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Abstract: The Tibet Autonomous Region (TAR) is located in the mid-latitude and high-cold regions,
and the ecological environment in most areas is fragile. Studying its surface vegetation coverage
can identify the ecosystem’s development trends and provide a specific contribution to global
environmental change. The normalized difference vegetation index (NDVI) can better reflect the
coverage of surface vegetation. Therefore, based on remote sensing data with a resolution of 1 km2,
air temperature, precipitation, and other data in the same period in the study area from 1998 to 2019,
this paper uses trend analysis, F-significance tests, the Hurst index, and the Geodetector model to
obtain the spatial distribution, change characteristics, and evolution trends of the NDVI in the TAR
in the past 22 years. At the same time, the quantitative relationship between natural and human
factors and NDVI changes is also obtained. The study results show that the NDVI in the southern and
southeastern parts of the TAR is higher, with mean values greater than 0.5 showing that vegetation
cover is better. The NDVI in the western and northwestern parts of the TAR is lower, with mean
values less than 0.3, indicating vegetation cover is worse. NDVI in the TAR showed an overall
increasing trend from 1998 to 2019 but a decreasing trend in ridgelines, snow cover, and glacier-
covered areas. The areas where NDVI values show a trend of increasing and then decreasing in the
future account for 53.69% of the total area of the TAR. The most crucial factor affecting NDVI changes
in the TAR is soil type, followed by influencing factors such as vegetation cover type, average annual
air temperature, and average annual precipitation. The influence of natural elements is generally
more significant than anthropogenic factors. The influencing factors have synergistic effects, and
combining anthropogenic factors and other factors will show mutual enhancement and non-linear
enhancement relationships. This study provides a theoretical basis for natural resource conservation,
ecosystem restoration, and sustainable human development strategies in the TAR.

Keywords: normalized difference vegetation index (NDVI); spatial–temporal distribution
characteristics; Hurst index; Geodetector; meteorological and social factors; soil and land use types
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1. Introduction

As a producer of the terrestrial ecosystem, vegetation is closely related to natural
environmental elements such as climate, soil, topography, and water resources [1]. It
plays a crucial role in water conservation [2], soil erosion prevention [3], wind and sand
control [4], and ecosystem stability [5]. Therefore, studying vegetation cover in different
areas is crucial for ecological conservation in the region. Previous studies on the ecological
aspects of western China have focused on large areas such as the Tibetan Plateau and
the Taklamakan Desert. Still, to further study the characteristics of the local ecological
environment in these areas, targeted studies are needed in Tibet and Qinghai.

Because of the advantages of remote sensing technology tools, such as extensive range,
the ability to analyze long time series, and high resolution, they have become essential for
studying the ecological environment. Among them, the normalized difference vegetation
index (NDVI) can accurately respond to the status of surface vegetation cover and is thus
widely used to evaluate vegetation growth and development and ecological environment
changes [6]. Previous studies on NDVI changes and drivers using trend analysis, corre-
lation analysis, or partial correlation analysis have been conducted in different regions,
including globally, across Europe, in Asia, in China, in the Yangtze River Basin, in the
Yellow River Basin, and in the Qinghai–Tibet Plateau [7–12]. These methods have achieved
good results; however, they still need to meet the needs of the current research stage. The
Geodetector model proposed by Wang [13] et al. bridges the gap between the correlation
analysis methods used in previous studies. The technique has a greater advantage over
other methods in quantifying the relationship between the NDVI and related drivers [14].
For example, Gao [15] et al. found that the Geodetector model could better reflect the
spatial heterogeneity of vegetation cover and quantify the drivers of vegetation change
and the interactions between individual factors in their study of vegetation cover in the
Sanjiangyuan region. Wu (2022) et al. [16] used Geodetector to examine the spatial and
temporal variability in the NDVI and its dual response to climate change and human
activities in three northeastern provinces of China.

Vegetation restoration is one of the most effective ways to improve the ecological
environment and control soil erosion. Therefore, monitoring and predicting vegetation
cover is significant to regional ecological restoration and environmental management.
However, in the past, scholars mostly used Markov chains [17] or empirical function
models [18] to predict vegetation cover, and although their results are scientific, they are
less generalizable. The Hurst index is different from the traditional prediction models as
it is an important indicator that describes the long period of non-function. It can detect
the existence of ultra-long periodicity in a time series; thus, the Hurst index can be used
to predict the future growth of vegetation. For example, Han [19] used the Hurst index
to predict the future based on the current vegetation growth trend in the region, and
Zhang [20] predicted future vegetation growth in the Qinba Mountains.

To study the characteristics of the local ecological environment of the Tibetan Plateau in
western China and refine the driving mechanisms behind the local ecological environment,
the TAR was selected for this paper. The TAR is located in the southwestern part of the Ti-
betan Plateau, a region with complex soil types, diverse land use types, and rich vegetation
types, making studying vegetation conservation in the TAR extremely important. From a
review of previous studies, we found that earlier studies on the characteristics of vegetation
cover change in the TAR have used short time series or lower-resolution datasets. Thus,
their results have varied [21–23]. Meanwhile, previous studies on the factors influencing
the NDVI in the TAR have focused on air temperature and precipitation. These studies
needed to consider essential factors affecting vegetation growth, such as soil and land use
types. They needed more research on anthropogenic factors and the interaction between
anthropogenic and natural factors [24]. In addition, studies on predicting future growth
trends in the TAR have often used traditional mathematical and physical models [25–29].
Therefore, integrated trend analysis, Geodetector, and Hurst indices can better provide a
more detailed analysis of the local ecological environment.
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The response of plateau ecosystems to global climate change is obvious, but the fragile
environment in which plateau vegetation grows is highly vulnerable to damage by natural
and anthropogenic factors. Therefore, the purposes of this paper are as follows: to analyze
the evolution of the NDVI in the TAR between 1998 and 2019 using one-dimensional
linear regression and F-significance tests; to quantitatively study the significant effects
of natural and anthropogenic factors on the NDVI and their interactions on the NDVI
with the help of Geodetector; and to make reasonable predictions of future vegetation
growth trends using the Hurst index. These studies are intended to provide ecological and
environmental protection departments with a scientific basis and reference for decision
making in vegetation conservation and the formulation of relevant policies.

2. Material and Methods
2.1. Study Area

The TAR (located between 26◦50′ and 36◦53′ north latitude and 78◦25′ and 99◦06′ east
longitude) is located on the southwestern border of China and the southwestern part of the
Qinghai–Tibet Plateau; it covers an area of 1,228,400 square kilometers and is adjacent to
Xinjiang, Yunnan, and India. The TAR has a significant air temperature difference between
day and night, and precipitation gradually decreases from southeast to northwest. Its many
landscapes include snow-capped mountains, glaciers, deserts, grasslands, and primeval
forests. In addition, most parts of the TAR are characterized by low vegetation cover and
sparse population density.

2.2. Data

China’s annual normalized difference vegetation index (NDVI) data were obtained
from the Resource Environment Science Data Registration and Publication System (http:
//www.resdc.cn/, accessed on 10 December 2021) with a spatial resolution of 1 km. In
this paper, NDVI data, such as classification and merging, were preprocessed to obtain
vegetation data with a spatial resolution matching the climate factors. The digital elevation
model (DEM) is derived from the geospatial data cloud (http://www.gscloud.cn/, accessed
on 26 December 2021) with a spatial resolution of 30 m, which is used to calculate the slope
and aspect data. The average monthly air temperature data were obtained from the National
Earth System Science Data Center shared platform (http://www.geodata.cn/, accessed on
26 December 2021) with a spatial resolution of 0.0083333◦ (about 1 km). The NASA Data
Center provided month-by-month precipitation data (https://disc.gsfc.nasa.gov/, accessed
on 26 December 2021). Land use data were obtained from the Resource Environment
Science and Data Center (https://www.resdc.cn/, accessed on 28 January 2022). Soil type
data were obtained from Nanjing Soil Institute, Chinese Academy of Sciences. Vegetation
cover data were obtained from the Cold and Dry Zone Science and Data Center (westdc.
westgis.ac.cn, accessed on 30 January 2022). Gross regional product data were received from
China Knowledge Network (https://data.cnki.net/Yearbook/, accessed on 20 April 2022).
Population density data were obtained from East View Cartographic (https://landscan.
ornl.gov/, accessed on 20 April 2022).

2.3. Methods
2.3.1. Data Preprocessing

Figure 1 shows the study methodology. In the data collection and processing phase,
we obtained NDVI images for each year from 1998 to 2019 through maximum synthesis to
obtain vegetation cover maps. We processed the climate factor data through resampling to
derive air temperature and precipitation data consistent with NDVI resolution. In addition,
the DEM data were processed with the help of ArcGIS(10.8) software to obtain elevation,
slope, and aspect data. Soil types and land use types have also been reclassified. There is
also the gross regional product, which matches areas in ArcGIS software.

http://www.resdc.cn/
http://www.resdc.cn/
http://www.gscloud.cn/
http://www.geodata.cn/
https://disc.gsfc.nasa.gov/
https://www.resdc.cn/
westdc.westgis.ac.cn
westdc.westgis.ac.cn
https://data.cnki.net/Yearbook/
https://landscan.ornl.gov/
https://landscan.ornl.gov/
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Figure 1. The methodology framework of this study.

2.3.2. Spatial Trend Analysis Method

First, we used one-dimensional linear regression analysis and least squares to fit
the remote sensing images from 1998 to 2019. The NDVI slope within each raster was
statistically performed to obtain the multi-year trend in NDVI changes to comprehensively
analyze the direction and rate of multi-year vegetation cover change in the TAR. The
equation is as follows:

slope =
n×∑n

i=1 xiyi − (∑n
i=1 xi)(∑n

i=1 yi)

n×∑n
i=1 x2

i − (Σn
i=1xi)

2 (1)

where yi is the value of year xi; when slope > 0, there is an increasing trend, and when
slope < 0, there is a decreasing trend.

2.3.3. F-Test Method

To further evaluate the status of vegetation cover change, the F-test method was used
to analyze the significance of the NDVI change trend, which was used to indicate the
confidence level in the trend change.

a = y− (slope∗x) (2)

where a is the intercept, y is the 22-year NDVI mean, and x is the annual standard.

F = ∑n
i=1(ỹi − y)× n− 2

Σn
i=1(yi − ỹi)

2 (3)

where n is the study time series, ỹi is the fitted regression value, y is the mean of n years,
and yi is the value of year xi.

2.3.4. Hurst Predictive Analytics

The Hurst index was initially proposed by the British hydrologist Harold Edwin
Hurst and named after him. In his study of the relationship between water flow and
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storage capacity in the Nile’s reservoirs, he found that fractal Brownian motion was a good
description of the long-term storage capacity of the pools. Flood processes are time series
curves with a long memory associated with time. The longer the drought, the more likely
there will be a sustained drought; larger floods will still occur after a significant flood year.
The Hurst index is based on Hurst’s long-term hydrological observations of the Nile, and
this basis is proposedly established by rescaled polar difference (R/S) analysis. The Hurst
index has three forms: 1. If H = 0.5, it indicates that the time series can be described by
random wandering. 2. If 0.5 < H < 1, it indicates the existence of long-term memory in the
time series. 3. If 0 ≤ H < 0.5, it indicates pink noise (anti-continuity), i.e., a mean reversion
process. As long as H 6= 0.5, the time series data can be described by biased Brownian
motion (fractal Brownian motion).

2.3.5. Geodetector

Geodetector is a statistical tool to detect spatial heterogeneity and its driving factors. It
reveals the impact of geographical and environmental factors on geographical phenomena
through four sensors: risk detection, factor detection, ecological detection, and interactive
detection. Geodetector is collinear and immune to multiple independent variables and
does not require correlation analysis of variables to be conducted.

The steps for using Geodetector are divided into two parts. The first step is collecting
and processing data; the collected data consists of a dependent variable Y and an inde-
pendent variable X. The independent variable is a type quantity (e.g., air temperature or
precipitation). The independent variables selected in this paper have been converted into
numerical quantities in the experiments. The quantitative values have been discretized
and applied to the calculation of the Geodetector model. The second step is the software
readout; the specific operations are shown below.

Factor Detection

A factor detector was used to measure the magnitude of the determining power of
natural and anthropogenic factors on the spatial distribution of the NDVI in the TAR, and
the specific explanatory power of the elements was portrayed by q-values.

q = 1− ∑L
h=1 Nhσ2

h

Nσ2 = 1− SSW
SST

(4)

SSW = ∑L
h=1 Nhσ2

h (5)

SST = Nσ2 (6)

where h = 1 and L is the classification of independent variable Y or factor X. Nh and N
are the number of units in category h and the whole region, respectively. σ2

h and σ2 are
the variance of Y values in category h and the entire region, respectively. SSW is the sum
of the internal conflicts of the categories, and SST is the total variance of the whole area.
The value range of q is 0~1. The higher the value of q, the greater the factor’s influence on
NDVI spatial differentiation.

Interaction Detection

Interaction detection allows for identification of the interaction of different natural
and anthropogenic factors on the spatial distribution of the NDVI in the TAR. In addition, it
also assesses whether the mutual interaction between the factors increases or decreases the
explanatory power of the spatial distribution of the NDVI and whether the effects of these
factors on the spatial distribution of the NDVI in the TAR are independent. Interaction
detection was performed by calculating the q-value (q(X1∩X2)) of any factors X1 and X2
superimposed separately to determine whether and to what extent there was an interaction
between the elements. The interaction between them is shown in Table 1.
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Table 1. Analysis of the interaction between NDVI and different factors.

Judgment Basis Interaction

q(X1∩X2) < min(q(X1), q(X2)) Non-linear weakening
min(q(X1), q(X2) < q(X1∩X2) < max(q(X1), q(X2)) Single-factor nonlinear attenuation

q(X1∩X2) > max(q(X1), q(X2)) Two-factor enhancement
q(X1∩X2) = q(X1) + q(X2) Mutual independence
q(X1∩X2) > q(X1) + q(X2) Non-linear enhancement

Ecological Detection

Ecological detection is used to assess whether there is a significant difference between
the two factors on the spatial distribution of the NDVI in the attribute TAR and is measured
by F statistics:

F =
Nx1(Nx2 − 1)SSWx1

Nx2(Nx1 − 1)SSWx2

(7)

SSWx1 =
L1

∑
h=1

Nhσ2
n (8)

SSWx2 =
L2

∑
h=1

Nhσ2
n (9)

where Nx1 and Nx2 denote the sample sizes of the two factors X1 and X2, respectively.
SSWx1 and SSWx2 denote the sum of the internal variances of the strata in the stratification
formed by X1 and X2, respectively, and L1 and L2 represent the number of variable X1
and X2 strata, respectively. Where the null hypothesis H0: SSWx1 = SSWx2 . Suppose H0
is rejected at the significance level of α. In that case, this indicates significant differences
in the effects of the two factors X1 and X2 on the spatial distribution of the NDVI in the
attribute TAR.

Risk Detection

The risk detector analyzed each factor partition’s high- and low-value areas. The t-test
was used to test whether there was a significant difference (p < 0.05) between the NDVI
values of different sections of each factor. That is, it is possible to know whether there is a
substantial difference in the effect of independent variables on the spatial distribution of
the NDVI.

In summary, use of the Geodetector tool can determine the relationship between
the spatial distribution of NDVI vegetation and the spatial distribution characteristics
of the influencing factors; that is, if a factor drives change in the NDVI, then the spatial
distribution of the NDVI will be similar to the spatial distribution of that factor. This
method has now been successfully used to study the drivers of NDVI change.

3. Results
3.1. Characteristics of Time Dimensional NDVI Changes

Based on the obtained NDVI data, the average NDVI values from 1998 to 2019 were
calculated. Since the value of the NDVI is between 0 and 1, it is not easy to visually observe
the changing trend. The NDVI mean value obtained was expanded 10,000 times in the
experiment, and the results are shown in Figure 2. The NDVI of the TAR from 1998 to 2018
showed a fluctuating upward trend, increasing at a rate of 0.002 per year; however, there
were differences in the NDVI’s growth rate in different periods. The annual average value
of the NDVI is 0.305, and the difference between the maximum and minimum values is
0.052; the value of the NDVI shows an increasing trend year by year from 1998 to 2018,
which can indicate that the TAR has had good results in terms of vegetation protection
over the last 22 years. We also found that vegetation recovered faster in the years after 2010.
On the one hand, we found that average annual air temperature and precipitation had
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improved considerably since 2010 compared to the pre-2010 period, making it more suitable
for vegetation growth. On the other hand, during this period, the Chinese government paid
more attention to ecological protection, establishing a large number of natural ecological
reserves throughout the country, planting trees in arid areas, preventing wind and reducing
sand, and improving the vegetation growth environment in the TAR, which led to an
increase in the rate of vegetation recovery.
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Combining Figures 2 and 3, we can see that after a fluctuation in average annual air
temperature and average annual precipitation in the Tibet Autonomous Region from 1998
to 2019, the NDVI value of the following year will also fluctuate. As shown in Figure 1, the
NDVI in 2019 showed a definite downward trend. Corresponding to Figure 2, we find that
average annual air temperature and average annual precipitation in the Tibet Autonomous
Region also showed a precipitous decrease from 2017 to 2018. To ensure the preciseness of
the experiment, we also checked the natural disaster yearbooks of Tibet in 2019 and 2020.
In the yearbooks, we found that landslides occurred successively in Jiangda County of
Changdu City and Milin County of Linzhi City in October 2018, blocking the Jinsha River
and the Yarlung Zangbo River and forming barrier lakes. From December 17th to 19th, due
to the joint influence of the cloud system around the periphery of tropical storm “Petai” in
Bangladesh moving northward and the cold air in the north moving southward, slight to
moderate snow generally occurred in cities other than Ali. Some places experienced heavy
snow, with significant cooling after the snow. These sudden factors are also important
factors leading to a sharp decline in the NDVI value in 2019.

Through research in this area, we believe that air temperature and precipitation are
key factors affecting vegetation growth. The effect of air temperature and precipitation on
vegetation growth lags in the time dimension.
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(1998–2019).

3.2. Spatial Dimensional Variation Characteristics of the NDVI

By studying the change characteristics of the NDVI in the time dimension, we found
that the NDVI values in the TAR showed a gradual increase from 1998 to 2019. To clarify
the variation in NDVI values in each region, we also analyzed the variation characteristics
of the NDVI through the spatial dimension.

Firstly, vegetation cover in the TAR is divided into five categories: low vegetation
cover areas (≤0.1), medium–low vegetation cover areas (0.1–0.3), medium vegetation cover
areas (0.3–0.5), medium–high vegetation cover areas (0.5–0.7), and high vegetation cover
areas (≥0.7), which account for 9.89%, 55.83%, 13.75%, 11.77%, and 8.75%, respectively. As
shown in Figure 4, the highest coverage area in the TAR is in the Linzhi area, followed by
the Lhasa, Shannan, and Changdu areas; the NDVI value of the TAR as a whole decreases
from southeast to northwest, and the low vegetation coverage areas are mainly distributed
in the northern TAR and northwestern TAR.

Sustainability 2023, 15, x FOR PEER REVIEW 8 of 24 
 

 

Figure 3. Change trend of average annual air temperature (a) and average annual precipitation (b) 
(1998–2019). 

3.2. Spatial Dimensional Variation Characteristics of the NDVI 
By studying the change characteristics of the NDVI in the time dimension, we found 

that the NDVI values in the TAR showed a gradual increase from 1998 to 2019. To clarify 
the variation in NDVI values in each region, we also analyzed the variation characteristics 
of the NDVI through the spatial dimension. 

Firstly, vegetation cover in the TAR is divided into five categories: low vegetation 
cover areas (≤0.1), medium–low vegetation cover areas (0.1–0.3), medium vegetation 
cover areas (0.3–0.5), medium–high vegetation cover areas (0.5–0.7), and high vegetation 
cover areas (≥0.7), which account for 9.89%, 55.83%, 13.75%, 11.77%, and 8.75%, respec-
tively. As shown in Figure 4, the highest coverage area in the TAR is in the Linzhi area, 
followed by the Lhasa, Shannan, and Changdu areas; the NDVI value of the TAR as a 
whole decreases from southeast to northwest, and the low vegetation coverage areas are 
mainly distributed in the northern TAR and northwestern TAR.  

 
Figure 4. Vegetation coverage in the TAR. 

Secondly, trend regression analysis was used to analyze the trends in NDVI from 
1998 to 2019 on the pixel metric-scale for research, and the results are shown in Table 2 
and Figure 4. The regions with increasing NDVI trends accounted for 54.63% of the whole 
region, and those with decreasing NDVI trends accounted for 13.93%, with a clear 

Figure 4. Vegetation coverage in the TAR.

Secondly, trend regression analysis was used to analyze the trends in NDVI from 1998
to 2019 on the pixel metric-scale for research, and the results are shown in Table 2 and
Figure 4. The regions with increasing NDVI trends accounted for 54.63% of the whole
region, and those with decreasing NDVI trends accounted for 13.93%, with a clear difference
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between the two; the areas with significantly increasing NDVI values were mainly located
in the southeastern TAR (Linzhi, Changdu, and Shannan).

Table 2. Results of change trends in the study area as a percentage.

Trends The Proportion The Proportion of the Total Area
of the Study Area (%)

Severe degradation <−0.005 1.95%
Slight degradation −0.005–0.001 11.98%

No change −0.001–0.001 31.44%
Slight improvement –0.004 33.85%

Significant improvement >0.004 20.78%

This paper also finds a severe trend of vegetation degradation in glaciated, snow-
covered areas and the Himalayas. Combining the topographic and landscape data shows
that the northwestern Tibetan region, as well as the Himalayas, is higher in altitude with a
landscape type of snow-covered mountains and bare rock, while the landscape type in the
Ali region consists of raw land, desert, and some grassland. Although the vegetation cover
in these areas is very sparse and difficult to draw attention to, the vegetation in these areas
is sensitive to climatic changes and human damage. It is therefore necessary to analyze the
specific factors influencing vegetation cover in Tibetan areas by considering factors such as
air temperature, precipitation, altitude, and the type of ground cover.

As can be seen from Figures 5 and 6, the spatial distribution of average annual
precipitation and average annual air temperature is similar to the spatial distribution of
the NDVI, showing a gradually decreasing trend from southeast to northwest. The spatial
distribution of average annual air temperature coincides more closely with the spatial
distribution of the NDVI. In the southeastern part of the study area, the average annual
air temperature and average annual precipitation are numerically higher in the Linzhi,
Shannan, and Changdu areas, with the average annual air temperature remaining above
0 °C and the average annual precipitation remaining around 750 mm. The NDVI is generally
greater than 0.5, which is more suitable for plant growth than other areas; therefore, the
NDVI value increases significantly. In the glaciated, snow-covered, and Himalayan regions,
average annual precipitation and average annual air temperature are relatively low, with
average annual air temperatures remaining below 0 °C, average annual precipitation below
750 mm, and sparse vegetation cover, thus resulting in a slowly increasing trend in NDVI
values in this part of the region.
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This shows that precipitation and air temperature are important factors affecting plant
growth in the study area, which is consistent with the results of Wei [30] et al. on the
response of the NDVI to climate change across the Chinese region.

3.3. F-Significance Test and Hurst Prediction

The study in Sections 3.1 and 3.2 found that the high NDVI areas in the study area were
mainly distributed in the southeast Tibetan region, and the overall NDVI trend showed an
increasing trend. To further understand the direction of the NDVI and the future evolution
of vegetation in the study area, this study uses the F-significance test and the Hurst index
to conduct the following study.

The results of the F-significance test are shown in Figure 7a. The NDVI showed an
overall increasing trend, with a 72.56% increase and a 42.13% significant increase; 27.44%
of the area showed a reduction and 7.25% a significant reduction. Sites with a significant
increasing trend in NDVI were much larger than areas with a decreasing trend. The
significantly decreasing areas are mainly found in the snow-capped mountains, permanent
ice sheet areas, and the Himalayas. Combined with Figure 3a, it can be seen that the
average annual air temperature in the TAR increased from 1998 to 2019 relative to the
previous period, and the melting of permafrost caused by the increase in air temperature
caused soil moisture loss in areas with higher slopes, which in turn led to a reduction
in the NDVI for moisture-sensitive plants (e.g., meadows). At the same time, there is no
significant decrease in vegetation in the central part of the TAR or other mountain ranges.
As shown in Figures 4, 5 and 7a, the increasing trend in NDVI far exceeds the decreasing
trend, which may result from the gradual change in climatic and social factors in this part
of the region toward proper vegetation growth. The construction of ecological projects in
this area has also had a favorable impact on vegetation growth, resulting in a significant
increase in NDVI.

In addition, the spatial distribution map was calculated using the Hurst index for the
NDVI of the TAR from 1998 to 2019 (Figure 7b). From the figure, it can be seen that the
Hurst index ranges from 0.11065 to 0.86367, which meets the prediction criteria. A Hurst
index of less than 0.5 and greater than 0 accounted for 72.06% of the area, and the region
greater than 0.5 accounted for 27.94% of the area. This result indicates a definite inverse
trend in the future change of NDVI in the TAR. The future vegetation growth trend in
72.06% of the area improves before returning to the original state.

Finally, the results of the F-significance test and the Hurst index superimposed on
the analysis are shown in Table 3, which indicate that the future changes in NDVI values
in the TAR will mainly increase continuously. However, about 8.1% of the area shows a
continuous decreasing trend, primarily in the snow-capped regions of the TAR.
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Table 3. Table of trends (Hurst-predicted).

Level Percentage (%)

Decrease and Anti-Continuity 18.37
Decrease and Persistence Constant 0
Decrease and Positive Persistence 8.1
Increasing and Anti-Continuous 53.69

Increasing and Persistent 0
Increasing and Positive Persistence 19.88

3.4. Geodetector Analysis

Based on the findings in Sections 3.1 and 3.2, we can find that the spatial distribution
of the NDVI shows a robust spatial differentiation. To investigate the reasons for the spatial
differentiation of vegetation, we collated the driving mechanisms of soil type, land use,
and other factors related to vegetation change in the TAR for further study. As shown in
Figure 8, the spatial distribution of our selected drivers is similar to the spatial distribution
of vegetation in the study area (Figure 5). In this section, we used the Geodetector model to
further analyze the spatial variation in NDVI values and the drivers of the NDVI to reveal
the interactions between the various factors and their effects on NDVI change.
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Figure 8. Factors: type of soil (a), type of vegetation (b), land use type (c), elevation (d), slope (e),
aspect (f), population (g).

Using the previous trend analysis results and the F-significance test, 2000, 2005, 2010,
and 2015 were set as the characteristic years. Soil type, vegetation cover type, slope, slope
orientation, DEM, average annual air temperature, average annual precipitation, land use,
gross regional product, and population density were selected as the driving factors of the
vegetation index in the TAR (Table 4). The significance of the influence of a single element
on NDVI values and the result of the interaction between factors on NDVI values were
analyzed with the help of the Geodetector model. The results are as follows:

Table 4. Factors analysis.

Stability Factor

Soil type X1
Vegetation type X2

Slope X3
Aspect X4
DEM X5

Change factor

Average annual air temperature X6
Average annual precipitation X7

Land Use X8
Gross regional product X9

Population Density X10

3.4.1. Interaction Analysis

The results of data detection in the year 2000 are shown in Table 5. It was found that
the interaction detection results of slope orientation (X4) with soil, vegetation cover type,
slope, DEM, average annual air temperature, average annual precipitation, land use type,
gross regional product, and population density all showed non-linear enhancement. The
results of the interaction detections for the other factors are all bivariate enhancements. In
2005 and 2010, Geodetector interaction detections are consistent with the 2000 interaction
detections. However, in the 2015 treatment results, the interaction detection results of
population density, slope orientation with soil type, vegetation cover type, slope, DEM,
average annual air temperature, average annual precipitation, land use type, and the gross
regional product showed a two-factor enhancement. This result was different from other
years. The interaction of the influence factor of population density with other elements on
NDVI showed a stronger correlation than in previous years. This can indicate that human
activities will have a particular impact on vegetation, and the specific result of the effect
needs to be verified by the factor detection module of the Geodetector.
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Table 5. Results of interactive detection in 2000.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0.587
X2 0.704 0.457
X3 0.609 0.496 0.159
X4 0.602 0.469 0.181 0.004
X5 0.697 0.626 0.565 0.496 0.484
X6 0.698 0.603 0.529 0.435 0.530 0.423
X7 0.666 0.676 0.557 0.549 0.698 0.659 0.535
X8 0.679 0.568 0.466 0.440 0.607 0.594 0.661 0.430
X9 0.666 0.647 0.479 0.414 0.678 0.689 0.679 0.632 0.403

X10 0.589 0.473 0.184 0.026 0.488 0.426 0.537 0.437 0.413 0.016

The calculation results of the annual mean values from 1998 to 2019 differ from those
of 2000, 2005, and 2010. The interaction detection between aspect and population density
shows a non-linear enhancement. Population density is one of the most representative data
points that responds to human activities visually. Therefore, this result also indicates that
human factors have a role in influencing vegetation growth for NDVI values.

3.4.2. Ecological Analysis

Ecological detection results can detect whether there is a significant difference in the
impact of various factors on the NDVI. The survey results in 2000 showed no significant
difference in the effect of slope and population, average annual air temperature and land
use type, and average annual air temperature and regional gross domestic product on
the NDVI, while other factors have significant differences in NDVI values. The detection
results in 2005, 2010, and 2015 showed that there was no significant difference between
vegetation cover type and DEM, vegetation cover type and average annual precipitation,
vegetation cover type and land use type, aspect and population density, DEM and average
annual precipitation, and average annual air temperature and land use type in terms of
their effect on NDVI values.

The ecological detection results of the annual mean values from 1998 to 2019 are shown
in Table 6. There is no significant effect of slope and population density, average annual air
temperature, and land use on NDVI values. The results of the ecological analysis show that
vegetation cover type, slope, aspect, DEM, average annual air temperature, average annual
precipitation, population density, and land use significantly affect NDVI values in the TAR,
and there is no significant difference in the impact.

Table 6. Annual mean ecological detection results.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1
X2 Y
X3 Y Y
X4 Y Y Y
X5 Y Y Y Y
X6 Y Y Y Y Y
X7 Y Y Y Y Y Y
X8 Y Y Y Y Y N Y
X9 Y Y Y Y Y Y Y Y

X10 Y Y Y N Y Y Y Y Y
Note: Y indicates a significant difference in the effect of the two areas on vegetation NDVI, while N indicates no
significant difference (F-test at 95% confidence level).
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3.4.3. Factor Analysis

As shown in Table 7, the magnitude of the influence of each factor on the NDVI in the
TAR in 2000 is as follows: soil type > average annual precipitation > DEM > vegetation
cover type > land use type > average annual air temperature > gross regional product
> slope > population density > aspect. The factor detection results of annual average
values in 2005, 2010, and 2015, as well as from 1998 to 2019, all point to soil type having
the most significant influence on NDVI values in the TAR; the effect of aspect on NDVI
values is insignificant. The results of factor detection indicate that aspect and population
density as single factors do not have a significant impact on the NDVI in the TAR; soil type
and average annual precipitation as single factors are essential for studying the NDVI in
the TAR.

Table 7. Factor detection results in 2000 (a) and 2005 (b) and mean annual values (c).

a X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

q 0.587 0.457 0.159 0.004 0.484 0.423 0.535 0.430 0.403 0.016
p 0.000 0.000 0.000 0.159 0.000 0.000 0.000 0.000 0.000 0.000

b X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

q 0.581 0.473 0.171 0.004 0.477 0.446 0.492 0.449 0.337 0.018
p 0.000 0.000 0.000 0.157 0.000 0.000 0.000 0.000 0.000 0.007

c X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

q 0.576 0.458 0.153 0.002 0.475 0.445 0.539 0.441 0.222 0.013
p 0.000 0.000 0.000 0.019 0.000 0.000 0.000 0.000 0.000 0.000

3.4.4. Risk Analysis

The results of the risk detection can provide some reference value for ecological
conservation and vegetation restoration projects in the TAR. The suitable range or type of
factors is crucial for vegetation growth. The results of risk detection in the Geodetector
can be used to determine the content or type of elements suitable for vegetation growth.
Therefore, risk detection is used to explore areas with better vegetation growth in the TAR.
The basis of its interpretation is that the more significant the NDVI value, the better the
vegetation growth.

Risk Detection of Average Annual Precipitation

The results of both the factor and ecological surveys indicate that average annual
precipitation is one of the most critical factors influencing NDVI values in the TAR. The
precipitation interval most suitable for vegetation growth in the TAR can be derived through
risk detection, thus providing a valuable reference basis for vegetation conservation. As
shown in Table 8, the spatial distribution of vegetation cover in the TAR is consistent
with the spatial distribution of average annual precipitation. According to the natural
intermittent point classification, the average annual precipitation was divided into nine
subzones. The mean NDVI values usually increase with the increase in average annual
precipitation. They peaked in the area with the highest average annual precipitation, thus
indicating that precipitation promoted vegetation growth. The results showed that the
NDVI values of average annual precipitation subzone nine significantly differed from other
subzones. Therefore, the best vegetation cover was found in the range of 2840–3685 mm of
average annual precipitation in the TAR from 1998 to 2019.
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Table 8. Average annual precipitation risk detection results.

1 2 3 4 5 6 7 8 9

1
2 Y
3 Y Y
4 Y Y Y
5 Y Y Y Y
6 Y Y Y Y N
7 Y Y Y Y Y Y
8 Y Y Y Y Y Y Y
9 Y Y Y Y Y Y Y Y

NDVI 0.174 0.247 0.356 0.514 0.432 0.459 0.578 0.806 0.902
Note: Y indicates a significant difference in the effect of two areas on vegetation NDVI, while N indicates no
significant difference (confidence level is 95% F-test); numbers 1–9 indicate 97–294, 294–519, 519–758, 758–997,
997–1306, 1306–1771, 1771–2305, 2305–2840, and 2840–3684, respectively (unit: mm).

Risk Detection of Average Annual Air Temperature

In the experiment, average annual air temperature significantly affected the NDVI
in both interaction and factor detection. The interaction between average annual air
temperature and other factors on the NDVI in the TAR showed a two-factor enhancement
or non-linear enhancement trend. The results of risk detection show that NDVI values
increase with increasing average annual air temperature and that the highest NDVI values
are found in areas with the highest average annual air temperature, i.e., areas with better
vegetation cover. It is clear from Table 9 that NDVI values in the TAR increase with
increasing average annual air temperature and show a strong correlation with average
annual air temperature.

Table 9. Average annual air temperature risk detection results.

1 2 3 4 5 6 7 8 9

1
2 Y
3 Y Y
4 Y Y Y
5 Y Y Y Y
6 Y Y Y Y Y
7 Y Y Y Y Y Y
8 Y Y Y Y Y Y Y
9 Y Y Y Y Y Y Y Y

NDVI 0.169 0.188 0.235 0.339 0.384 0.415 0.617 0.873 0.92

The risk detection results of air temperature in 2005, 2010, and 2015 showed that
the higher the average annual air temperature, the higher the NDVI value, indicating a
positive correlation between air temperature and vegetation growth. The combined factor,
interaction, ecological, and risk detection results show that the interaction between air
temperature and other factors will further affect vegetation cover in the TAR.

Risk Detection of Soil Types

The results of the factor detection of soil type show that NDVI values in the TAR
significantly influence soil type (Table 10). At the same time, the interaction of soil type
with other factors enhances its impact on the NDVI. The results of the risk detection show
that red soils have a relatively significant effect on vegetation growth, with an NDVI value
of 0.904 in the red soil-covered area. Yellow-brown and swampy soils have a lower impact
on vegetation growth, with NDVI values of 0.751 and 0.728 in this covered area. The
NDVI values in the mountainous scrub-steppe soil, glacier, and snow-covered regions are
significantly lower than elsewhere. There were no significant differences in the effects of
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yellow-brown and boggy soils on NDVI, nor were there differences for glaciers, snow cover,
or lakes in terms of their effect on NDVI.

Table 10. Soil type risk detection results.

1 2 3 4 5 6 7 8 9

1
2 Y
3 Y N
4 Y Y Y
5 Y Y Y Y
6 Y Y Y Y Y
7 Y Y Y Y Y Y
8 Y Y Y Y Y Y Y
9 Y Y Y Y Y Y Y N

NDVI 0.904 0.728 0.751 0.327 0.603 0.359 0.469 0.241 0.239
Note: Y indicates a significant difference in the effect of NDVI on vegetation between the two areas, while N
indicates no significant difference (confidence level of 95%); numbers 1–9 indicate red soil, yellow-brown soil, bog
soil, mountain scrub soil, subalpine soil, alpine desert soil, glacial and snow cover, and lakes, respectively.

Risk Detection of Vegetation Cover Types

Vegetation cover type is an essential factor affecting the NDVI index in the TAR
(Table 11). Their risk detection results show that the NDVI value of evergreen forests (0.873)
is significantly higher than the NDVI value of other vegetation cover types. Broadleaf
evergreen forests, evergreen coniferous forests, deciduous broadleaf forests, and deciduous
coniferous forests are located in areas with better vegetation cover. There were no significant
differences in NDVI between dryland, agricultural land, and other vegetation cover types
or between bare ground and water and ice cover.

Table 11. Vegetation cover type risk detection results.

1 2 3 4 5 6 7 8 9

1
2 N
3 Y Y
4 Y Y Y
5 Y Y Y Y
6 Y N Y Y Y
7 Y Y Y Y Y Y
8 Y Y Y Y Y Y Y
9 Y Y Y Y N Y Y Y

NDVI 0.577 0.486 0.872 0.773 0.294 0.383 0.148 0.215 0.250
Note: Y indicates a significant difference in the effect of NDVI between the two areas, while N indicates no
significant difference (confidence level 95%); numbers 1–9 indicate dryland, agricultural land, evergreen forest,
deciduous forest, shrubland, grassland, bare land, water cover, and ice cover, respectively.

Risk Detection of Elevation

Altitude strongly correlates with human activity, plant growth conditions, and air
temperature (Table 12). The risk detection results for altitude show that altitude significantly
affects NDVI values in the TAR. The higher the altitude, the lower the NDVI values. The
best vegetation growth was found in areas with altitudes of −304–1274 m in the TAR, while
areas with altitudes above 4818 m had poor or no vegetation cover.



Sustainability 2023, 15, 5981 18 of 24

Table 12. Elevation risk detection results.

1 2 3 4 5 6 7 8 9

1
2 Y
3 Y Y
4 Y Y Y
5 Y Y Y Y
6 Y Y Y Y Y
7 Y Y Y Y Y Y
8 Y Y Y Y Y Y Y
9 Y Y Y Y Y Y Y Y

NDVI 0.92 0.904 0.837 0.645 0.528 0.365 0.279 0.253 0.182
Note: Y indicates a significant difference in the effect of two regions on NDVI, while N indicates no significant
difference (confidence level 95%); numbers 1–9 indicate −304–1274, 1274–2351, 2351–3324, 3324–4030, 4030–4486,
4486–4818, 4818–5117, 5117–5483, and 5483–8824, respectively (unit: m).

Risk Detection of Land Use Types

There was a high spatial correlation between land use types and NDVI values. Wood-
lands (woodland, shrubland, open woodland) had the highest NDVI values. In contrast,
the forest was not significantly different from agricultural land (dryland, paddy field),
other woodland, and high-cover grassland but was very different from other land use
types. Therefore, forest land, agricultural land, and high-cover gardens have the best vege-
tation cover. The land use types in the TAR are dominated by medium- and low-coverage
grassland and bare rock and stone land, accounting for 63.5% of total land use, of which
low-coverage grassland accounts for 51.7%. The second is unused land, accounting for
14.7%. From 1998 to 2015, the area of forest land and grassland in the TAR decreased, and
the area of arable land, lakes, and saline land increased; however, the size of the change
(region) was small and had little impact on the overall NDVI value in the TAR. Forest land,
cultivated land, and construction land account for a small proportion of the total area of the
TAR and are distributed in the central and high vegetation coverage areas in the east and
south of the study area. The climate conditions in this area are good, and the precipitation
is sufficient and suitable for human life and crop planting. The vegetation coverage is good,
and the NDVI value is high.

Based on the results of this ecological exploration experiment (Tables 13 and 14), it
can be found that the NDVI values of red soil, evergreen broad-leaved forest, evergreen
coniferous forest, areas with a slope more significant than 25◦, areas on a northern slope,
and areas with an elevation of −304–1274 m are the highest, indicating that the vegetation
growth of this suitable range or type is higher than that of other areas. At the same time, the
higher the average annual precipitation and the higher the average annual air temperature,
the higher the NDVI value. The correlation between GDP and population density and the
NDVI of the TAR is low.

Table 13. Suitable range or types of natural factors in 2000.

Factor Suitable Range or Type NDVI Values

Soil type Red soil 0.867

Type of vegetation cover Evergreen broad-leaved forest,
evergreen coniferous forest 0.851

Slope >25◦ 0.720
Aspect North 0.376
DEM −304–1274 m 0.920

Average annual air temperature 15–24 °C 0.920
Average annual precipitation 2840–3685 mm 0.901

Land use type Woodland 0.786
Gross regional product Relatively high areas 0.646

Population density Relatively high areas 0.600
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Table 14. Suitable range or types of natural factors in terms of mean annual values.

Factor
Suitable Range or Type

2005 2010 2015

Soil type Red Soil Red Soil Red Soil

Type of vegetation cover
Evergreen

broad-leaved and
coniferous forests

Evergreen
broad-leaved and
coniferous forests

Evergreen
broad-leaved and
coniferous forests

Slope >25◦ >25◦ >25◦

Aspect North North North
DEM −304–1274 m −304–1274 m −304–1274 m

Average annual air
temperature 15.8–24.7 ◦C 16.5–25.3 ◦C 15.6–24.4 ◦C

Average annual
precipitation 2746–3367 mm 3194–3845 mm 2762–3191 mm

Land use type Woodland Woodland Woodland

Synergy of Other Factors

The Geodetector results of the geo-probe show that single factors such as slope, aspect,
gross regional product, and population density have less influence on NDVI changes in
the TAR. Nevertheless, the interaction between these factors will enhance the impact of
NDVI changes.

The TAR has a vast territory and a large span, and the area is mainly composed of
high mountains and steep mountains. The slope types are divided into nine subzones (0–5,
5–12, 12–17, 17–25, 25–30, 30–37, 37–45, 45–58, 58–89 (unit: ◦)). The higher the slope, the
lower the significance of the effect on the NDVI. A slope below 25◦ significantly impacts
NDVI values, and there is a substantial difference between areas with a gradient above
25◦ and those with a slope below 25◦. There is no significant linear correlation between
the changing slope trend and NDVI values, so slope has little impact on NDVI in the TAR.
In the risk detection of aspect, we can see that the influence of aspect on NDVI values is
insignificant. The highest NDVI values are found in the north tip of the aspect, so it can be
judged that the vegetation cover of the north aspect is better compared to other regions.

The results of ecological detection for gross regional product reveal that the higher
the gross regional product, the higher the NDVI value. The ecological detection results
of population density are consistent with the regional gross domestic product. We have
investigated the population of the TAR over the years and found that the overall population
of the TAR increased slowly from 2000 to 2015. The apparent growth area is located in
Lhasa, the provincial capital of the TAR. The trend in the NDVI shows that the NDVI values
in and around Lhasa city have increased relative to the NDVI values in 2000, though the
magnitude of the change in NDVI is insignificant. The NDVI values in the southern and
southeastern TAR have changed significantly, but population density and regional GDP
growth are negligible. Therefore, population density and regional GDP have no significant
impact on the NDVI of the TAR.

At the same time, the result of factor detection also shows that the impact of population
density on the NDVI value of the TAR is relatively low. According to analysis of population
density data, the population density of the TAR is generally low, with a population density
of 1500 (people/km2) accounting for more than 80% of the total area; most of the densely
populated areas are distributed in Lhasa, Linzhi, Shannan, and Changdu. Air temperature,
precipitation, and other factors in these areas suggest that these areas are most suitable for
human life in the TAR, so it is difficult to explain the impact of population density on the
NDVI value of the TAR as a single factor. If this area is not considered, the NDVI will first
increase and then decrease with the increase in population density (for example, coastal
regions or areas with highly concentrated economies).
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4. Discussion

In the past few decades, under the influence of human activities and climate change,
vegetation coverage in most regions of China has gradually increased [10], especially
in northern areas such as Inner Mongolia and Xinjiang [31,32]. In the experiment, we
selected long time series NDVI data. Through the combination of multiple factors and a
comprehensive comparison of various methods, the experimental results are consistent
with the changing trend of NDVI in China. This result shows that vegetation in the TAR
grew well from 1998 to 2019 and that our experimental results are accurate.

In this study, we used the F-significance test and the Hurst index to analyze the
vegetation change trend in the TAR from 1998 to 2019 and used the Hurst index to predict
the future NDVI change trend in the TAR. Finally, we used four models of geographical
exploration to analyze the driving factors and the interaction of elements of the NDVI in the
TAR. In the following chapters, the research findings of this paper are discussed in detail.

4.1. Trend and Prediction Analysis of NDVI Changes

The study in this paper found that the vegetation index of the TAR has significant
spatial differences. The regions with higher vegetation coverage in the TAR are Linzhi,
Changdu, and Shannan. The central, northern, and western areas of the TAR have sparse
vegetation coverage, and the distribution of NDVI is similar to the spatial distribution of air
temperature and precipitation. This is relatively consistent with the research results of Feng
et al. [17]. The results of the geographical detector also show that vegetation growth in the
TAR is affected by both natural and human factors. Nevertheless, climate change is the
main driving force of vegetation growth in the study area. The results of the F-significance
test show that the changing trend of NDVI in the TAR from 1998 to 2019 shows an upward
trend, with the increased part accounting for 72.56% of the total area of the autonomous
region, which is consistent with the research results of Wu et al. [16]. The results show
that vegetation coverage in the TAR is gradually increasing, and the vegetation growth
status is good. The results of the F-significance test also showed that NDVI values in snow
mountains and permanent ice cover areas showed a downward trend. Combined with
the results of geographical detectors, we can see that the soil types and vegetation cover
types in the study area have a significant impact on the intensity and direction of the NDVI
change trend. At the same time, the spatial correlation is high, and the characteristics of
NDVI changes in terms of the change in soil type and vegetation cover type are consistent
with the research results of Sun [31] and Yang [32].

The results of related studies also show that current vegetation cover in the TAR is
poor [33]. Therefore, with the help of the Hurst index, future vegetation growth can be
predicted, and relative conservation measures can be made to develop vegetation. In this
paper, the Hurst index showed that 72.06% of the area in the TAR showed an inverse trend
in future vegetation growth, which is consistent with the results of Liu et al. [34]. In some
regions of the Himalayas and Ali, the vegetation growth trend will decrease. Therefore,
emphasis should be placed on protecting areas with low vegetation cover and areas where
the Hurst index predicts a decrease. At the same time, the supervision and protection of
areas prone to desertification and sandstorms should be increased.

4.2. Impact of Natural and Human Factors on NDVI

Climate change has a specific contribution to vegetation recovery [35]. Among the
influencing factors selected for this experiment, the influence of precipitation on the NDVI
in the TAR reached about 0.45, indicating that precipitation is one of the main factors
influencing changes in vegetation growth in the TAR; NDVI values increased first and then
started decreasing as average annual precipitation changes rose [10]. Additionally, intense
precipitation can significantly affect changes in the spatial and temporal dimensions of the
NDVI [36]. Yang et al. [37] suggested that air temperature was the main factor affecting the
NDVI in the TAR compared to the effect of precipitation on the NDVI. This result may be
due to the different time scales of the study and the various resolutions of the data used.
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From 1998 to 2019, the TAR experienced higher air temperature changes than China [38]
and lower precipitation than China [39]. The rapid increase in air temperature [40] and the
relatively stable precipitation [41] in the TAR have led to regional warming and drought [42].
Some studies have shown that alpine meadows and grasslands strongly respond to precipi-
tation [18]. In 2006, there was an extreme drought in the TAR that damaged pasture growth
and destroyed grassland ecosystems, decreasing the NDVI [17]. As the NDVI has a lagging
effect on precipitation [43], extreme weather in 2018 led to a sharp decrease in NDVI values
in the autonomous region in 2019. Extreme precipitation events had a more pronounced
effect on NDVI values than extreme air temperature events in the Tibetan Plateau region,
indicating that vegetation is more sensitive to changes in precipitation. This study showed
that the impact of precipitation on vegetation growth conditions was higher than that of
air temperature on the NDVI, which is consistent with the findings of Ichii et al. [35]. This
result will provide an essential basis for the study of vegetation cover in the TAR.

Elevation has an important influence on vegetation growth and human activities [44].
In the TAR, the topography is complex. The mountains are crisscrossed, with snow-
capped mountains and ancient ice caps in some areas, which have apparent constraints on
vegetation growth. The results of this experiment show that the influence of elevation on
the NDVI is about 0.25, and the ecological environment is suitable in areas below 4000 m
above sea level. The trend in vegetation cover with elevation changes first fluctuates
upwards, then plateaus, and finally sharply decreases. This is similar to the findings of Li
et al. [45].

Soil type is also an essential factor in determining the spatial variation of the NDVI [46].
Soil type not only affects the growth of plants but also limits vegetation’s spatial distribution.
In this experiment, soil type always appeared as the most influential factor in the results of
each investigation. This is consistent with the findings of Xin et al. [47].

In this experiment, human factors had a weak influence on the NDVI, which is
consistent with the results of Huang et al. [26]. This results from the fact that the TAR
is sparsely populated [48] and that the water and heat conditions in most areas are not
sufficient to supply vegetation growth and human life [49].

5. Summary and Conclusions

Using the NDVI, this study investigated the dynamic changes in vegetation in the TAR
from 1998 to 2019. It analyzed the correlation between the NDVI and soil type, vegetation
cover type, terrain factors (altitude, slope, and aspect), climate factors (air temperature
and precipitation), and human activity factors (population density, gross regional product,
land use type) using spatial trend analysis, F-significance tests, the Hurst index, and a
geographic detector. The main conclusions are as follows:

(1) The areas with good vegetation cover in the TAR are the Linzhi, Lhasa, Shannan,
and Changdu areas, and vegetation cover in Ali is the worst; the annual mean NDVI
values of the TAR from 1998 to 2019 show an overall increasing trend, and the linear
incremental rate for the mean NDVI value is 0.002/per year. The areas with severely
degraded vegetation cover account for 1.95% of the total area, and areas with significant
improvement account for 20.78%.

(2) The impact factors for NDVI in the TAR are ranked as follows: soil type > average
annual precipitation > DEM > vegetation cover type > land use type > average annual air
temperature > regional gross domestic product > slope > population density > aspect. The
main driving factors are soil type, average annual precipitation, and DEM, with respective
influences of about 0.58, 0.5, and 0.45.

(3) The influence factors for NDVI in the TAR in order of influence are as follows:
soil type > average annual precipitation > DEM > vegetation cover type > land use type
> average annual air temperature > gross regional product > slope > population density
> aspect. The main driving factors are soil type, average annual precipitation, and DEM,
with respective influences of about 0.58, 0.5, and 0.45.
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This study not only presents the trends of NDVI mean values in the TAR for 22 years
but also restores and predicts the past and future trends of the NDVI in space; meanwhile,
it quantitatively describes the strength of each factor in explaining the spatial variation of
the NDVI and provides a research direction for future vegetation protection in the TAR.
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