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Abstract: Elephants are one of the largest animals on earth and are found in forests, grasslands and
savannahs in the tropical and subtropical regions of Asia and Africa. A country like India, especially
the northeastern region, is covered by deep forests and is home to many elephants. Railroads are an
effective and inexpensive means of transporting goods and passengers in this region. Due to poor
visibility in the forests, collisions between trains and elephants are increasing day by day. In the last
ten years, more than 190 elephants died due to train accidents. The most effective solution to this
collision problem is to stop the train immediately. To address this sensitive issue, a solution is needed
to detect and monitor elephants near railroad tracks and analyze data from the camera trap near
the intersection of elephant corridors and railroad tracks. In this paper, we have developed a fog
computing-based framework that not only detects and monitors the elephants but also improves
the latency, network utilization and execution time. The fog-enabled elephant monitoring system
informs the train control system of the existence of elephants in the corridor and a warning light LED
flashes near the train tracks. This system is deployed and simulated in the iFogSim simulator and
shows improvements in latency, network utilization, and execution time compared to cloud-based
infrastructures.

Keywords: fog computing; internet of things; cloud computing; train–elephant collision; monitoring
framework; latency; network usage

1. Introduction

Collisions between trains and wildlife are a major problem in India. Indian Railway
(IR) operates one of the largest rail networks in the world with approximately 65,000 km
of track and 7500 stations. The extensive network of railways crosses a number of forests
around the world. This results in many collisions between trains and wildlife species on
the rail line. Collisions between trains and elephants account for a large percentage of
all collisions.

Wild animals travel great distances across the landscape daily, seasonally, and annually
in search of food, drinking water, habitat, and mates [1]. Past agricultural expansion has
most likely resulted in the loss and fragmentation of their native habitat. Transportation
systems (railroads, roads, and wetlands) or so-called “linear infrastructure” impede the
movement of wildlife populations in a growing industrialized world by fragmenting habitat,
increasing boundary effects, constricting ecological corridors, impeding wildlife movement,
and increasing mortality rates from direct collisions with motorized transport [2].

Figure 1 shows collisions between trains and elephants in Assam in 2018 and Tamil
Nadu in 2021. Not only elephants but other wildlife have been killed by trains around
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the world. From 1988 to 1990, an estimated 200 moose–train collisions were recorded
in British Columbia, Canada [3]. In 1980–1988, there were 266 collisions on the only 92-
kilometre railway track in Norway [4]. In addition, there were 725 collisions in Alaska in
9 years [5]. Kusta et al. [6] reported 69 accidents involving deer due to train collisions in
the Czech Republic.

Figure 1. Train–elephant collision in Assam [7] and Tamil Nadu [8].

Collisions between trains and elephants are not uncommon along the railway track
in the northern part of West Bengal between the Alipureduar–Siliguri route [9]. The
Guwahati–Lumding line in Assam and Meghalaya [10], the Thrissur–Coimbatore line in
Kerala and Tamil Nadu [11], and the Dehradun-Haridwar rail line in Uttrakhand [12] are
also accident-prone zones. According to [13], a total of 186 elephants died from 2009–2010
to 2020–2021 due to running over trains on railway tracks. As shown in Table 1, West
Bengal and Assam continue to be the hotspots of collisions today. Even in May 2020, an
elephant was dead after being hit by a goods train in the Giridih district of Jharkhand [14].
According to the Indian government report, 45 elephants will be killed by trains between
2019 and 2021. In 2020, 16 elephants were killed by collisions with trains in India [15].

Table 1. Indian State wise Elephant death due to train hit from 2009–2010 to 2020–2021 [13].

State Number of Death

Assam 62
West Bengal 57
Odisha 27
Uttarakhand 14
TamilNadu 5
Karnataka 3
Tripura 1
Uttar Pradesh 1

To reduce elephant deaths from the train–elephant collisions, we need to slow down
trains near the elephant corridor [16]. To do this, we must alert train drivers to the presence
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of elephants near the rail line. Elephant monitoring and tracking is the only prominent
solution to this problem. Continuous monitoring and tracking of elephants near the
corridor require enormous computing capacity. The cloud is the only prominent solution
to this problem. However, the major drawback of the cloud is latency. This latency is
a common condition that has a significant impact on action times. The main backbone
of the cloud is the data center. These data centers are geographically distributed across
the globe [17]. Deriving the network usage of the cloud is another major challenge. Fog
computing plays an important role in applications with latency. The main objective of this
research work is as follows (1) How does latency behave in fog computing compared to
cloud computing environments? (2) To improve the network utilization of fog compared to
the cloud. (3) Understanding the execution time in both environments. (4) Behaviour of the
cost of the execution matrices.

The remaining part of the article is structured as follows. A brief literature survey has
been recorded in Section 2. Later, in Section 3 the proposed system framework has been
demonstrated with a proper pictorial representation of the work. Experimental results and
comparative analysis has been highlighted in Section 4.2. Finally, the conclusion statements
and future directions of this study have been discussed in Section 5.

2. Literature Review

A considerable number of research articles have been published on the topic of fog
computing. CISCO first introduced fog Computing in 2014. Fog computing is an advanced
version of cloud computing with the concept of processing data near the end devices.
Cloud computing is one of the most emerging technologies in terms of service-oriented
models [18]. Durability, scalability, and cost efficiency are prominent aspects of the cloud.
However, in addition to these admirable features, there are also some drawbacks associated
with it. These include higher communication costs, higher energy consumption and longer
response time [19]. In this paper, the researchers have made a comparison between the fog
and cloud computing paradigms and concluded that fog reduces the delay in processing.
Fog node system software was deployed by Chang et al. [20] on ARM 64bit architecture
System on a Chip(SoC). Several applications such as smart parking systems, smart home
monitoring, smart retail and delivery systems have been demonstrated and found to
require low latency. Alrawais et al. [21] explained various privacy and security aspects
of IoT environments with fog computing. The study focused on certificate revocation
information between IoT endpoints. Few studies focused on energy consumption in cloud
environments [22,23].

A novel fog computing architecture called ’TelcoFog’ has been proposed by Villalta
et al. [24]. It is suitable for assimilated and ecosystem operators providing virtualized
network functions (NVF), multi-access edge computing (MEC), and IoT services. Low
latency is the main advantage of this architecture. An accident detection and emergency
response system has been deployed by Dar et al. [25]. They achieved better results on
fog compared to the cloud. Dastjerdi et al. [26] have presented a comprehensive study
on fog computing that includes motivations, principles, architecture, and applications. In
the article [27], the researchers discussed the working principles of fog, the transmission
of data between IoT devices, the characteristics of fog computing, various components
used in fog, and various applications based on fog computing. Several studies have
shown that the latency of the cloud-based system is much higher than that of the fog-based
implementations of the system [25,28]. Fog computing reduces network traffic and provides
support for scalability, an important feature of IoT frameworks [26]. Network utilization
is one of the most important parameters in fog computing environments for time-critical
real-time applications. Network utilization must be minimized in a fog environment.
Several studies have been conducted on monitoring systems with fog computing. Several
studies have been conducted on monitoring systems with fog computing. Numerous
studies have attempted to explain emergency efficiency for fog computing in the IoT
environment [29,30].
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Chen et al. [31] presented a system for monitoring traffic speed using fog computing
in urban areas. The objective of the study was not only to track the speed of vehicles
but also to track multiple agents using a single-agent tracking algorithm. Gaocheng
et al. [32] proposed a fog-based public surveillance system. In that article, the problem of
object tracking latency was addressed. This article addressed problems such as slow speed
and unfulfilled results in the presence of large illumination variations. The study proposed
a correlation filter-based tracker to solve the problem and deployed it in the fog computing
environment. In the article [33], the researchers proposed a monitoring system based on
fog computing to reduce the general conflict in the public. The researchers used the geo-
distribution of fog computing to maintain citizens’ security ethics and privacy requirements.

Data fusion and artificial intelligent-based a fog-assisted framework: FogSurv pro-
posed by Munir et al. [34]. The main objective of this paper was to provide situational
awareness (SA) and rapid response to emergencies using airborne urban surveillance. The
research found an improvement in latency of about 37% over the cloud architecture. Shing
et al. [35] proposed a cyber-physical system (CPS) for intelligent monitoring in the educa-
tion sector. To achieve the goal of minimizing delay and reducing energy consumption. An
OpticalFog node is proposed to be deployed in the middleware of the cloud to meet the
requirements. Another study discovered a comparative analysis between cloud and fog in
article [36].

Fathy et al. [37] proposed a weapon detection architecture based on fog computing
and SDN using the YOLOv5 model. This study demonstrated how the YOLO model detects
objects very fast. Fog computing-enabled smart city planning with a vehicle detection
model is described in the article [38]. A greedy algorithm-based intrusion detection was
proposed using fog computing in an IoT environment ‘[39]. In article [40], a fog computing-
based surveillance system is proposed for crime and vulnerability detection. The researcher
studied traffic surveillance using fog computing in the article [41]. Some security-related
studies were covered in articles [42–44]. Intelligent security surveillance systems using fog
computing suggested by the study [45]. The study used PTZ control cameras for proper
camera movements. This research considered audio along with the video in the proposed
surveillance system using fog computing [46].

Collectively, these studies provide important insights into the latency and network
usage parameters in the fog computing domain.

3. The Proposed System Framework

Monitoring elephants next to the railroad tracks is one of the biggest challenges.
Enormous computational resources are required to autonomously monitor an elephant
near a railroad track, as shown by the fog-supported elephant corridor in Figure 2. For
continuous monitoring of elephants, intelligent cameras are generally used. In bad weather
and night monitoring specialised infrared cameras are suitable options. New Flateye
Cameras by Hanwha Techwin is a solution to this bad weather problem. New Flateye
Cameras consist of 2 Megapixel QNE-6080RV(W) and 4 Megapixel QNE-7080RV(W) along
with the application of a ( 3.2∼10 mm) × 3.1 electric varifocal lens allows viewing angles
to be freely adjusted. In addition, the infrared (IR) light function features make the camera
effective even at night time [47]. Intelligent cameras are installed along the railroad tracks,
recording video at 5-millisecond intervals and sending it to the server for processing. The
processing takes place in the cloud and sends the result to the actuator. This allows the
train driver to see the light and stop the train. However, the cloud-centric system is not
latency sensitive. The cloud takes a measurable amount of time to respond. The cost is also
higher compared to fog-enabled systems. Therefore, a fog-enabled system is proposed for
elephant monitoring.
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Figure 2. Fog-Assisted Elephant Corridor Over the Railway Track.

The system consists of a cloud server, a fog node, a proxy server, an intelligent camera
(sensor), an actuator light, and a camera controller (microcontroller). The architecture
consists of three layers. The first layer consists of smart cameras, and actuator lights—all
things that are used along railroad tracks. The first layer is responsible for taking photos of
elephants near the railroad tracks. Layer 1 also controls the camera through the camera
controller module. Layer 2 contains fog nodes. The fog node is responsible for processing
data. The elephant detector and elephant tracker modules are deployed in the fog node
at layer 2. The elephant detector detects the elephant, and the elephant tracker calculates
the coordinates of the elephant. A fog node is nothing more than a host in cloud com-
puting. The top layer is layer 3, and this layer consists of a proxy server and a cloud. In
Figure 3, we can see that the proposed elephant monitoring architecture has been imple-
mented with a fog-based scenario.Due to limited resources and huge establishment costs,
this study was not physically implemented. The study is simulated by a globally accepted
simulator iFogSim.

3.1. Workflow of the Designed Framework

Figure 4 shows the application model of the elephant monitoring system using the
iFogSim simulator. The application model consists of Motion_detection, Elephant_detection,
Elephant_tracker, Camera_control, and Light_inter f ace modules. The motion detector ex-
tracts the moving part from the raw video and sends it to the next module elephant detector.
The motion detector module is also integrated with the camera. The elephant detector is used
in the fog node. After receiving the data from the previous module, the elephant detector
processes the data and detects the elephant using various object detection algorithms. It
takes the data from the motion detector and sends it to the elephant tracker. The elephant
tracker module is also used on the fog node. Elephant tracker receives the information
from the previous module and continuously tracks the elephant using camera actuators.
At the same time, a message is sent to the base station or forest office. The base station
manager forwards the message to the train driver. As a result, the train driver can stop the
train immediately.
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Figure 3. Workflow diagram of Proposed Framework.

Figure 4. Application model for Elephant Detection & Monitoring in Simulator(iFogSim).

For real-time object detection neural network-based models are used. You Only Look
Once (YOLO) is one of the most prominent object detection models used for real-time
detection (see Section 3.2). This model requires a massive computation capability. Cameras
are not sufficient to do so. Therefore, it is required to deploy this model at the nearest fog
node unit.

Algorithm 1 describes a few simple steps for an object (elephant) detection process.
Popular object detection algorithms are discussed in Table 2.
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Algorithm 1: Steps for Elephant Detection
Input: Camera Stream Video
Output: Detection of elephants from image
1. Initialization of the system

a. Set Camera

2. Image Acquisition

a. Capture the image of elephant

3 Image segmentation

a. Input the image in RGB format
b. Convert RGB image in grayscale (black and white) image
c. Apply effective threshold technique
d. Image is ready for final segmentation

4. Applying image enhancement techniques

a. Noise removal process from image

5. Elephant detection

a. Extract the elephants from the image

Table 2. Popular Object Detection algorithms.

Algorithm Descriptions

Fast R-CNN Fast Region-Based Convolutional Network
Faster R-CNN Faster R-CNN
HOG Histogram of Oriented Gradients
R-CNN Region-based Convolutional Neural Networks
R-FCN Region-based Fully Convolutional Network
SSD Single Shot Detector
SPP-net Spatial Pyramid Pooling
YOLO You Only Look Once

Although Table 2 describes a few models, this study considers YOLO using python
OpenCV.

3.2. You Only Look Once (YOLO)

You Only Look Once is an advanced objection model which is known for object
detection in real-time [48]. It is a deep learning-based model. Generally, the YOLO model
works fast, it can process nearly 45 frames per second. Fast YOLO can process up to
155 frames per second. Due to this high frame rate, it can also process videos with less than
25 milliseconds of latency. In YOLO, a single convolution network simultaneously predicts
many boundary boxes and then a classifier is applied to the boxes. After the classifications
post-processing is applied to the boxes. Other R-CNN and its variations model used
numerous steps to accomplish object detection. These models are comparatively slow
due to their separate training components requiring training independently. Whereas,
YOLO works on end-to-end architecture which simultaneously acts as the region-based
proposal and classifications, thus making a faster outcome. The YOLO model is depicted
in Figure 5. The image has been divided into an S × S grid, and each cell is interested in
predicting 5 + k (k is the set of classes) quantities, including the likelihood (confidence)
that this cell is actually contained in a truthful bounding box, the height and width of
the bounding box, it’s centre (x, y), and the likelihood that an object in the bounding
box belongs to the kth class (k-values). As a result, the output layer has S × S × (5 + k)
elements. Here, the network consists of 24 convolutional layers followed by 2 connected
layers. Additionally, the 1 × 1 convolutional layer is used to reduce the feature space. It
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makes the final prediction using a probability map and boundary boxes with a confidence
score. This study implements YOLO object detection using python OpenCV [49].

Figure 5. Neural network architecture of YOLO [48].

Figure 6 illustrates the internal architecture of the fog node used for object detection.
The fog node is responsible for storing data, deploying the learning model, scaling, and
resource provisioning. The fog node also contains a learning knowledge base and resource
manager.

Figure 6. Fog node system view.

In this study, the deep learning model YOLOv5 is used for training the data set. The
customised data set contained 500 images of elephants. 100 elephant images were used for
validation. The google collab platform is used to train this model. The model is trained
with 100 epochs, and the batch size is 16. Figure 7 illustrates the sample of elephant
detection using YOLOv5 model.
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Figure 7. Sample elephant detection using YOLOv5.

3.3. Modules Used in Application Model

Motion detection: This module is connected to the intelligent camera. The camera
captures the stream of pictures. The motion detection module extracts the moving element
from this image and sends the data to the next module for further processing.

Elephant detection: This elephant detection module receives the data sent by the
motion detection module. This module extracts the image of the elephant from the received
data. This detection is done based on different image segmentation techniques. One of the
detection techniques is explained in simple steps in the previous Algorithm 1. This module
also computes the location of each elephant. Table 2 shows some popular algorithms used
for real-time detection.

Elephant tracker: The elephant tracking module receives information from the ele-
phant detection module. This module calculates the optimal camera position based on the
elephant’s last coordinate. This information is sent to the next camera control module.

Camera Control: The camera control module receives various parameters from the
elephant tracker module and moves the camera according to these values.

Light Interface: Based on the presence of elephants, the elephant detection module
sends the information to the light interface. This module controls the lighting installed next
to the railroad tracks.

Table 3 represents the amount of data generated by the camera sensor after a 5-
millisecond interval. That CPU length (Mill. Ins.) represents the number of instructions
present on that data and tupleNWlength (Bytes) represents the size of data in Bytes. That is
similar to the Video Stream tuple type in Table 4.

Table 3. Sensor Configuration for Elephant Monitoring.

CPU Length (Mill. Ins.) tupleNWlength (Bytes) Interval Time

1000 million instruction 20,000 Bytes 5 ms

Table 4. Inter-module edges properties in the Elephant Detection & Monitoring Application.

Tuple Type CPU Length (Mill. Ins.) tupleNWlength (Byte)

Video Stream 1000 20,000
Motion Detection Stream 2000 2000
Elephant Detection 500 2000
Elephant Location 1000 100
Camera Control Info. 100 100

Figure 8 shows the data sequence diagram of the entire system. This figure contains
cameras, including a sensor and an actuator, a fog node, a LED light base station, and a rail
driver. In our simulation process, the camera is nothing more than a fog device. Within
the device, two primary operations take place: (1) recording the raw video. (2) Detecting



Sustainability 2023, 15, 5944 10 of 19

the motion video and uploading the video to the fog node. Figure 8 consists of four nodes
connected by communication links. After the task is placed in this fog node for processing,
the fog nodes coordinate with each other. The result is reflected on the LED light and the
elephant detection base camp/station.

Figure 8. A Sequence diagram of Proposed Framework.

4. Performance Evaluation
4.1. Experimental Setup

The proposed elephant monitoring framework using fog is implemented in the
iFogSim toolkit. The simulation setup used in the article uses the default setup that
comes with the iFogSim simulator. Researchers in the field of fog computing are using the
same setup in the literature. We did not modify the simulation parameters in the iFogSim
rather created an application module and mapped the proposed problem. The proposed
framework is applied to reduce the delay and network load of the system. The basic idea
is to process the data near the data source instead of remotely. The fog-enabled system
processes the data at the fog level. On the other hand, the cloud-based system processes
the data in the cloud.

The architecture of both (fog and cloud) scenarios deployed on the iFogSim toolkit [50]
simulator, an extension of the very popular cloud simulator CloudSim. The iFogSim toolkit
is one of the promising simulation tools for fog and IoT simulations. Compared to other fog
simulation tools, it provides better modelling of virtualized fog architecture that supports
scalability and dynamic resource management and provisioning, as well as the ability to
simulate fog computing applications. Considering all factors, fog architecture successfully
reduces various parameters such as execution delay, network utilization, execution time
and execution cost. Reducing execution delay is one of the most important improvements
in fog scenarios.

To understand the differences between the two frameworks, it is obvious to simulate
the same workload. The architectures were implemented and simulated in the Java-based
simulator iFogSim. Essentially, five experiments were conducted in the cloud and fog
scenarios. Experiment-1, Experiment-2, Experiment-3, Experiment-4, and Experiment-5,
are configured based on the number of sensors (cameras), fog devices, and cloud. The
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details of the camera configuration are shown in Table 7. However, Figure 9 shows the
topology of Experiment-4 in fog scenarios. Figure 10, on the other hand, shows the topology
in the cloud.

Figure 9. Fog enabled Topology for Experiment-4.

Figure 10. Cloud enable Topology for Experiment-4.

Various fog devices, actuators, and sensors were used for simulation purposes. The
host is the physical component on which all computations take place. The characteristics
of each host are based on various parameters, such as the ×86 architecture used and the
Linux operating system installed on each host. In the iFogSim simulator, these fog nodes,
actuators and sensors are used as a Java list class. A bottom-up approach was used in
this framework. The application method is the layout of the basic framework. The edge
devices are attached to the bottom layer, the fog is in the middle, and the cloud layer is
on top. The fog broker manages all the tasks that come from the lower layers. Everything
is done in the fog broker, from assigning tasks to a specific host to calculating the results.
The Mapping module maps the different modules to specific fog devices. The properties
of the edges between modules are shown in Table 4. The table describes the size of data
transferred between the modules. Tuple type represents the type of data transferred from
one module to another. CPU length (Mill. Ins.) describes the required computation power
needed to process this data. Whereas the tupleNWlength (Byte) denotes the size of the data
transferred between modules in bytes. Each physical device such as fog, proxy and cloud
is derived from Fog devices in the simulator. This means that each fog device has its own
memory, ram, processor, etc. The actual properties of the physical devices are described in
Tables 5 and 6.
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Table 5. Value of parameters of Fog, Proxy and Cloud for the fog-based scenario.

Parameter Cloud Proxy Fog

CPU length (MIPS) 44,800 2800 2800
RAM (MB) 40,000 4000 4000
Level 0 1 2
Up-link Bandwidth (MB) 100 10,000 10,000
Down-link Bandwidth (MB) 10,000 10,000 10,000
RatePerMIPS 0.01 0.0 0.0
Busy Power (Watt) 16 × 103 107.339 107.339
Idle Power (Watt) 16 × 83.25 83.43 83.43

Table 6. Value of parameters of Cloud and Router for the cloud-based scenario.

Parameter Cloud Router

CPU length(MIPS) 44,800 2800
RAM (MB) 40,000 4000
Level 0 1
Up-link Bandwidth (MB) 100 10,000
Downlink Bandwidth (MB) 10,000 10,000
RatePerMIPS 0.01 0.0
Busy Power (Wathe tt) 16 × 103 107.339
Idle Power (watt) 16 × 83.25 83.43

It is necessary to conduct the experiment based on workload traces generated by real
systems so that the simulation-based approaches to evaluations are more acceptable. But
at the moment there is no such workload. The work consists of five experiments. In each
experiment, multiple cameras are installed in the system. The cameras generate a set of
video data that serves as a workload in each module. The camera configuration in each
experiment is shown in Table 7.

Table 7. Number of Cameras are installed in cloud-based.

Experiment No Number of Cameras

Experiment-1 4
Experiment-2 8
Experiment-3 12
Experiment-4 16
Experiment-5 20

Table 8 illustrates the network latency between devices of physical topology. Gigabyte
LAN is installed between cameras and fog nodes. For transferring data to the cloud the
system uses an ISP-provided internet connection through a gateway.

Table 8. Network description of physical topology.

Source Destination Latency (Milliseconds)

Camera Fog node 2
Fog node Proxy (Gateway) 2
Camera Router (Gateway) 2
Proxy/Router (Gateway) Cloud (DC) 100

4.2. Results and Analysis

The performance of the proposed architecture for detecting and monitoring elephants
in fog is implemented and simulated using the popular simulation toolkit iFogSim. In
this section, various parameters are analyzed, such as latency-based metrics, network
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utilization-based metrics, execution time-based metrics, and execution cost-based metrics.
Each experiment compares the results of the fog-based environment with a cloud-based
environment. The analysis of the results and the graph-based comparison are explained
individually in the following subsections.

4.2.1. Analysing Latency Based Metrics

Latency is the key parameter that must be reduced in high-performance computing
environments. The main advantage of fog computing is that it performs computations
at the edge of the network, often avoiding access to the cloud. Consequently, the fog
provides a fast response to the actuator, minimizing latency. Video captured by the camera
is transmitted to the fog node for processing. A fog node is available at the edge of the
network for all cameras. Since there is a separate fog node for each area, there is enough
computing power available to process and detect the object from the data. Once the
elephant is detected, information about its presence is available in moments at LED. On the
other hand, the location information of the camera control module and the camera control
information take a little more time. The latency is calculated using Equation (1) from [50].

Latencyled = α + β + γ (1)

where α is the time taken to capture the video stream, and β is the time to upload the video
on the fog node for processing and storage purposes. Finally, γ is the time to transmit the
information to the LED lights after finishing the detection process on the fog node.

Equation (1) calculates the latency of elephant detection. Whereas, Equation (2)
calculates the latency of elephant tracking also via PTZ (Pan − Tilt − Zoom) camera.

Latencycamera−control = α + β + γ + θ + φ (2)

where α, β and γ represent the same as Equation (1). In Equation (2), θ is the time transmis-
sion of elephant location to elephant tracker module. Finally, φ is the time to transmit the
camera control information from the elephant tracker to the intelligent camera controller.

Figure 11 represents a comparative analysis of Latency in Elephant Detection in fog
and cloud environments respectively. In Figure 11, the x-axis denotes Physical Topology
Configurations and the y-axis denotes delay in milliseconds. The points represent the
amount of time taken using each experiment from the x-axis. Similarly, Figure 12 represents
a comparative analysis of Latency in Elephant Monitoring in both the environments where
the x-axis represents Physical Topology Configurations and the y-axis represents the delay
in milliseconds respectively.

Figure 11. Analysing Latency Based Metrics: Average delay of the control loop (Elephant Detection).
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Figure 12. Analysing Latency Based Metrics: Average delay of the control loop (Elephant Monitoring).

4.2.2. Analysing Network Usages Based Metrics

Figure 13 shows the network usage of the elephant detection and monitoring applica-
tion for both deployment strategies. The more devices connected, the higher the network
utilization of a system. Similarly, the network load is higher in cloud scenarios than in
fog. The fog-based design uses a low-latency edge link for data-intensive communications.
Modules such as the elephant detector and elephant tracker are deployed in fog, which
significantly reduces the network load. Equation (3) calculates the network usages [50].

Network Usage = Latency × ξ (3)

where ξ represents tupleNWSize .

Figure 13. Analysing Network Usage Based Metrics.

4.2.3. Analysing Execution Time-Based Metrics

Figure 14 demonstrates that the execution time increases when the transmission rate
and the number of devices increases. The x-axis shows Physical Topology configurations
and, the y-axis shows Execution time in milliseconds. However, this figure clearly shows
that the execution time is gradually increasing in each experiment.
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Figure 14. Analysing Execution time Based Metrics.

4.2.4. Analysing Cost Based Metrics

One of the main objectives is to reduce the cost of the entire system. Figure 15 shows
the execution cost of applications in fog and cloud scenarios. The execution cost consists of
energy consumption cost, network configuration cost, and operational cost. Equation (4)
shows the calculation of the total system cost [51]. In Figure 15, the x-axis represents the
cost of execution.

Tcost = Ecost + (TMIPS × Lu × RMIPS × Ltimes × Ci) (4)

where Tcost represents Total Execution Costs, Ecost represents Execution cost, Ci represents
CloudSim clock, TMIPS represents total MIPS of the host,RMIPS represents rate per MIPS,
Ltimes represent last utilization update time, and Lu represents last utilization.

Figure 15. Analysing Cost of Execution Based Metrics.

4.3. Analysing YOLO Model for Elephant Detection

Equation (5) represents the formula for calculating the precision parameter. Whereas,
Equation (6) demonstrates the formula for calculating the recall parameter.

Precision =
TruePositives

(TruePositives + FalsePositives)
(5)

Recall =
TruePositives

(TruePositives + FalseNegatives)
(6)

Figure 16 contains the precision graph and recall graph of elephant detection using
YOLOv5. Figure 16a depicts the precision graph. Here the x-axis represents the number
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of epochs and the y-axis represents precision values. This graph illustrates, how the
precision values are behaves over the number of epochs. It clearly states that the precision
is improving over the epoch. Figure 16b represents the recall graph. Here the x-axis
represents the number of epochs and the y-axis represents recall values.

(a)

(b)

Figure 16. Analysing Precision and Recall Metrics. (a) Precision Metrics; (b) Recall Metrics.

5. Conclusions and Future Scope

The main objective of the current study is to reduce train–elephant collisions on
railroad tracks by developing a framework based on fog computing. The main finding
from this research is that the fog computing environment provides comparatively better
results on several parameters. These parameters include latency, network utilization, cost
of execution, and execution time. The present results clearly support the relevance of the
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fog computing-based model for elephant monitoring. The study was designed to determine
the improvements of fog computing over the cloud. The results of the study indicate that
the detection and monitoring of elephants near railroad tracks require lower latency, lower
execution time, lower execution cost, and minimal network utilization. All models are
simulated in the widely used simulator for fog computing called iFogSim. This approach
will prove useful in expanding our understanding of how a fog computing approach is
beneficial for latency-sensitive IoT applications. The scope of this study was limited in
terms of real-world deployment. Although the current study is based on a simulator, the
results suggest several positive outcomes. The question that this study raises is what type
of detection algorithm is used to detect elephants. The researchers can use machine learning
techniques to update the knowledge base of the system. A better object detection algorithm
can be implemented for performance improvements.
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MEC Multi-Access Edge Computing
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SPP-net Spatial Pyramid Pooling
LAN Local Area Network
YOLO You Only Look Once



Sustainability 2023, 15, 5944 18 of 19

References
1. Fryxell, J.M.; Sinclair, A.R.; Caughley, G. Wildlife Ecology, Conservation, and Management; John Wiley & Sons: Hoboken, NJ,

USA, 2014.
2. Forman, R.T.; Deblinger, R.D. The ecological road-effect zone of a Massachusetts (USA) suburban highway. Conserv. Biol. 2000,

14, 36–46.
3. Joyce, T.L.; Mahoney, S.P. Spatial and temporal distributions of moose-vehicle collisions in Newfoundland. In Wildlife Society

Bulletin; John Wiley & Sons: Hoboken, NJ, USA, 2001; pp. 281–291.
4. Andersen, R.; Wiseth, B.; Pedersen, P.H.; Jaren, V. Moose-train collisions: Effects of environmental conditions. Alces J. Devoted

Biol. Manag. Moose 1991, 27, 79–84.
5. Modafferi, R.D. Train moose-kill in Alaska: Characteristics and relationship with snowpack depth and moose distribution in

lower Susitna Valley. Alces J. Devoted Biol. Manag. Moose 1991, 27, 196–207.
6. Kusta, T.; Hola, M.; Keken, Z.; Jezek, M.; Zika, T.; Hart, V. Deer on the railway line: Spatiotemporal trends in mortality patterns of

roe deer. Turk. J. Zool. 2014, 38, 479–485.
7. Editor. Assam: 5 Elephants Killed by Speeding Train. 2018. Available online: https://arunachal24.in/assam-5-elephant-killed-

by-speeding-train// (accessed on 18 December 2022).
8. Thomus, W. Train Hits Elephant near Tamil Nadu-Kerala Border, Severely Injuring It. 2021. Available online: https:

//www.thehindu.com/news/cities/Coimbatore/train-hits-elephant-near-tamil-nadu-kerala-border-severely-injuring-it/
article34073039.ece (accessed on 18 December 2022).

9. Roy, M.; Baskaran, N.; Sukumar, R. The death of jumbos on railway tracks in northern West Bengal. Gajah 2009, 31, 36–39.
10. Sarma, U.; Easa, P.; Menon, V. Deadly Tracks—A Scientific Approach to Understanding and Mitigating Elephant Mortality Due

to Train Hits in Assam. Wildlife Trust of India. New Delhi. 2006. Available online: http://www.indiaenvironmentportal.org.in/
files/Deadly%20Tracks.pdf (accessed on 13 December 2022).

11. Jha, N.; Sarma, K.; Bhattacharya, P. Assessment of elephant (Elephas maximus) mortality along Palakkad-Coimbatore railway
stretch of Kerala and Tamil Nadu using geospatial technology. J. Biodivers Manag. For. 2014, 1, 2.

12. Singh, A.; Kumar, A.; Mookerjee, A.; Menon, V. Jumbo Express—A Scientific Approach to Understanding and Mitigating
Elephant Mortality Due to Train Accidents. Animal Welfare, September 2001. Available online: https://wti.org.in/wp-content/
uploads/2017/03/pub_jumbo_express.pdf (accessed on 14 December 2022).

13. Wilson, T. 186 Elephants Killed on Railway Tracks in over 10 Years: MoEFCC. 2021. Available online: https://www.thehindu.com/
news/national/186-elephants-killed-on-railway-tracks-in-over-10-years-moefcc/article34558401.ece (accessed on 18 December
2022).

14. PTI. Elephant Killed after Being Hit by Goods Train in J’khand. 2022. Available online: https://theprint.in/india/elephant-
killed-after-being-hit-by-goods-train-in-jkhand/946488/ (accessed on 19 December 2022).

15. Editor. 45 Elephants Killed in Train Accidents in 2019–2021: Govt. 2022. Available online: https://indianexpress.com/article/
cities/bangalore/45-elephants-killed-train-accidents-in-2019-2021-govt-8071210/ (accessed on 20 December 2022).

16. Roy, M.; Sukumar, R. Railways and Wildlife: A Case Study of Train-Elephant Collisions in Northern West Bengal, India; Springer: Cham,
Swtizerland, 2017; pp. 157–177.

17. Mandal, R.; Mondal, M.K.; Banerjee, S.; Biswas, U. An approach toward design and development of an energy-aware VM
selection policy with improved SLA violation in the domain of green cloud computing. J. Supercomput. 2020, 76, 7374–7393.

18. Mandal, R.; Mondal, M.K.; Banerjee, S.; Srivastava, G.; Ghosh, U.; Alnumay, W.; Biswas, U. MECpVmS: an SLA aware
energy-efficient virtual machine selection policy for green cloud computing. Cluster Comput. 2022, 26, 651–665.

19. Mukherjee, M.; Shu, L.; Wang, D. Survey of fog computing: Fundamental, network applications, and research challenges. IEEE
Commun. Surv. Tutor. 2018, 20, 1826–1857.

20. Chang, Y.C.P.; Chen, S.; Wang, T.J.; Lee, Y. Fog computing node system software architecture and potential applications for
NB-IoT industry. In Proceedings of the 2016 International Computer Symposium (ICS), Chiayi, Taiwan, 15–17 December2016; pp.
727–730.

21. Alrawais, A.; Alhothaily, A.; Hu, C.; Cheng, X. Fog computing for the internet of things: Security and privacy issues. IEEE
Internet Comput. 2017, 21, 34–42.

22. Mandal, R.; Mondal, M.K.; Banerjee, S.; Chatterjee P.; Mansoor W.; Biswas, U. PbV mSp: A priority-based VM selection policy
for VM consolidation in green cloud computing. In Proceedings of the 5th International Conference on Signal Processing and
Information Security (ICSPIS), Dubai, United Arab Emirates, 7–8 December 2022; pp. 32–37.

23. Mandal, R.; Mondal, M.K.; Banerjee, S.; Chatterjee, P.; Mansoor, W.; Biswas, U. Design and implementation of an SLA and
energy-aware VM placement policy in green cloud computing. In Proceedings of the 2022 IEEE Globecom Workshops (GC
Wkshps), Rio de Janeiro, Brazil, 4–8 December 2022; pp. 777–782.

24. Vilalta, R.; López, V.; Giorgetti, A.; Peng, S.; Orsini, V.; Velasco, L.; Serral-Gracia, R.; Morris, D.; De Fina, S.; Cugini, F.; et al.
TelcoFog: A unified flexible fog and cloud computing architecture for 5G networks. IEEE Commun. Mag. 2017, 55, 36–43.

25. Dar, B.K.; Shah, M.A.; Shahid, H.; Naseem, A. Fog computing based automated accident detection and emergency response
system using android smartphone. In Proceedings of the 2018 14th International Conference on Emerging Technologies (ICET),
Izmir, Turkey, 12–14 September 2018; pp. 1–6.

https://arunachal24.in/assam-5-elephant-killed-by-speeding-train//
https://arunachal24.in/assam-5-elephant-killed-by-speeding-train//
https://www.thehindu.com/news/cities/Coimbatore/train-hits-elephant-near-tamil-nadu-kerala-border-severely-injuring-it/article34073039.ece
https://www.thehindu.com/news/cities/Coimbatore/train-hits-elephant-near-tamil-nadu-kerala-border-severely-injuring-it/article34073039.ece
https://www.thehindu.com/news/cities/Coimbatore/train-hits-elephant-near-tamil-nadu-kerala-border-severely-injuring-it/article34073039.ece
http://www.indiaenvironmentportal.org.in/files/Deadly%20Tracks.pdf
http://www.indiaenvironmentportal.org.in/files/Deadly%20Tracks.pdf
https://wti.org.in/wp-content/uploads/2017/03/pub_jumbo_express.pdf
https://wti.org.in/wp-content/uploads/2017/03/pub_jumbo_express.pdf
https://www.thehindu.com/news/national/186-elephants-killed-on-railway-tracks-in-over-10-years-moefcc/article34558401.ece
https://www.thehindu.com/news/national/186-elephants-killed-on-railway-tracks-in-over-10-years-moefcc/article34558401.ece
https://theprint.in/india/elephant-killed-after-being-hit-by-goods-train-in-jkhand/946488/
https://theprint.in/india/elephant-killed-after-being-hit-by-goods-train-in-jkhand/946488/
https://indianexpress.com/article/cities/bangalore/45-elephants-killed-train-accidents-in-2019-2021-govt-8071210/
https://indianexpress.com/article/cities/bangalore/45-elephants-killed-train-accidents-in-2019-2021-govt-8071210/


Sustainability 2023, 15, 5944 19 of 19

26. Dastjerdi, A.V.; Gupta, H.; Calheiros, R.N.; Ghosh, S.K.; Buyya, R. Fog computing: Principles, architectures, and applications. In
Internet of Things; Elsevier: Amsterdam, The Netherlands, 2016; pp. 61–75.

27. Dastjerdi, A.V.; Buyya, R. Fog computing: Helping the Internet of Things realize its potential. Computer 2016, 49, 112–116.
28. Saharan, K.; Kumar, A. Fog in comparison to cloud: A survey. Int. J. Comput. Appl. 2015, 122, 10–12.
29. Gupta, S.; Garg, R.; Gupta, N.; Alnumay, W.S.; Ghosh, U.; Sharma, P.K. Energy-efficient dynamic homomorphic security scheme

for fog computing in IoT networks J. Inf. Secur. Appl. 2021 , 68, 102768.
30. Atlam, H.F.; Walters, R.J.; Wills, G.B. Fog computing and the internet of things: A review. Big Data Cogn. Comput. 2018, 2, 10.
31. Chen, N.; Chen, Y.; Song, S.; Huang, C.T.; Ye, X. Smart urban surveillance using fog computing. In Proceedings of the 2016

IEEE/ACM Symposium on Edge Computing (SEC), Washington, DC, USA, 27–28 October 2016; pp. 95–96.
32. Liu, G.; Liu, S.; Muhammad, K.; Sangaiah, A.K.; Doctor, F. Object tracking in vary lighting conditions for fog based intelligent

surveillance of public spaces. IEEE Access 2018, 6, 29283–29296.
33. Grambow, M.; Hasenburg, J.; Bermbach, D. Public video surveillance: Using the fog to increase privacy. In Proceedings of the 5th

Workshop on Middleware and Applications for the Internet of Things, Rennes, France, 10–14 December 2018; pp. 11–14.
34. Munir, A.; Kwon, J.; Lee, J.H.; Kong, J.; Blasch, E.; Aved, A.J.; Muhammad, K. FogSurv: A fog-assisted architecture for urban

surveillance using artificial intelligence and data fusion. IEEE Access 2021, 9, 111938–111959.
35. Singh, K.D.; Sood, S.K. Optical fog-assisted cyber-physical system for intelligent surveillance in the education system. Comput.

Appl. Eng. Educ. 2020, 28, 692–704.
36. Mondal, M.K.; Mandal, R.; Banerjee, S.; Biswas, U.; Chatterjee, P.; Alnumay, W. A CPS based social distancing measuring model

using Edge and Fog computing. Comput. Commun. 2022, 194, 378–386.
37. Fathy, C.; Saleh, S.N. Integrating deep learning-based iot and fog computing with software-defined networking for detecting

weapons in video surveillance systems. Sensors 2022, 22, 5075.
38. Chen, N.; Chen, Y.; Ye, X.; Ling, H.; Song, S.; Huang, C.T. Smart city surveillance in fog computing. In Advances in Mobile Cloud

Computing and Big Data in the 5G Era; Springer: Berlin/Heidelberg, Germany, 2017; pp. 203–226.
39. Reddy, D.K.K.; Behera, H.S.; Nayak, J.; Naik, B.; Ghosh, U.; Sharma, P.K. Exact greedy algorithm based split finding approach for

intrusion detection in fog-enabled IoT environment. J. Inf. Secur. Appl. 2021, 60, 102866.
40. Rawat, R.; Chakrawarti, R.K.; Vyas, P.; Gonzáles, J.L.A.; Sikarwar, R.; Bhardwaj, R. Intelligent Fog Computing Surveillance

System for Crime and Vulnerability Identification and Tracing. Int. J. Inf. Secur. Priv. (IJISP) 2023, 17, 1–25.
41. Chen, N.; Chen, Y.; You, Y.; Ling, H.; Liang, P.; Zimmermann, R. Dynamic urban surveillance video stream processing using fog

computing. In Proceedings of the 2016 IEEE Second International Conference on Multimedia big data (BigMM), Taipei, Taiwan,
20–22 April 2016; pp. 105–112.

42. Das, D.; Banerjee, S.; Chatterjee, P.; Ghosh, U.; Biswas, U. A Secure Blockchain Enabled V2V Communication System Using Smart
Contracts. IEEE Trans. Intell. Transp. Syst. 2022, 1–10.

43. Das, D.; Banerjee, S.; Dasgupta, K.; Chatterjee, P.; Ghosh, U.; Biswas, U. Blockchain Enabled SDN Framework for Security
Management in 5G Applications. In Proceedings of the 24th International Conference on Distributed Computing and Networking
(IIT), Kharagpur, India, 4–7 January 2023; pp. 414–419.

44. Singh, P.; Nayyar, A.; Kaur, A.; Ghosh, U. Blockchain and Fog Based Architecture for Internet of Everything in Smart Cities.
Future Internet 2020, 12, 61.

45. Sarkar, I.; Kumar, S. Fog computing based intelligent security surveillance using PTZ controller camera. In Proceedings of the
2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, Indonesia,
6–8 July 2019; pp. 1–5.

46. Ledakis, I.; Bouras, T.; Kioumourtzis, G.; Skitsas, M. Adaptive edge and fog computing paradigm for wide area video and audio
surveillance. In Proceedings of the 2018 9th International Conference on Information, Intelligence, Systems and Applications
(IISA), Zakynthos, Greece, 23–25 July 2018; pp. 1–5.

47. Techwin, H. Flateye Cameras. 2018. Available online: https://www.hanwhasecurity.com/products-page/security-cameras/
form-factor/flateye/ (accessed on 22 December 2022).

48. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788.

49. Chandan, G.; Jain, A.; Jain, H. Real time object detection and tracking using Deep Learning and OpenCV. In Proceedings of the
2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 11–12 July 2018;
pp. 1305–1308.

50. Gupta, H.; Vahid Dastjerdi, A.; Ghosh, S.K.; Buyya, R. iFogSim: A toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing environments. Software Pract. Exp. 2017, 47, 1275–1296.

51. Hassan, S.R.; Ahmad, I.; Ahmad, S.; Alfaify, A.; Shafiq, M. Remote pain monitoring using fog computing for e-healthcare: An
efficient architecture. Sensors 2020, 20, 6574.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.hanwhasecurity.com/products-page/security-cameras/form-factor/flateye/
https://www.hanwhasecurity.com/products-page/security-cameras/form-factor/flateye/

	Introduction
	Literature Review
	The Proposed System Framework
	Workflow of the Designed Framework
	You Only Look Once (YOLO)
	Modules Used in Application Model

	Performance Evaluation
	Experimental Setup
	Results and Analysis
	Analysing Latency Based Metrics
	Analysing Network Usages Based Metrics
	Analysing Execution Time-Based Metrics
	Analysing Cost Based Metrics

	Analysing YOLO Model for Elephant Detection 

	Conclusions and Future Scope
	References

