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Mesut Doğan 1,* , Sutbayeva Raikhan 2 , Nurbossynova Zhanar 2 and Bodaukhan Gulbagda 2

1 Department of Banking and Finance, Bilecik Seyh Edebali University, Bilecik 11300, Turkey
2 Department of Management, Caspian University of Technologies and Engineering, Aktau 130000, Kazakhstan
* Correspondence: mesutdogan07@gmail.com; Tel.: +90-2282141311

Abstract: Understanding and examining energy markets correctly is crucial for stakeholders to attain
maximum benefit and avoid risks. As a matter of fact, the volatility that occurred in energy markets
and recent crises had major impacts on national economies. Dynamic connectedness relationships
(DCRs) can make quite powerful predictions for both low-frequency data and limited time-series
data. The objective of this study is to explicate the dynamic connectedness relationships among
the BIST sustainability index, BIST 100 index, S&P Global Clean Energy index (S&P GCEI), and
S&P GSCI carbon emission allowances (EUA). The daily data obtained over the period 11 April
2014–11 November 2022 were used for the research study. The DCRs among the variables used in the
study were investigated by employing the time-varying parameter vector autoregressive (TVP-VAR)
model. As a result of the study, the volatility from carbon emission allowances was determined to
spill over to S&P GCEI, BIST 100, and BIST sustainability indexes. During the COVID-19 pandemic,
significant reductions were detected in the volatility spillover (VS) from carbon emission allowances
to S&P GCEI, BIST 100, and BIST sustainability indexes. Moreover, it was revealed that a weak
VS existed from S&P GCEI to BIST sustainability and BIST 100 indexes. The findings reveal the
importance of policymakers taking some incentive measures in EUA prices and also its role in
portfolio diversification.

Keywords: BIST sustainability index; BIST 100; S&P global clean energy index; S&P GSCI carbon
emission allowance prices

1. Introduction

Today, although climate change and carbon emissions are becoming major challenges
for maintaining a sustainable environment worldwide, carbon emission trading markets
are perceived as crucial instruments to promote low-carbon economic development and
mitigate greenhouse gas emissions [1]. For instance, Ref. [2] argued that clean energy made
a greater contribution to both greenhouse gas reduction and environmental sustainability.
In addition, it indicates that the presence of green bonds may establish novice green
technologies and maintain the aim of moving towards a sustainable and decarbonized
economy [3]. Therefore, green bonds would be considered essential diversified investment
tools for environmentally -friendly investors and enterprises [4].

Research on clean energy has attracted a great deal of interest within the last ten
years, as the transition to a greener energy system is perceived as an effective means to
remove fossil fuel dependence. For this purpose, the association between clean energy
indexes and energy commodities and various indexes has been investigated in the literature
during recent years [5–10]. From a financial perspective, carbon emissions and clean energy
markets attract the attention of market participants concerned with climate change and
environmental improvements. The price information of both markets affects each other.
Therefore, examining the underlying information transfer between EUA (EU carbon price)
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prices and clean energy stock prices may lead to an important reference for economic
decision-makers regarding clean energy development and decarbonization [11].

Nonetheless, the financialization of fossil energy markets empowers the bond with
stock markets. In some studies, it has been found that volatility in stock markets has an
impact on petroleum returns [12]. Investors’ emotions and behaviors assume crucial roles
in such transmission process [13]. Investors consider expected and current returns in both
financial and commodity markets when deciding on portfolios. Volatility in the renewable
energy market influences demand for other assets, such as fossil energy, and leads to further
volatility in fossil energy prices [14].

The objective of this study is to examine the DCRs among Borsa Istanbul (BIST)
Sustainability index, BIST 100 index, S&P GCEI, and EUA. In other words, the volatility
spillover and receipt of the four variables used in the study are examined. To this end, the
5 day data obtained over the period 2014:11–2022:11 are utilized. This study would make
four distinct types of contribution to the relevant literature. Firstly, BIST’s trading volume
and liquidity have been increasing significantly throughout recent years. This study is
crucial in terms of revealing the preliminary findings on the dynamic interactions and VSs
among the BIST sustainability index, BIST 100 index, S&P GCEI consisting of developed and
emerging markets, and EUA prices, which are generated according to environmental, social,
and governance criteria within the scope of BIST ESG. Secondly, the DCRs among these
variables are investigated by employing the recently developed TVP-VAR model. Thirdly,
the findings to be obtained in this study would contribute to environmental regulators
and policy practitioners in this regard. It would also assist investors to achieve higher
returns with lower risks from their well-diversified portfolios. Lastly, volatility in energy
markets has a major impact on countries. The volatilities between energy markets and
the sustainability index would help prevent the negative impacts that have been observed
during the recent energy crises. This study is important in terms of accurately assessing
and predicting volatility and risk situations of energy market stakeholders.

This study consists of five parts. In the introduction, the objective and motivations
of the study are presented. In the second part, research studies on green finance, S&P
GCEI, and EUA are reviewed. In the third part, the dataset, variables, and model used in
the study are introduced. In the fourth part, the results of the DCRs among the variables
included in the study are revealed. In the last part, an overall assessment of the research
study is made and policy recommendations are developed.

2. Review of the Literature

Stakeholder theory is a corporate management theory that supports effective and
ethical ways to organize and manage organizational issues in different environmental
situations [15,16]. Organizations and institutions deal with issues associated with climate
change and decarbonization differently, depending on the extent to which stakeholders
relate to each other [17]. The impact degree of each the stakeholders may put pressure on
and influence the direction of decision-making [18]. Stakeholder theory, which is associated
with actor–network theory, can explore the relationships among multiple actors within
the context of sociotechnical transitions toward sustainability in the energy sector. Upon
working with stakeholders in the context of actor–network theory and sociotechnical
transitions, the questions of whether all actors are stakeholders and technology itself is an
actor would arise [19].

In recent years, environmentally-friendly securities gained importance in terms of provid-
ing benefits to society in terms of shareholders and firms. In parallel with this, new studies
on green or sustainability indexes or green securities began to flourish. For instance, in some
studies, the importance of green bonds was demonstrated in reducing non-renewable energy
resources and in the use of environmentally-friendly electricity [20–24].

As a result of the research on green bonds, Ref. [25] determined that a positive associa-
tion existed between environmental values and energy. Therefore, Bloomberg asserted that
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Barclays MSCI should be included in the S&P green bond. Moreover, Ref. [26] revealed
that NDCs and renewable energy had major and significant impacts on green bonds.

Ref. [27] investigated the response of the Chinese Stock Exchange to the issuance of
green bonds. As a result of the research, it was revealed that investors reacted positively
to the announcements of new green bond issuances. Nonetheless, Ref. [28] found that
the green bond index is the most linked index to the carbon market compared to others.
Ref. [29] investigated the causality between green bonds and CO2 emissions, and the CO2
emission prices were found to be the Granger cause of the green bond prices, and such
causality was unilateral.

Ref. [11] investigated causality between the carbon emission market and the clean
energy market. As a result of the study, it was found that when the volatility in the clean
energy market was low, the clean energy market had a weak causal impact on the carbon
emission market. On the other hand, Ref. [30] determined that a unilateral causality existed
from stock markets to the CO2 emission market.

Ref. [31] investigated the causal relationship between China’s carbon emissions and
trade markets. As a result of the study, a strong bilateral non-linear causality relationship
was found between carbon emissions and trade markets. Similarly, Refs. [32–34] demon-
strated that dynamic spillover impacts existed between carbon emissions and energy
markets.

Ref. [1] explicated the asymmetric relationship between the carbon emissions trading
market and the stock market in China. As a result of their research, they found significant
and inverse long and short-term asymmetric associations between the carbon emissions
trading market and the overall stock market in China. Moreover, at the sector level, the
trading price of carbon emissions was found to be significantly correlated between some
energy-intensive sectors and the financial sector.

Unlike these studies, Ref. [35] investigated the volatility link between the S&P GCEI
and crude West-Texas-type crude oil (WTI), natural gas, kerosene, and fuel oil. As a result
of the analysis, the authors revealed weak volatility links among these groups. Ref. [36]
examined the dynamic link between solar, wind, and clean energy indexes. Ref. [37]
investigated the spillovers among global green bonds, WTI petroleum, and G7 stock
markets, and pointed out that spillovers were sensitive to the crisis. Ref. [38] investigated
the impact of the ICEA index of cryptocurrency environmental attention on clean energy
stocks as well as green bonds, and suggested that ICEA could be a diversification for clean
energy stocks and green bonds. Ref. [39] examined the association between green finance,
green technology, environmental responsibility, and clean energy. As a result of the analysis,
they found bilateral causality among the variables. Upon examining the results of the
studies in the literature, it is understood that EUA and S&P GCEI indexes are involved in
various sustainability index volatility spillover and receipts. In this context, the hypotheses
developed in the research study are as follows:

H1. There is a dynamic connectedness relationship between BIST sustainability index and EUA index.

H2. There is a dynamic connectedness between BIST 100 index and EUA index.

H3. There is a dynamic connectedness relationship between BIST sustainability index and S&P
GCEI index.

H4. There is a dynamic connectedness relationship between BIST 100 index and S&P GCEI index.

H5. There is a dynamic connectedness relationship between EUA index and S&P GCEI index.

Upon examining the literature on the subject, it is understood that few studies in-
vestigating the association between EUA and S&P GCEI exist, and no DCRs are detected
among the variables in these studies. Therefore, this study expands the relevant literature.
In addition, the relationship among the BIST 100 index, BIST sustainability index, clean
energy, and EUA has not been investigated before in the literature. The determination of
this situation constitutes the motivation of the study.
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3. Methodology
3.1. Dataset

S&P GCEI is designed to measure the performance of enterprises in both emerging and
developed markets, with a goaled constituent count of 100. EUA is designed to measure
the performance of the EUA market (https://www.spglobal.com/ (accessed on 10 January
2023)). BIST sustainability index is an index of companies whose shares are traded on BIST
and whose corporate sustainability performance is high. The BIST 100 index represents the
100 companies with the highest market values. “Clean” and “Carbon” variables used in
the study were obtained from www.spglobal.com (accessed on 10 January 2023); whereas
Bist100 and BistSust variables were obtained from www.investing.com (accessed on 10
January 2023) webpage. Closing datasets at the daily frequency cover the period of 11 April
2014–11 November 2022 for all variables. The datasets of the variables were converted into
return series with the formula ln(Pt/Pt−1) × 100, and then volatility series were obtained
by taking the squares of the return series.

3.2. Method

In this research study, the dynamic relationships among the 4 indexes used in the study
were examined by employing the TVP-VAR model. Ref. [40] proposed DCR measures
based on the TVP-VAR approach by developing connectedness measures based on the
fixed-length rolling window VAR approach originally introduced by [41–43]. The TVP-VAR
model is as follows [40]:

Yt = βtYt−1 + εt εt|Ft−1 ∼ N(0, St) (1)

βt = βt−1 + vt vt|Ft−1 ∼ N(0, Rt) (2)

zt−1 =


(

yt−1

yt−2
...

)

yt−p

 A′t =

(
A1t

A2t
· · ·

)

Apt

 (3)

Time-varying coefficients and error covariances are used to estimate the generalized
connectedness procedure based on Ref. [43] generalized impulse-response functions and
generalized estimation error variance decompositions developed by [44,45]. Here, Ωt−1
denotes all available information up to t − 1; yt and zt denote m × 1 and mp × 1 column
vectors, respectively; At and Ait are m×mp and m×m matrixes, respectively; εt represents
a m × 1 column vector; and ξt stands for a m2 p × 1 matrix. ∑t and Ξt are m ×m and m2

p ×m2 p time-varying variance-covariance matrixes, respectively. Also, vec(At) denotes
the vectorization of matrix At, which is a m2 p × 1 column vector. Prior estimation is
made to initialize the Kalman filter. Based on this fact, AOLS being equal to ∑A

OLS ve ∑OLS
VAR estimations:

vec(A0) ∼ N(vec(AOLS)), ∑A
OLS (4)

∑0 = ∑OLS (5)

In order to ensure numerical stability in the Kalman filter algorithm, the decay factors
suggested by [46] are determined as k1 = 0.99 and k2 = 0.99. Time-varying coefficients
and time-varying variance–covariance matrixes are utilized to estimate the generalized
connectedness procedure based on generalized impulse response functions (GIRF) and
generalized prediction error variance decompositions (GFEVD) developed by [44,45]. For
the estimation of GIRF and GFEVD, TVP-VAR needs to be transformed into a vector moving

https://www.spglobal.com/
www.spglobal.com
www.investing.com
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average (VMA) representation within the framework of the Wold decomposition theorem.
The VMA representation is transformed as follows:

yt = J′(Mt(zt−2 + ηt−1) + ηt) (6)

= J′(Mt(Mt(zt−3 + ηt−2) + ηt−1) + ηt) (7)

... (8)

= J′(Mk−1
t zt−k−1 +

k

∑
j=0

Mj
tηt−j) (9)

Here, Mt denotes a mp × mp matrix, ηt represents a mp × 1 column vector, and
J stands for a mp × m matrix. GIRFs

(
Ψij,t(H)

)
express the responses of all of the jth

variables to a shock in the ith variable. Since it is not a structural model, an H step-ahead
estimation of the ith variable both with and without a shock is made, and the difference
between them is attributed to the ith variable.

This is as follows:

GIRFt
(
H, δj,t, Ωt−1

)
= E

(
yt+H

∣∣ej = δj,t, Ωt−1
)
− E

(
yt+j|Ωt−1

)
(10)

Ψj,t(H) =
BH,t ∑t ej√

∑jj,t

δj,t√
∑jj,t

δj,t =
√

∑jj,t (11)

Ψj,t(H) = ∑− 1
2

jj,t BH,t ∑t ej (12)

GFEVD (
∼
φij,t(H)) representing the bilateral dependence from j to i is estimated and

the impact of the jth variable on the ith variable is explained in terms of estimation error
variance shares. The variance shares are normalized and all variables altogether explain
100% of the estimation error variance of the ith variable. Its mathematical expression is
as follows:

∼
φij,t(H) =

∑H−1
t=1 Ψ2

ij,t

∑m
j=1 ∑H−1

t=1 Ψ2
ij,t

(13)

Time-varying coefficients and error covariances are used to estimate the generalized
connectedness procedure based on Ref. [43] generalized impulse-response functions and
generalized estimation error variance decompositions developed by [44,45]. The total
directional connectedness (TDC) index is calculated as follows [40]:

Cg
t (J) =

ΣN
i,j=1,i 6=j

∼
φ

g

ij,t(J)

∑N
i,j=1

∼
φ

g

ij,t(J)
× 100 (14)

=
ΣN

i,j=1,i 6=j

∼
φ

g

ij,t(J)

N
× 100 (15)

The situation known as “TDC to others”, in which the ith variable transmits its shock
to all other jth variables, is as follows:

Cg
i→j,t(J) =

ΣN
j=1,i 6=j

∼
φ

g

ji,t(J)

∑N
j=1

∼
φ

g

ji,t(J)
× 100 (16)
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The situation known as “TDC from others”, in which the ith variable takes its shock
from other jth variables, is as follows:

Cg
i←j,t(J) =

ΣN
j=1,i 6=j

∼
φ

g

ij,t(J)

∑N
i=1

∼
φ

g

ij,t(J)
× 100 (17)

The “net TDC”, which may be interpreted as the “power” of the ith variable or its
impact on the network of all variables, is obtained by subtracting the TDC from the others
from the TDC to the others as follows:

Cg
i,t = Cg

i→j,t(J)−Cg
i←j,t(J) (18)

4. Findings

In this part of the study, the DCRs among the variables used are investigated by
employing the TVP-VAR model. In Figure 1, first of all, the time path graphs of the price
series of the variables are illustrated.
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Figure 1. Price series graphs of the variables used in the study.

Upon examining the price series graphs of the variables in Figure 1, it is understood
that there was a great deal of price variability within the last 2 years. Sudden price
decreases were observed in these indexes during the COVID-19 pandemic. With the decline
in the impacts of the pandemic, an increase existed in these variables until 2022. Since
the beginning of 2022, there has been a significant upward trend in these indexes. Unlike
the “Carbon”, “Bist100”, and “BistSust” variables, the “Clean” variable demonstrated
fluctuating price movements in 2022.

Figure 2 illustrates the volatility series graphs of the variables. The “Carbon” variable
has the highest volatility among the variables. Extreme increases in the volatility of all
variables are particularly apparent at the beginning of the pandemic and the Russia–Ukraine
conflict. However, although the “Carbon” variable has high volatility in all periods, high
volatility occurs in the “Clean”, “Bist100”, and “BistSust” variables from the beginning of
the COVID-19 pandemic to the end of 2022.
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Figure 2. Volatility series graphs of variables.

Table 1 presents the descriptive statistics of the volatility series. According to the
Jarque–Bera test results, it is seen that the variables are not normally distributed. In
addition, all variables are stationary at the first level. It is determined that the return series
of all variables used in the research are not normally distributed. According to the ERS
test developed by [47], all variables are stationary in their returns. Ref. [48] Ljung–Box
Q and Q2 test statistics indicate that the series contains various levels of autocorrelation.
The autocorrelation of the series indicates that it seems appropriate to employ a TVP-VAR
model with time-varying variances.

Table 1. Descriptive statistics of volatility series of variables.

Clean Carbon BistSust Bist100

Mean 2.89 1.893 3.141 3.041
Median 2.796 1.848 3.088 2.770

Std. Dev. 8.162 6.510 8.643 8.351
Skewness 0.863 *** 0.207 *** 1.576 *** 1.390 ***
Kurtosis −0.754 *** −1.261 *** 2.232 *** 1.611 ***

Jarque–Bera 295.309
(0.000)

146.579
(0.000)

1241.040
(0.000)

858.883
(0.000)

Observation 1997 1997 1997 1997

ADF −29.1768
(0.000)

−29.5029
(0.000)

−47.2091
(0.000)

−15.4165
(0.000)

Note: *** denotes significance at 1% level.

In Figure 3, the DCRs among variables are investigated with the TVP-VAR model.
There is a great deal of VS among the variables from 2017 to the beginning of 2020. Nev-
ertheless, with the outburst of the pandemic, the DCRs among the variables decrease, in
other words, the VS declines. Also, towards the end of 2022 and at the beginning of 2016,
the DCRs among all variables weaken.
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and “Carbon”, respectively) VSs received from the “Clean” variable. Nevertheless, 19.34% 
volatility from “Clean” spills over to other variables. Accordingly, “Clean” is a variable 
with a net volatility of 19.68%. 

Figure 3. Dynamic total connectedness relationship of variables.

In Figure 4, the shaded areas below zero level indicate the volatility received in the cor-
responding date or period, whereas shaded areas above zero level indicate volatility spilled
over in the corresponding date or period. According to the results, “Clean”, “BistSust”,
and “Bist100” are variables that experience volatility. However, the “Clean” variable is the
one from which volatility spills over at the end of 2022. The “Carbon” variable, however,
spills high volatility over in all periods. At the beginning of the COVID-19 pandemic, the
“Carbon” variable spills the highest volatility, whereas “Clean”, “BistSust”, and “Bist100”
variables experience the highest volatility during the same period.

Sustainability 2023, 15, x FOR PEER REVIEW 8 of 14 
 

 
Figure 3. Dynamic total connectedness relationship of variables. 

In Figure 4, the shaded areas below zero level indicate the volatility received in the 
corresponding date or period, whereas shaded areas above zero level indicate volatility 
spilled over in the corresponding date or period. According to the results, “Clean”, 
“BistSust”, and “Bist100” are variables that experience volatility. However, the “Clean” 
variable is the one from which volatility spills over at the end of 2022. The “Carbon” 
variable, however, spills high volatility over in all periods. At the beginning of the COVID-
19 pandemic, the “Carbon” variable spills the highest volatility, whereas “Clean”, 
“BistSust”, and “Bist100” variables experience the highest volatility during the same 
period. 

 
Figure 4. Net total directional relationships of variables. 

Table 2 indicates the average DCR results of the variables during the analysis period. 
Although the “Clean” variable alone accounts for 60.98% of the volatility change, other 
variables account for a total of 39.02%. 21.77%, 8.86%, and 8.39% (“Bist100”, “BistSust”, 
and “Carbon”, respectively) VSs received from the “Clean” variable. Nevertheless, 19.34% 
volatility from “Clean” spills over to other variables. Accordingly, “Clean” is a variable 
with a net volatility of 19.68%. 

Figure 4. Net total directional relationships of variables.

Table 2 indicates the average DCR results of the variables during the analysis period.
Although the “Clean” variable alone accounts for 60.98% of the volatility change, other
variables account for a total of 39.02%. 21.77%, 8.86%, and 8.39% (“Bist100”, “BistSust”,
and “Carbon”, respectively) VSs received from the “Clean” variable. Nevertheless, 19.34%
volatility from “Clean” spills over to other variables. Accordingly, “Clean” is a variable
with a net volatility of 19.68%.
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Table 2. Average dynamic connectedness of variables.

Clean Carbon BistSust Bist100
Volatility
Received
(FROM)

Clean 60.98 21.77 8.39 8.86 39.02
Carbon 4.34 79.51 7.96 8.20 20.49
BistSust 7.78 39.17 38.44 14.61 61.56
Bist100 7.23 39.77 14.41 38.59 61.41

Volatility
spilled over

(TO)
19.34 100.71 30.76 31.67 182.49

NET −19.68 80.22 −30.80 −29.73 60.83

Although the “Carbon” variable alone accounts for 79.51% of the volatility change, all
other variables account for a total of 20.49%. 8.20%, 7.96%, and 4.34% (“Bist100”, “BistSust”,
and “Clean” variables, respectively) VSs received from the “Carbon” variable. On the
other hand, 100.71% volatility from “Carbon” spills over to other variables. Accordingly,
“Carbon” is a variable from which a net 80.22% volatility spills over to others.

While “BistSust” accounts for 38.44% of the its volatility change, other variables
account for a total of 61.56% volatility. The most volatility (39.77%) from the “Carbon”
variable spills over to “BistSust”. In addition, 30.76% volatility of “BistSust” spills over to
other variables. Accordingly, “BistSust” is a variable that receives a net volatility of 30.80%.
Similarly, “Bist100” accounts for 38.59% of the volatility change, whereas the volatility of
the “Carbon” variable spills over to others the most, and a 31.67% net VS is received by the
“Carbon” variable. Lastly, since the connectedness among volatilities is quite high (60.83%),
portfolio diversification in terms of the mentioned indexes would not be efficient.

Figures 5 and 6 illustrate the volatility received by and spilled over to the variables
used in the study, respectively. In support of the results presented in Table 2, the Bist100
and BistSust variables usually receive VS, whereas “Carbon” is a variable from which
volatility spills over to others. On the other hand, there is a significant decrease in the
VS received by the “Clean” variable as of 2020. In Figure 7, it is seen that the volatility of
“Carbon” spills over to other variables. Moreover, the levels of volatility received by and
spilled over to other variables are quite low.
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In Figure 8, the VS among the volatility series of the variables used in the study are
illustrated in the form of a network graph. The blue circles in the graph illustrate the
variable(s) whose volatility spills over to others, whereas the yellow circles illustrate the
variables that receive VS. Also, the size of the circles indicates the magnitude of the spillover
impact. Accordingly, “Carbon” is the variable whose volatility spills over to others, whereas
“BistSust”, “Bist100”, and “Clean” are the variables that receive the VS. In other words,
the volatility of the “Carbon” variable spills over to the “BistSust”, “Bist100”, and “Clean”
variables. The arrows in the graph indicate the direction of the VS and the thickness of the
lines along with the arrows indicates the magnitude of the VS. Accordingly, the volatility



Sustainability 2023, 15, 6025 10 of 13

of the “Carbon” variable spills over more to the “BistSust” and “Bist100” variables than to
the “Clean” variable.
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5. Discussion and Conclusions

Comprehension of the DCR between the carbon emission market and the clean energy
market is crucial in investigating the interaction between CO2 emission allocation prices
and clean energy asset prices. It is also important for investors in terms of achieving
higher returns at lower risks from their well-diversified portfolios and improving portfolio
performance. Nonetheless, it is beneficial for the carbon emission market to take effective
measures to transfer conventional resources to clean sources, and encourage policymakers
with EUA prices.
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In this study, the DCRs among S&P GCEI, EUA, and BIST indexes were examined.
The daily data obtained over the period 11 April 2014–11 November 2022 were used. The
DCRs among the variables used in the study were investigated by employing the TVP-VAR
model. It was determined that the volatility of EUA spilled over to S&P GCEI, BIST 100,
and BIST sustainability indexes. During the COVID-19 pandemic, significant decreases
were detected in the volatility from carbon emission allowances that spilled over to the
S&P GCEI, BIST 100, and BIST sustainability indexes. In other words, the DCRs among
the markets weaken throughout the global crisis environments. This can be explained by
the fact that markets are more severely affected by other factors in crisis environments.
Furthermore, the major portion of the volatility from the EUA variable spilled over to the
“BistSust” variable. In other words, it can be claimed that the developing BIST sustainability
index is affected by the developed carbon emission market. Apart from these findings, it
was determined that there was weak VS from S&P GCEI to the BIST sustainability and
BIST 100 indexes. The finding suggesting that the volatility of EUA prices spills over to
S&P GCEI complies with the findings of Refs. [34,49,50].

5.1. Limitation and Future Research

This study, which investigated the DCRs among S&P GCEI, EUA, and BIST indexes,
has some limitations. First of all, the findings should be interpreted in terms of the periods
considered. Moreover, empirical findings may differ by different methods employed in
empirical studies. Nonetheless, the findings obtained in the study are valid for the BIST 100
and BIST sustainability indexes. It may contradict the findings of studies conducted with
the sustainability indexes of different countries’ markets. Also, measuring the clean energy
index with the S&P GCEI and the carbon emission with the EUA is another limitation of
the research.

Future studies may examine the interactions among EUA and other sustainability
and S&P GCEI indexes and green financial assets. Nonetheless, the associations between
sustainable crypto assets and clean energy indices and EUA can also be explored. Future
studies can examine the relationships of ESG indexes with sustainability indexes, stock
market indexes, and clean energy indexes. Moreover, in future studies, comparisons can be
made between the periods by categorizing them into groups such as the pre-COVID-19
period, the COVID-19 period, and the Russia–Ukraine war period. Finally, the volatility
spreads of sustainable market indices between emerging and developed country stock
markets can be compared.

5.2. Implications of the Study

Along with the raised environmental awareness in recent years, many countries prefer
cleaner and more efficient energy sources. In this context, the energy market stakeholders
are required to accurately assess and predict volatility and risk situations. A more stable
energy market affects economic activities and facilitates the execution of economic policies.
The stability of energy markets would benefit from preventing the deepening of the crises
and mitigating their impacts. Profit-seeking energy market stakeholders such as investors
and fund managers should consider the volatility spillover between the BIST sustainability
and BIST 100 indexes.

The findings of the research study provide several important implications for both
investors and policymakers. EUA has become an important investment instrument with
similar financial asset characteristics and high level of liquidity. With the decline in the
DCRs during the pandemic, it allows investors to diversify their portfolios in terms of
financial assets of the markets. In other words, portfolios containing enterprises pertinent
to clean energy and carbon emissions would be considered by financial participants who
are interested in environmental improvements. Furthermore, policymakers on this issue
can use the EUA as a tool to pressure highly polluted enterprises to use clean energy
for preventing climate change. Consequently, ethical investing seeks to support sectors
that create a positive impact, such as sustainable energy, and is often compliant with ESG
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investing. In this context, the findings of this study are important in terms of encouraging
investment in these sectors.
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