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Abstract: Community detection can reveal specific urban spatial structures related to human
activities, and is achieved using mobility data from various sources. In the existing research, less
attention has been devoted to communities related to urban transit travel. As public transit is a key
component of the urban transport system, it is important to understand how transit communities
are organized and how they evolve. This research proposes an approach to urban transit travel
community detection using transit travel data and examines how the communities have evolved
over time. The results in Shenzhen from 2015 to 2017 showed that the transit travel network had an
obvious community structure, and the components (TAZs in this case) of the communities changed
over time. During the three years, the western part of Shenzhen experienced more component
changes on weekdays, and the central part of the city underwent more component changes on
weekdays. In addition, the transit travel communities had a significant coupling relationship with
urban administrative divisions. Exploring transit travel communities provides insight for improving
public transit systems and enriches the research genealogy of urban spatial structure.

Keywords: travel network of transit; community structure; transit smart card; dynamic evolution;
Shenzhen

1. Introduction

The spatial structure of a city is the spatial expression of the interaction among various
elements such as the material environment, socio-economic factors, and transportation
facilities in the city; it has always been the focus of research in the field of urban planning.
In recent years, with the advancement of urbanization, the “space–time compression” effect
caused by rapid social economy and transit development has significantly enhanced the spa-
tiotemporal convenience of urban travel [1–3]. The functionality and network connectivity of
cities has been strengthened, leading to the rapid evolution of urban spatial structures [4–7].
Analyzing urban spatial structures and their evolution from a macro perspective can help
improve insights into sustainable urban space development, thus allowing for intelligent
spatial decision making in urban planning and management [8,9]. It is also an important
scientific path for promoting and achieving inclusive sustainable urbanization.

Traditional urban spatial structure planning is mainly based on natural topography,
transportation infrastructure, land use properties, etc. Studies of these elements are com-
bined with the qualitative research and judgment derived from the subjective analyses of
planners to mainly identify the “static” state of the physical conditions [10]. The devel-
opment of information and communications technology (ICT) has enabled the collection
of large-scale, high-resolution spatiotemporal big data. Big data have transformed tradi-
tional research on community structures [11,12] and promoted the development of service-
oriented cities and urban science. Spatial flow theory based on big data has become the core
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theory used to guide the reform of urban spatial planning methods [13]. Macro-, meso-, and
micro-scale problems in the urban development process can be visually expressed using
large volumes of dynamic and accurate individual spatial data, thus providing important
support toward the goal of constructing “people-oriented” cities [14] and also providing
new methods and ideas for the study of urban spatial structures.

Coupling spatiotemporal big data and complex network-based community detection
technology has attracted the attention of many studies in the field of urban spatial structures.
Community detection is based on the premise that nodes in the same community are closely
linked, whereas nodes in different communities are only loosely linked [15–17]. This
method can be applied to different spatial scales. At the national level, Ratti analyzed and
verified national administrative boundaries by comparing existing norms with community
structures in interaction-based networks [18]. At the regional and urban levels, de Monti
used a traditional survey based on OD data to determine the community structure of an
island region in Italy and provided recommendations for sub-regional planning [19]. Liu
used taxi GPS traces to reveal the hierarchical structure of urban areas in Shanghai, China,
and identified a two-level polycentric urban structure [20]. In addition, there are also
studies that analyze the dynamic changes in communities at various times of day [21].

Analyzing urban spatial structure from the perspective of public transportation is
meaningful for urban sustainable development. On the one hand, urban public transporta-
tion is a complex network that plays an important role in building sustainable cities and
communities and plays an important role in guiding and supporting urban spatial structure.
On the other hand, public transportation can demonstrate the matching effect and guiding
role of urban public transportation on residential and employment needs and has reference
value for formulating policies regarding coordinated development of urban land use and
public transportation. However, existing research mostly uses mobile phone signaling data
and taxi GPS data as the main data sources for exploring community structures. There is a
lack of research on urban spatial structure from the perspective of public transportation. In
addition, from a time-scale perspective, the existing research mainly analyzes urban spatial
community structures during a specific period and pays less attention to the dynamic
evolutionary characteristics of urban spatial communities over different years.

To fill these gaps in the literature, this paper uses intelligent public transportation card
data to analyze the dynamic evolutionary characteristics of urban public transportation
communities from a temporal dimension. The term “community” in this article is used
to refer to the bus travel community unless otherwise noted. The main research contents
of this article include: (i) the passenger flow network of urban transit is constructed for
both weekdays and weekends; (ii) based on community detection methods, the community
structure of urban transit travel across different years is revealed; (iii) the dynamic evolution
characteristics of urban transit travel communities are analyzed in terms of similarity and
diversity; and (iv) a comparative analysis of the community detection results based on
urban administrative units from 2015 to 2017 is demonstrated, where the term “urban
administrative units” refers to the regions divided by the state for the convenience of
administrative management.

2. Study Area and Data
2.1. Study Area

Shenzhen is the central city of the Guangdong–Hong Kong–Macao Greater Bay Area
and an important window into China’s reform and opening up. It has been established
as a comprehensive transport hub with a developed public transport network. Shenzhen
city provides a typical geographical transport environment for conducting research on the
dynamic spatial structure of urban public transport travel.

Shenzhen is divided into 491 TAZs (Figure 1). In this study, TAZs were selected as the
analysis units as they consider the road network and retain similar land usage types and socio-
economic attributes at a finer spatial scale than street or administrative district units, which are
more suitable for macro-scale research in cities [22]. The base maps of administrative districts
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in Shenzhen used in this study were derived from the public version (2021) of the 1:1 million
scale basic geographic information data authorized by the Ministry of Natural Resources and
provided by the National Geographic Information Resource Directory Service System.

Figure 1. Administrative districts and subway lines in Shenzhen.

2.2. Data Source and Preprocessing

Residents’ travel behaviors within a one-day or one-week period display strong generaliza-
tion and spatiotemporal laws that can be used to predict daily changes in residents’ travel over
longer periods [23,24]. With the rapid development of intelligent transportation systems, transit
travel demand can be collected through smart card systems [25]. This paper uses smart card data
from 2015 to 2017 in Shenzhen for the analysis of the evolution of transit travel communities.
Transit travel communities are subject to changes in the city’s underlying transit system, such as
the opening of new subway lines. By the end of 2015, five rail transit lines in Shenzhen were
completed and open to traffic (lines 1–5). By the end of 2016, lines 7, 9, and 11 were also fully
completed and open to traffic. Using 2015–2017 as the research period, the dynamic evolution
process of urban transit travel communities can be completely observed in the three periods
before, during, and after the opening of these lines, which is sufficiently representative.

Therefore, relatively complete records of transit smart card data from 2015 to 2017
(except for the Mid-Autumn Festival, National Day, and other holidays) were collected, and
the structural characteristics and evolution of communities were analyzed from the perspec-
tives of both weekdays and weekends. The studied weekdays included 2–6 November 2015,
26–30 September 2016, and 25–29 September 2017. The studied weekends included
28–29 November 2015, 10–11 September 2016, and 16–17 September 2017. All the three-year
data used in this study refer to the average daily data based on the above dates.

The transit smart card data from Shenzhen used in this study include metro card data and
bus card data. The metro card data include information such as card ID, type of entry and exit,
inbound swipe time, outbound swipe time, metro line and metro station information, which
can be used to directly obtain the origin–destination (O-D) of passengers’ travel. However,
the bus card data include only card ID, check-in swipe time, bus license plate number, and
bus line name without information regarding passengers’ alighting times or locations. Hence,
it is essential to deduce the O-D of bus passengers’ travel by integrating transit smart card
data, bus GPS data, and bus station locations [26,27]. The main steps are as follows:

(1) Data preprocessing: data cleaning was performed by removing abnormal values and
deleting duplicate data. The abnormal values mainly include abnormal IC card data
values and abnormal GPS values. Among them, the abnormal IC card data values
include duplicate data, missing fields, and jumps in swipe time, and the abnormal
bus GPS values include abnormal positioning data and skewed GPS data.

(2) Starting station extraction: the arrival timetable of each bus was obtained using GPS
data and station data, and the smart card payment time was matched with bus arrival
times to identify the boarding stations at which passengers used their cards to pay.
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(3) Terminal station deduction: there are four situations, including no transfer and bus-to-
bus, bus-to-metro, and metro-to-bus transfers. To resolve the first scenario, historical
data were required. For example, for commuters using public transport, the boarding
station on the same line for the return journey in the afternoon could be reasonably
assumed to be the alighting station for the morning journey. In the second case, the
alighting station of the passenger on the first line can be identified; however, the
alighting station of the second line or further transfer lines after the transfer is the
passenger’s true destination. Therefore, the first method must be employed to infer
the final alighting station. In the third case, the destination can be readily determined
from the metro entry and exit records. In the fourth case, the process described above
for the first case is also required to determine the final alighting station of the bus line.

3. Methods
3.1. Methodology Overview

In this paper, the transit smart card data, bus GPS data, and data from the lines
and stations were preprocessed to obtain the O-D matrix of passengers’ transit travel
(Figure 2). On this basis, the structure and evolution characteristics of urban transit
travel communities are analyzed, mainly including: (1) constructing an urban transport
travel network model with a TAZ as the analysis unit and analyzing its basic network
characteristics, (2) analyzing the structure of urban transit travel communities based on the
community detection method, (3) analyzing the community evolution characteristics based
on similarity index and visualization analysis, and (4) coupling analysis of transit travel
communities with urban administrative divisions based on bubble diagrams.

Figure 2. Overview of methodology.

3.2. Transit Travel Network Construction

The activity tracks of all individuals by transit travel were included in the urban transit
travel data set. The transit travel volumes between each TAZ in the city were obtained by
aggregating the spatial travel activity in the selected spatial units (i.e., TAZs) and converting
the travel between different stations into travel between different TAZs. In this context, i
and j are used to denote stations, and Si,j represents the passenger flow between i and j.
When i and j are spatially located in TAZs m and n, respectively, the transit passenger flow
between m and n, i.e., Tm,n can be expressed as:

Tm,n = ∑ Si,j · · · (i ∈ m, j ∈ n) (1)

The O-D matrix for urban transit travel based on TAZ can be expressed as:

ODTAZ =


T1,1 T1,2 . . . T1,m
T2,1 T2,2 . . . T2,m

...
...

. . .
...

Tm,1 Tm,2 . . . Tm,m

 (2)
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The TAZ-based network of urban transit travel GTAZ was obtained using the TAZ
mass centers as the nodes of the transit travel network, the line connections between TAZ
mass centers were taken as the edges, and the volumes of transit between TAZs were taken
as the edge weights:

GTAZ = {NTAZ, ETAZ, WTAZ} (3)

where NTAZ is the set of nodes of GTAZ (i.e., TAZ mass centers), ETAZ is the set of network
edges (i.e., the connecting lines between TAZ mass centers), and WTAZ is the edge weights
(i.e., the transit travel volume between TAZs). When WTAZ is 0, the corresponding edge is
not included in the network.

After building the urban transit travel network, we can describe the basic characteristics
of the network with several basic statistical variables, including graph density, average
clustering coefficient, and characteristic path length [28]. Of these, graph density reflects the
edge connectivity of the network and the average clustering coefficient describes how closely
the nodes in the network are related to each other, with higher values indicating greater
edge connectivity and closer proximity of the nodes in the network. The characteristic path
length indicates the average graph distance between all pairs of nodes in the network, and a
smaller value indicates a more reachable and efficient network. These metrics can be used
to characterize whether a network is a small-world network and whether it has an obvious
community structure. A small-world network refers to a network in which most nodes
can reach any other nodes through short communication paths, as judged by the clustering
coefficient and the characteristic shortest path [29,30]. If the average clustering coefficient of
the network is higher than the random network with the same number of nodes, and the
characteristic path length is similar to the random network, the network is considered to
have the small-world property, and the network has a community structure [29–31].

3.3. Transit Travel Community Detection

Based on graph theory, the community detection method in complex networks can
be used to divide huge networks into several closely connected non-overlapping commu-
nities. The nodes in the community after division are closely connected, whereas those
between communities are relatively loosely connected [32,33]. At the city level, community
detection based on travel data helps reveal the spatial interaction patterns of urban travel
activities and thus provides a decision-making basis for intelligent urban planning. In
this study, the Louvain algorithm was used to detect transit travel communities [34], this
algorithm is characterized by fast running speed, an intuitive detection process, and easy
implementation. Additionally, no supervision is required for the obtained results and
small communities will not be missed. The core concept of the Louvain algorithm is to
continuously increase the modularity Q of the whole network through repeated iterations
to ensure a more reasonable division of communities. If the modularity value exceeds 0.3,
this indicates that there is a clear community structure [35]. The definition of Q is:

Q =
1

2m ∑
i,j

[
Aij −

kik j

2m

]
δ
(
ci, cj

)
(4)

where Ai,j represents the weight of the edge between network nodes i and j, ki is the sum
of edge weights connected to node i, and m refers to the sum of weights of all edges in the
network. In addition, ci represents the community in which node i is located and δ(ci, cj) is
used to determine whether nodes i and j are in the same community, returning a value of 1
if yes and 0 if no.

In the Louvain algorithm, there are two main detection phases for the structure of
urban transit travel communities. In the first phase, each node in the network graph (the
nodes in the initial network are TAZ mass centers) was regarded as a separate community.
For each node i, the node was successively distributed to the communities in which each of
its network neighbors was located, the change of network modularity ∆Q before and after
distribution was calculated, and the node transfer between communities was evaluated to
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allocate the node to the community corresponding to the largest ∆Q value. All nodes were
processed sequentially in the first community detection phase. ∆Q is expressed as follows:

∆Q =

[
∑ kin + 2ki,in

2m
−
(

∑ ktot + ki
2m

)2
]
−
[

∑ kin
2m
−
(

∑ ktot

2m

)2
−
(

ki
2m

)2
]

(5)

where ∑ kin represents the sum of the weights of the inner edges of the community, ∑ ktot
is the sum of the weights of all node edges in the community, and ∑ ki,in denotes the sum
of the edge weights from node i to all the nodes in the community.

In the second phase, the graph was reconstructed. Each node in the new graph
represented the mass center of each community detected in the first phase and the edge
weights between communities were aggregated to form the new node edge weights. The
process of the first phase was iterated repeatedly until the modularity of the whole graph
no longer changed, thus forming a closely connected network community structure.

3.4. Transit Travel Community Evolution

This study analyzes the evolution characteristics of urban transit community from
the perspectives of similarity and difference. For the similarity perspective, a similarity
index is constructed to measure the evolution characteristics. For the difference perspective,
visualization analysis is conducted based on Sankey and cumulative scale diagrams.

Among them, the similarity index quantifies the dynamic evolution characteristics of
a transit travel community. For different years u and v, the similarity of urban transit travel
communities can be expressed as S(u, v):

S(u, v) =
∑i δ

(
Cu

i , Cv
i
)

n
(6)

where n represents the total number of TAZs in the urban space units. For any TAZi, Cu
i

indicates the transit travel community category of TAZi in year u. If the transit travel
community category of TAZi in year u is the same as that in year v, then δ

(
Cu

i , Cv
i
)

is 1,
otherwise δ

(
Cu

i , Cv
i
)

is 0.

4. Results
4.1. The Dynamic Network Structure of Urban Transit Travel

As mentioned above, the dynamic urban transit travel network in Shenzhen was
constructed based on transit smart card data for weekdays and weekends from 2015 to 2017,
with TAZs chosen as the analysis units. In addition, the basic network attributes were
analyzed in terms of the graph density, average clustering coefficient, characteristic path
length, and other indicators. Several random networks with the same number of nodes
and edges have been constructed. Results show that the average clustering coefficient
is approximately 0.25, and the average characteristic path length is approximately 1.5,
whereas the average clustering coefficient values for weekdays and weekends from 2015 to
2017 were approximately 0.6, and the average shortest path length was approximately 1.7;
these results indicate that Shenzhen’s transit travel network has the small-world property
and a clear community structure locally within the network (Table 1). The graph density
and average clustering coefficient values of the transit travel network were the largest in
2017 and smallest in 2016. Within each year, the graph density and average clustering
coefficient values of weekends were smaller than those of weekdays, indicating that transit
travel in Shenzhen is more densely associated on weekdays than on weekends.

The overall spatial distribution of urban transit travel was further analyzed by mapping
the average daily transit passenger flow on weekdays and weekends from 2015 to 2017. The
average daily transit travel demand on weekdays and weekends in 2015, 2016, and 2017 are
shown in Figure 3a and Figure 3b, respectively (Figure 3). As shown in Figure 3a, the transit
passenger flow on weekdays and weekends was high in Nanshan District, Futian District,
Luohu District, Longhua District, and the southern part of Longgang District, whereas
values in other areas were relatively low, mainly as a consequence of the land utilization
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and spatial structure of Shenzhen. Nanshan, Futian, and Luohu are centers of employment,
entertainment, leisure, and culture, containing high-density living and entertainment facili-
ties; thus, there is a high demand for transit travel in these areas. Furthermore, the transit
infrastructure of these three districts is relatively complete and highly accessible, ensuring
adequate public transport availability. In the Nanshan District Science and Technology Park,
the transit travel demand on weekends was markedly different from that on weekdays,
indicating that the work-related transit travel demand on weekdays changes significantly.

Table 1. Transit network attributes of Shenzhen.

Year/
Indicator

Weekday Weekend

Nodes Edges Graph
Density

Average
Clustering
Coefficient

Characteristic
Path

Length
Nodes Edges Graph

Density

Average
Clustering
Coefficient

Characteristic
Path

Length

2015 491 67969 0.316 0.613 1.73 491 57066 0.267 0.591 1.798
2016 491 67271 0.31 0.609 1.733 491 42580 0.198 0.581 1.954
2017 491 71114 0.327 0.619 1.721 491 59742 0.275 0.606 1.801

Figure 3. Spatial distribution of transit travel demand and daily transit passenger flow: (a) transit
travel demand on weekdays; (b) transit travel demand on weekends; (c) daily transit passenger flow
on weekdays; (d) daily transit passenger flow on weekends.

Using the Jenks breakpoint method, the transit travel association strength between
TAZs was divided into five grades in ascending order. As shown in Figure 3c,d, a clear
spatial agglomeration of transit travel is identified in the central city, i.e., a radial structure
with Nanshan–Bao’an, Futian–Longhua, and Luohu–Longgang districts as its main axes
was present in both weekday and weekend travel. In addition, there was also a prominent
transit association axis between Bao’an–Longhua–Longgang and Nanshan–Futian–Luohu
districts, indicating the presence of north–south and east–west urban transit corridors in
Shenzhen. In comparison to weekdays, the association strength of urban transit activities on
weekends was relatively small. For example, the flow of transit activity between Bao’an and
Nanshan on weekdays is at grade 5 (red line in black circle in Figure 3c), whereas the flow
between the regions on weekends drops to grade 4 (orange line in black circle in Figure 3d).
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4.2. The Structure of Urban Transit Travel Communities

Community detection is an effective approach to identify the overall structural charac-
teristics of urban space. By modifying the resolution parameters of community division, the
modularity values were high when there were between 5 and 11 transit travel communities
(Figure 4). Shenzhen has 10 district administrative units (excluding the Shenzhen–Shantou
Cooperation Zone), given the consistency between the number of communities and adminis-
trative units, Shenzhen was divided into 10 communities for subsequent analysis in this study.

Figure 4. Plots illustrating the numbers of transit travel communities and their corresponding
modularity values: (a) weekdays; (b) weekends.

The spatial distribution of transit travel communities on weekdays and weekends
from 2015 to 2017 is shown in Figure 5. Overall, there were primarily spatial neighbor
relations between TAZs in the same community, indicating that the city’s transit travel
corresponds largely with the geographical spatial effect. As illustrated by the structure
of transit travel communities in three studied years, the community structure in different
years varied greatly, and the structure of urban transit travel underwent dynamic change.

As shown in Figure 5a,b, most of the urban transit travel communities on weekdays
were trans-district communities, whereas the western part of Bao’an District was an inde-
pendent community. This area includes ports, airports, other large transport infrastructure
elements, and manufacturing parks, serving as Shenzhen’s main development area for
its modern logistics industry and high-end manufacturing industries. The eastern part of
Bao’an District, Guangming District, and the northern part of Nanshan District belonged to
the same community, the other areas in Nanshan District comprised a new community in
which the development of high-tech, educational research, and cultural industries domi-
nates. Futian District was divided into two communities along its central part, where the
northern part formed a trans-district community together with the TAZ of the Shenzhen
North Railway Station in Longhua District. Luohu District was composed of two commu-
nities, in which the district’s western part was closely linked to Futian District, whereas its
eastern part constituted a community with Yantian District. The western part of Longgang
District comprised an independent community, whereas the rest of Longgang District
formed an ultra-large community with Pingshan District and Dapeng New District, in
which industrial and ecological businesses are mainly present. There were some differences
observed in the community structure on weekends and weekdays in 2015; specifically, the
TAZs around Shenzhen North Railway Station were closely connected with the northern
part of Futian District on weekdays, whereas they were more closely connected with its
surrounding areas on weekends.

The southern part of Bao’an District and the southern part of Nanshan District belonged
to the same community on weekdays in 2016, showing a significant difference relative to the
transit travel community category in 2015 (Figure 5c), indicating that the transit association
between Bao’an District and Nanshan District was significantly enhanced by the opening of
Metro Line 11 in June 2016. In contrast, the southern part of Bao’an District and the southern
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part of Nanshan District belonged to two different communities on weekends, implying that
the newly opened metro line dominantly carries commuter passenger traffic (Figure 5d).

Figure 5. Transit travel communities in Shenzhen from 2015 to 2017: (a) weekdays in 2015; (b) weekends
in 2015; (c) weekdays in 2016; (d) weekends in 2016; (e) weekdays in 2017; (f) weekends in 2017.

Relative to the communities in 2015 and 2016, the transit travel community category of
Guangming District in 2017 changed significantly (Figure 5e). In 2015 and 2016, Guangming
District, the eastern part of Bao’an District, and the northern part of Nanshan District
belonged to the same community, whereas in 2017, Guangming District was more closely
connected to Longhua District. In addition, in contrast to the previous two years, an
independent community was formed by the northern and southern parts of Futian District
in 2017, indicating that this district’s internal association was enhanced by the opening of
metro lines 7 and 9 in December 2016. The western part of Longgang District became more
densely connected with Luohu District on weekends in 2017, as shown by the prominent
longitudinal axis in Figure 5f, highlighting that the residents’ travel association between
Longgang District and Luohu District is strengthened on weekends.
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4.3. The Dynamic Evolution Characteristics of Urban Transit Travel Communities
4.3.1. The Similarity of Urban Transit Travel Community Evolution

Similarity index values can be used to quantify the dynamic evolution characteristics
of urban transit travel communities in different years, as calculated using Formula (6). As
shown in Table 2, from 2015 to 2016, the similarity indexes of transit travel community
structure on weekdays and weekends were 0.82 and 0.76, respectively. These values
were both higher than the equivalent values of 0.77 and 0.74 for the 2015 to 2017 period,
indicating that the community similarity in adjacent years within a certain time series
is relatively higher and that urban transit travel communities evolve progressively. This
indicates that the spatial structure of urban transit travel has a certain stability, but because
the urban transit infrastructure and built environment are in constant change, the transit
travel communities also have some variability across different years. This difference is
closely related to the transit infrastructure and built environment, etc., and the difference
between adjacent years will be smaller, so the urban transit travel community has a gradual
evolution characteristic. Additionally, the community similarity index values for weekdays
and weekends highlight that the similarity of transit travel communities on weekdays
during the three years was lower, thus, the structural evolution of transit travel communities
is more prominent on weekdays. This result shows that the urban transit travel structure is
dynamically changing. This is crucial for planners’ ability to carry out optimal configuration
of the transit network and optimize the spatial pattern of urban transit travel.

Table 2. The similarity of transit travel communities in Shenzhen from 2015 to 2017.

Years Weekday Weekend

2015–2016 0.82 0.76
2016–2017 0.76 0.84
2015–2017 0.77 0.74

4.3.2. The Diversity in the Evolution of Urban Transit Travel Communities

The urban transit travel communities on weekdays and weekends are different from
2015 to 2017. Based on the stability of the community numbers, the characteristics of the
urban transit travel communities were further analyzed in terms of both spatial evolution
and community volume evolution.

(1) The diversity in spatial evolution

To visualize the spatial evolution of urban transit travel communities, the commu-
nity evolution trends for weekdays and weekends were mapped. In the time range of
2015–2017, these changes include: only changed in 2015–2016, only changed in 2016–2017,
both 2015–2016 and 2016–2017 have changed, and no change from both 2015–2016 and
2016–2017 (Figure 6).

As shown in Figure 6a, on weekdays, the community changes significantly in the middle
and western areas of Shenzhen, including Futian District, Luohu District, Guangming District,
the south of Bao ’an District, and the south of Longhua District. These results indicate that
changes in transit infrastructure over the three years exerted a significant impact on the spatial
pattern of urban transit travel on weekdays. However, as shown in Figure 6b, the community
category evolution trends on weekends differed from those on weekdays. On weekends, the
community changes significantly in the middle area of Shenzhen, including Luohu District,
the south of Longhua District, and the west of Longgang District. These findings confirm that
transit infrastructure had less impact on the spatial pattern of residents’ travel on weekends.

(2) The diversity in the evolution of community structure

Sankey diagrams, also known as heat balance diagrams or energy flowcharts [36],
consist of nodes and connecting lines, where the nodes indicate source points, intermediate
nodes, and sink points of various information and resource flows, whereas the connecting
lines represent the flow of information and resources between the nodes [37]. Thus, the
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dynamic evolution characteristics of the studied communities on weekdays and weekends
from 2015 to 2017 were presented on Sankey diagrams, where the node lengths symbolize
the number of TAZs in the community categories and the connecting lines represent the
trends linking the community categories (Figure 7). Overall, the community that had the
largest volume in all three years was consistently Community 7, which includes Dapeng
New District and Longgang District. Communities 1, 5, and 8 consistently had the smallest
volumes; these areas are primarily situated in the central city of Shenzhen.

Figure 6. The evolution of transit travel communities in Shenzhen from 2015 to 2017: (a) weekdays;
(b) weekends.

In terms of community change patterns, there were three typical transit travel com-
munity patterns on workdays: Community 4–Community 2–Community 2, Community
3–Community 3–Community 6, and Community 1–Community 1–Community 5. Among
these, the first change pattern mainly involved the TAZs in the southern part of Bao’an
District, whose community categories changed in 2016 and remained stable in 2017. This
indicates that the opening of Metro Line 11 promoted connections between the southern
part of Bao’an District and Nanshan District and their connections are now stable. The
second and third change patterns mainly involved the TAZs of Guangming District and
Futian District whose community categories remained stable in 2015 and 2016 but changed
in 2017. On weekends, there were also three typical community change patterns: Com-
munity 5–Community 6–Community 6, Community 1–Community 5–Community 5, and
Community 6–Community 10–Community 10. The corresponding community categories
for all three change patterns changed in 2016 and remained stable in 2017.

Based on the transit travel volumes of each community category as a fraction of
the city’s total transit travel volume, the evolution of the relative transit travel volume
was analyzed. The results are shown in Figure 8, in which the block colors represent the
community categories and the block heights represent each community’s proportion of
transit travel volumes. As illustrated in Figure 8a, on weekdays, the relative transit travel
volumes of each community category in the same year were unequal. Comparing travel
volumes in different years indicates that the relative travel volumes of each community
changed significantly in 2016. Specifically, the relative travel volumes of Communities
2 and 10 increased significantly and the volume of Community 9 decreased markedly
in 2016. In contrast, in 2017 Communities 5 and 6 underwent the largest changes in
their relative travel volumes. This analysis thus demonstrates that there are prominent
differences in the relative transit travel volumes of each community category between the
different years. As shown in Figure 8b, the relative travel volumes of each community
within the same year were less unequal on weekends; the relative volumes for the same
community in different years varied slightly, with near-equal relative volumes recorded for
each community in 2017.

Furthermore, a comparison of Figure 7 and Figure 8 reveals that there were differences
between the TAZ amounts of the communities and the transit travel volumes. For example,
the TAZ volume of Community 7 was large in 2015; however, its relative transit travel
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volume was less. This observation may be explained by the fact that Community 7 is
mainly located within Longgang District and Dapeng New District—these two districts are
large in area but have relatively low population density.

Figure 7. The Sankey diagrams of transit travel community changes in Shenzhen from 2015 to 2017:
(a) weekdays; (b) weekends.

Figure 8. The relative travel volume distribution of transit travel communities in Shenzhen from 2015
to 2017: (a) weekdays; (b) weekends.

4.3.3. The Coupling Relationship between Transit Travel Communities and
Administrative Units

The coupling relationship between the number of transit travel community categories
and the number of urban administrative units was explored based on the premise that they
were the same, as implied by the modularity analysis in Section 3.3. This relationship can
be presented in terms of the link between communities and administrative districts as the
matrix bubble diagram shown in Figure 9, in which the colors of the bubbles represent
the community categories and the sizes of the bubbles represent the number of TAZs of
the communities. As shown, the urban transit travel communities were linked to the
boundaries of administrative districts, with each district largely associated with one main
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community. Pingshan District, Yantian District, and Dapeng New District were each linked
with only one community, reflecting the consistency of transit travel within the district.
The other administrative districts were mostly linked to two or three communities. On
weekdays in 2015, Bao’an District consisted of Communities 4 and 3, with Community 4
as its main community. Longgang District consisted of Communities 6, 7, and 10, with
Community 7 as its main community. Additionally, the number of communities contained
in each administrative district varied between years, for example, Bao’an District contained
two communities (Communities 3 and 4) on weekdays in 2015 and three communities
(Communities 2, 3, and 4) on weekdays in 2016 and 2017.

Figure 9. Cont.
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Figure 9. The comparison of transit travel communities and administrative districts in Shenzhen
from 2015 to 2017: (a) weekdays in 2015; (b) weekends in 2015; (c) weekdays in 2016; (d) weekends in
2016; (e) weekdays in 2017; (f) weekends in 2017.

5. Discussion

In the era of spatiotemporal big data, the composition of spatial communities is
expanding from static division in traditional planning to dynamic detection of actual
activities so as to promote the dynamic cognition of urban spatial structure. Based on
smart card data, this study explores the structure and evolution characteristics of urban
transit travel communities in Shenzhen. Smart card data have clear geographical identifiers
and time tags which reflect the daily travel characteristics of transit travelers and have
obvious advantages for describing the collective network structure. In contrast to the
urban planning department, the community structure based on transit travel provides
an immediate reflection of the urban spatial structure and how it echoes or differs from
the urban administrative district. Overall, the results of this study can provide guidance
for urban land use planning and urban public transport planning. For example, after
understanding the community structure of residents’ transit travel, the transportation
department can promote the connection between various regions of the city and promote
the integration of urban transportation based on administrative means.

Some previous studies have applied different data sources to analyze the spatial
structure of travel communities in Shenzhen and their coupling relationship with the ad-
ministrative units. A study based on the jobs–housing relationship data divided Shenzhen
into seven communities, with the jobs–housing communities interpreted to essentially
follow the boundaries of urban administrative units [38]. Another study based on mobile
signaling data divided Shenzhen into 32 communities, with Futian District as a complete
community [21]. Based on transit travel data, in this study, the northern part of Futian
District and the Shenzhen North Railway Station in Longhua District were distributed
into one community on weekdays in the context of 10 communities in total, reflecting the
spatial interaction characteristics of transit in urban commuting travel and the importance
of analyzing the space structure of communities from a transit perspective.

Compared with previous studies that detected communities at a specific time, this
study analyzes the evolution of communities in different years from the perspective of time
series and then finds the evolution characteristics of communities. In the three years of
our study, the community category changed significantly in 2016 because three subway
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lines were newly opened in 2016. In addition, we found that Guangming District, the
eastern part of Bao’an District, and the northern part of Nanshan District were closely
connected, forming a clear longitudinal axis. Further improvement of the north–south
transit infrastructure between these regions and the southern part of Nanshan District
may also strengthen the association between Guangming, Bao’an, and Nanshan District,
promoting the formation of a longitudinal axis running through the entirety of Shenzhen.
The transit associations within Shenzhen may also be further enhanced by the opening of
Shenzhen Metro Line 13, which is currently under construction in Nanshan District, Bao’an
District, and Guangming District.

There are some limitations in this work. Due to the limitation of data, this study did not
analyze transit travel community structure in longer period of years or for different seasons.
Future work may disclose these temporal changes. Furthermore, it is worthwhile to explore,
compare and integrate communities from other perspective, such as mobile phone data
and travel navigation data. In addition, by incorporating higher granular population and
economic data, the formation mechanisms of community may be better disclosed.

6. Conclusions

Based on Shenzhen’s transit smart card data from 2015 to 2017, this study constructs
an transit travel network, identifies transit travel communities using community de-
tection methods, explores the evolutionary characteristics of transit travel communities
from 2015 to 2017, and compares transit travel communities with urban administrative
districts. The findings of the study highlight four key aspects:

(1) There is an obvious community structure of transit travel network in Shenzhen
during 2015–2017.

(2) During 2015–2017, the community evolution is significant in the western and central
parts of Shenzhen on weekdays, and in the central part of Shenzhen on weekends.

(3) The number of TAZs contained in different categories of communities and the amount
of transit trips varied significantly across years, showing non-equilibrium characteristics.

(4) The transit travel communities and the administrative units are spatially coupled,
with most administrative districts containing a main community.

This study makes the following contributions: (1) The study of spatial communities
from the perspective of public transit travel is conducive to enriching the spectrum of
urban spatial structure research supported by big data. (2) Transit travel communities
may highlight the matching effect between travel demand and transit supply, which is
beneficial to the synergistic development of urban land use and public transit, especially
rail transit. (3) This study provides a detailed understanding of the dynamic urban spatial
structure in both time and space, which will contribute to intelligent decision-making in
urban spatial planning and transportation planning, ultimately promoting sustainable
urban development.
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