
sized enterprises, enhancing the rate of technology industrialization, and accelerating the
speed of technology transformation; On the other hand, it is necessary to innovate the
investment and financing mode of the service-oriented manufacturing industry, formulate
a sound talent gathering policy, and improve the technological level of service-oriented
manufacturing industry.

Third, according to the decomposition results of TFP, both the scale efficiency and
allocation efficiency of service-oriented manufacturing have deteriorated to some extent;
therefore, it is necessary to take effective measures to improve in these areas. Manufacturers
should pay attention to the reasonable adjustment of the industrial scale and should also
improve the efficiency of factor allocation through various approaches, such as upgrading
the total quality of human capital, accelerating financial reforms, and improving the level
of technological innovation.

Fourth, in view of the obvious regional and sub-sectoral heterogeneity of TFP growth
among different regions and sub-industries, differentiated policy combinations should
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be adopted. On one hand, increasing policy support should be given to the industries
with low TFP growth, especially those in the central and western regions. At the national
level, special funds should be given to the less-developed central and western regions
to carry out independent research and development. At the same time, these regions
should actively introduce advanced technologies and make use of the penetration and
integration of information technologies to carry out management innovation and business
model innovation, improving scale efficiency and factor allocation efficiency and thereby
improving the TFP level of the whole industry. On the other hand, industries with high
TFP growth should further enhance technological progress and innovation capacity to
strengthen their leading role and promote the optimization and adjustment of industrial
structures to further improve their TFP level.
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