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Abstract: Soil salinization is a resource and ecological problem that currently exists on a large scale
in all countries of the world. This problem is seriously restricting the development of agricultural
production, the sustainable use of land resources, and the stability of the ecological environment.
Salinized soils in China are characterized by extensive land area, complex saline species, and promi-
nent salinization problems. Therefore, strengthening the management and utilization of salinized
soils, monitoring and identifying accurate salinization information, and mastering the degree of
regional salinization are important goals that researchers have been trying to explore and overcome.
Based on a large amount of soil salinization research, this paper reviews the developmental history
of saline soil management research in China, discusses the research progress of soil salinization
monitoring, and summarizes the main modeling methods for remote sensing monitoring of saline
soils. Additionally, this paper also proposes and analyzes the limitations of China’s soil salinity
monitoring research and its future development trend, taking into account the real needs and frontier
hotspots of the country in related research. This is of great practical significance to comprehensively
grasp the current situation of salinization research, further clarify and sort out research ideas of
salinization monitoring, enrich the remote sensing monitoring methods of saline soils, and solve
practical problems of soil salinization in China.
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1. Introduction

Soil salinization refers to the accumulation of soluble salts in soil caused by certain
natural factors such as climate, hydrology, and topography or caused by the combination
of destructive human factors and fragile ecological environments, thus leading to the
deterioration of soil quality to form saline soils [1]. Soil salinization, as a resource and
ecological problem that currently exists on a large scale in all countries of the world, is
one of the main types of land desertification and soil degradation [2]. It seriously restricts
the production and development of the agricultural industry, the sustainable use of land
resources, and the security and stability of the ecological environment. Saline soils are
a collective term for all types of soils that are negatively affected by saline components.
The unique physicochemical-biological properties of saline soils have a variety of negative
impacts. These include reduction in soil fertility and productivity levels, reduction in crop
yields and harvests [3,4], waste of agricultural resources, destabilization of the ecological
environment, and other secondary hazards [5]. Therefore, strengthening the management
and utilization of salinized soils, monitoring and identifying accurate salinization informa-
tion, and mastering the salinization level of regional arable farmland have been important
goals for scientists to research and overcome.
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The total area containing saline soils worldwide is currently about 1.1 × 109 hm2,
which is widely distributed in more than a hundred countries and regions around the
world, and the global soil salinization level is still showing a rising trend [6]. The total
area of saline soils in China has reached 3.69 × 107 hm2, which is close to 4.88% of the
available land area in China [7]. It is mainly distributed in arid and semi-arid regions and
coastal areas with arid climate and little rainfall, high soil evaporation, a high groundwater
table, and more soluble salts [8–10]. Examples include semi-humid regions such as the
Yellow River Basin in North China, the plains in northeast China, and arid and semi-arid
regions in northwest China such as Gansu, Ningxia, and Xinjiang. Therefore, study of the
spatial distribution and management of soil salinity prevention as well as improvement of
monitoring accuracy and early warning capability are gradually becoming a hot spot of
concern in the field of saline soil research today.

In order to explore the current research status and current research hotspots of soil
salinity monitoring, this paper searched in the China National Knowledge Infrastructure
(CNKI) and the Web of Science (WOS) databases using “soil salinity monitoring” as the
key search term. CiteSpace software was used to perform keyword co-occurrence anal-
ysis on the large number of highly relevant literature datasets obtained from the search
(Figures 1 and 2). By extracting the frequency distribution of keywords that express the
core content of the literature, a co-word matrix is thus generated based on the keyword
matrix. The co-word matrix was visualized as a network to study the development trends
and research hotspots in the field of salinity monitoring. The core nodes in the figure can
fully reflect the focus and branches of research in the field in recent years. The size of the
node represents the frequency of the keyword; the larger the node, the more frequently the
keyword appears and the higher the relevance to the topic. Among them, Figure 1 shows
the keyword co-occurrence analysis graph based on the relevant research articles in the
CNKI database. The analysis shows that the nodal framework consisting of “saline soil”,
“remote sensing monitoring”, “hyperspectral”, “arid zone”, “multisource remote sensing”,
and “salinity index” appears more frequently and has stronger correlations among the
research articles published in Chinese database. Figure 2 shows a keyword co-occurrence
analysis graph based on the relevant international research articles in the WOS database.
It can be seen that the nodal framework consisting of “soil salinity”, “model”, “spatial
distribution”, “change detection”, “prediction”, and “remote sensing” appears more fre-
quently and has stronger correlations among the research articles published in international
databases. These keywords provide important information for us to analyze the progress
of research on soil salinity monitoring in China, and they are the focus of our attention.
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This paper reviews the developmental history of saline soil management research in
China, discusses the research progress of soil salinity monitoring, and summarizes the
main modeling methods for remote sensing monitoring of saline soils. Based on a large
amount of domestic and foreign soil salinization research, this paper combines the real
needs and frontier hotspots of the country in related research, proposes limitations of soil
salinization monitoring research in China, and analyzes the future developmental trend
of soil salinization monitoring research in China. This is of great practical significance to
comprehensively grasp the current situation of salinization research, further clarify and
sort out the research ideas of salinization monitoring, enrich the remote sensing monitoring
methods of saline soils, and solve practical problems of soil salinization in China.

2. Research History and Importance of Saline Soil Management in China

As an important actual and potential arable land resource in China, saline soils have
strong development and utilization value. Different types of saline soils can be managed
and improved in terms of their physicochemical and biological properties by using various
types of effective soil improvement tools and other comprehensive measures, thus improv-
ing soil quality and productivity levels [11]. Theoretical and technological research on
saline soil management in China has been steadily developing. The country attaches great
importance to the treatment and utilization of saline soils, policy research, and technologi-
cal innovation. In the 1950s, the State organized a lot of research on saline resources and
mastered the situation of many different regions and different types of saline lands [12–14].
In the 1990s, researchers started to study the regional water and salt movement of saline
soils and its regulation and management on the basis of the regional water table, water
quality, and a soil water and salt co-forecasting model, and this helped facilitate the im-
provement of saline soils [15,16]. Thus, during the 20th century, Chinese research in the
field of soil salinization focused on research and classification, investigation of causes, and
improvement and prevention. Several provinces have conducted focused analyses for
regional saline soils [17,18] and have conducted in-depth research while gaining a basic
understanding of saline soils, laying the foundation for future monitoring and management
of saline soils.

In the 21st century, during the 11th Five-Year Plan, the Chinese Academy of Sciences,
together with the relevant domestic forces, organized and implemented the “Research
and Demonstration of Supporting Technologies for the Efficient Utilization of Saline Soil
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in Agriculture”, which is a public welfare industry special project for the whole country,
and carried out comprehensive research on saline soil management [19,20]. During the
12th Five-Year Plan period, the report of the Chinese Academy of Sciences, “The National
Demonstration of Saline Land Management Technology”, was received by the national
leaders [21–24]. During the 13th Five-Year Plan period, China deployed the national
key project of “Typical Fragile Ecological Restoration and Protection Research”, which
has strongly driven enthusiasm and encouraged researchers to publish related research
articles [25–27]. Internationally, the theme of the 8th World Soil Day (WSD) in 2021 is
“Preventing Soil Salinization and Improving Soil Productivity” [28]. This theme aims
to raise awareness of soils, strengthen national research capacity, and work together to
preserve the Earth’s environmental carrying capacity. Summarizing the research history of
soil salinization management in China since the beginning of the 21st century, it can be seen
that during this period, China started to focus on advancing the theory and technology
of salinization prevention and control. Comprehensive measures have been applied to
manage salinized soils and improve their physicochemical and biological properties. The
potential of saline soils as an important arable resource has been fully exploited.

At present, with policy support and implementation of various departments at the
national level, research and development of saline soil management and monitoring tech-
nology in China has achieved certain results. The research not only covers the direction
and content of international saline soil research but also highlights domestic characteristics,
with a richer connotation, broader coverage, and more common interdisciplinary associa-
tion [29]. This further indicates that the nation has recognized the importance and necessity
of saline soil treatment to ensure food security and promote ecological stability.

3. Advances in Soil Salinity Monitoring Research

The literature in CNKI and WOS databases was searched based on the similarity
of literature keywords. A keyword clustering analysis was performed on the retrieved
literature datasets related to soil salinity monitoring (Figures 3 and 4). Keyword clustering
analysis is the process of analyzing the set of keywords extracted from the literature into
multiple categories consisting of similar objects. There are many different algorithms
for clustering analysis, and this study chose Logarithmic Likelihood Ratio (LLR) as the
base calculation for the analysis. The labels of each cluster are the key keywords in
the co-occurrence network. Based on this, closely related keywords are clustered. The
higher the ranking of the cluster number, the more keywords are included in the cluster.
Conversely, the more backward the ordinal number, the fewer keywords are contained in
that cluster. The modularity value of the clustering metric Q ranges 0–1. The larger the
value, the better the clustering effect. Usually, when Q is less than 0.3, it indicates that the
literature data set analyzed by this clustering is not well structured. In Figure 3, a value of
Q = 0.8293 was obtained from cluster analysis of the literature in the CNKI database. In
Figure 4, a value of Q = 0.7128 was obtained from cluster analysis of the literature in the
WOS database. This indicates that the data collected in the Chinese literature database
and the international literature database were reliable and the keyword clustering analysis
structure was significant.

A total of 16 clustering tags were obtained from the keyword clustering analysis based
on the CNKI database (Figure 3). Among the top seven clusters, three of them are related
to remote sensing monitoring, namely “quantitative remote sensing”, “remote sensing
monitoring”, and “monitoring models”. A total of 10 clustering tags were obtained from
the keyword clustering analysis based on the WOS database (Figure 4). Among them,
both “machine learning” and “feature space” are specific remote sensing monitoring mod-
eling methods. Based on these methods, the researcher explores the “change detection”,
“spatial distribution”, and “evolution trend” of saline soils in China, making full use of
the advanced remote sensing information technology. This demonstrates that to achieve
the purpose of saline soil management and utilization on a large scale, it is an important
prerequisite to use scientific means to quickly and accurately grasp the information of
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saline soil distribution and to clarify the spatial and temporal variability characteristics of
salinization [30]. With the decades of continuous exploration and practice of soil saliniza-
tion research in China, there are more and more methods and means of soil salinization
monitoring. In summary, they can be divided into two main categories: (1) traditional
field investigation and experimental methods and (2) modern remote sensing information
technology monitoring methods.
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3.1. Field Investigations and Experiments

The field survey is to select test areas in the field where salinity characterization
exists and to obtain visual information on soil salinity from soil samples to provide an
accurate and reliable data source for the study. During the sampling process, the soil
sample points should be evenly distributed throughout the work area. The sample points
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should also be divided into typical sampling areas containing four different landscapes,
vegetation cover, soil types, etc. that are more representative. For soil samples collected at
different depths, soil conductivity can be measured using the EM38 Geodetic Conductivity
Probe [31]. The content of each ion in the soil can also be detected, and the corresponding
total soil salt content can be calculated [32]. We can also use dry weight and wet weight
to determine soil water content as well as soil evapotranspiration [33], and we can use a
portable spectrometer to obtain spectral curve data from different sampling points [34]. In
this way, we can achieve the purpose of extracting information on soil salinization.

The field survey method of collecting soil samples in the field and then analyzing them
has become a basic monitoring tool for accurate information on soil salinization [35]. Kai
Deng et al. [36] established a linear mixed model based on the linear relationship between
magnetic susceptibility apparent conductivity and actual measured soil salinity to assess
the spatial distribution of salinity in the soil profile. Wenping Xie et al. [37] constructed a
multiple regression model between magnetic susceptibility geodetic conductivity and soil
multiple regression models between geodetic conductivity and soil salinity to quantitatively
assess the spatial and temporal evolution of soil salinity in the estuary over the past
decade. Yasenjiang Kahaer et al. [38] performed indoor hyperspectral measurements and
conductivity measurements on soil samples obtained from fieldwork and established a
hyperspectral estimation model of soil conductivity after screening parameters. Finally,
effective monitoring of soil salinity was achieved.

By analyzing the results of scientists’ investigations, we can find that field surveys
and experimental methods can extract saline soil information very precisely. However,
this method is mainly based on manual point-by-point examination, which is less efficient
and difficult to obtain the salinity variation characteristics of large areas at a macroscopic
scale [39–41]. Especially in the study area where the vegetation cover is complex and the
natural environment is harsh, the number of monitoring stations is not sufficient, and
the difficulty of field investigation is increased. All these problems render the traditional
monitoring method of field surveys insufficient to meet research needs [42,43].

3.2. Remote Sensing Information Technology Monitoring

Among the many soil physicochemical parameters, soil salinity content is the primary
parameter for measuring salinization. The higher the soil salinity, the higher the risk of
soil salinization. When the accumulation of salts in the soil exceeds a certain level, it leads
to weakening of the bond between soil particles, loosening of soil structure, reduction of
soil fertility, and even directly affects the survival of vegetation [2,44]. At the same time,
there is a close relationship between soil conductivity and soil salinity. Soil conductivity is
a measure of the ability of ions in the soil to conduct electricity, and it reflects the amount
of dissolved ions in the soil, including salt ions and other dissolved substances. Similar to
soil salinity, conductivity can be an important factor in measuring salinity [45,46]. Moisture
in the soil can also largely reflect the salinity of the soil. Salt moves with water, and
soil salts are prone to shift with changes in moisture. Under strong evaporation, salts
in groundwater and deep soil rise to the surface along soil capillaries and accumulate,
resulting in salinization of regional soils [47–49]. Additionally, the heavy metal content in
soil also interacts with soil salinization and constrains it. Some heavy metal elements, such
as cadmium and lead, can affect the growth of soil microorganisms and form insoluble
complexes when combined with salts. They can reduce the activity of salts in the soil, thus
affecting the process of conversion and circulation of salts in the soil and aggravating the
degree of soil salinization [50,51].

Different levels of soil salinity, water content, and some heavy metals can be distin-
guished by using the different spectral reflectance of remote sensing images for different
features. The multidimensional combination of different bands in spectral images can also
construct a variety of model indices that can monitor soil salinization. Therefore, the use
of remote sensing to track physicochemical parameters such as soil salinity, conductivity,
water content, and heavy metals can all be effective in monitoring saline soils. In recent
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years, remote sensing information technology has been innovating, and the spectral res-
olution and spatial resolution of remote sensing images have been increasing. Efficient,
convenient, and large-scale means of monitoring soil salinity have been rapidly developed.
The method of monitoring salinity based on remote sensing images is gradually becoming
common and is rapidly developing into an important tool for studies such as soil salinity
information extraction, monitoring, and forecasting [52–54].

A keyword timeline analysis was performed on the literature datasets related to soil
salinity monitoring from 1981 to 2022 and 2002 to 2022 retrieved from the CNKI and the
WOS databases, respectively (Figures 5 and 6). The keywords in the figure are spread out
in the clusters they belong to according to the chronological order in which they appear in
the corresponding years, showing the development of keywords in each cluster. The size
of the keyword node represents the frequency of the keyword occurrence, and the warm
and cold colors of the node periphery represent the emergence and the duration of the
keyword. The larger the keyword node, the warmer the color of the edge of the node, the
more frequently the hotspot appears, and the longer it lasts. Conversely, the smaller the
node, the cooler the color of the node edge, the less frequently the hotspot appears, and
the shorter the duration of the hotspot. The analysis of the development of soil salinity
monitoring showed that in the mid-1990s, results for “dynamic monitoring” clustering
began to appear in the Chinese literature database, and attention was focused on “remote
sensing monitoring” (Figure 5). In the 21st century, “machine learning” and “feature space”
methods for monitoring “soil salinity” and “soil moisture” have begun to appear in the
international literature database (Figure 6). While a large number of studies on soil salinity
monitoring based on remote sensing have gradually emerged, keyword nodes such as
“remote sensing technology”, “hyperspectral”, “radar remote sensing”, “feature space”,
“inversion models”, “random forest”, “classification”, and “index” have also begun to
appear in other clusters one after another. There are a large number of keyword links
between them, both within and across clusters. These remote sensing monitoring-related
research terms link the whole clustering trend and become important research hotspots in
domestic and international literature databases.

Based on data analysis and processing of multiple remote sensing images, Yanhua
Li et al. [55] established a soil salinity monitoring index model using Landsat-TM mul-
tispectral remote sensing image data to invert and estimate soil salinity in the Weigan
River-Kuche River basin. Also using field collection samples and Landsat8 image data,
Mingkuan Wang et al. [56] collected soil samples in the key study area in the Yellow River
Delta region in the field and acquired simultaneous phase Landsat8 image data. They
constructed multiple models for remote sensing inversion of soil salinity and inversion of
the spatial distribution of soil salinity in the study area based on the optimal model. The
results showed that the relationship between reflectance of remote sensing images and
soil salinity content is not purely linear, and the constructed salt estimation model can
better simulate the relationship between soil salinity and spectral data. Yanling Li et al. [39]
established a machine learning and statistical regression model based on the fusion of
multispectral and hyperspectral images, which significantly improved the accuracy of salt
inversion. Similarly, Wumuti Aishanjiang et al. [57] matched field-measured hyperspectral
data with WorldView-2 remote sensing images to improve the prediction accuracy and
mapping accuracy of soil salinity. The quantitative inversion model developed in this
paper considering vegetation and moisture does not require complex parameters. To a
certain extent, it meets the needs of salinity monitoring in arid and semi-arid regions. This
can promote further applications of high-spatial-resolution satellites such as WorldView-2
in salinity monitoring. In the meantime, some scientists have also used radar remote
sensing data combined with soil moisture and pH factors to achieve predictive inversion
of soil salinity. In terms of the variability and correlation used to reveal soil properties,
M. Samiee et al. [58] used geostatistical methods to simulate the spatial correlation of soil
salinity, and the results were used to predict the spatial distribution of soil properties
by spatial interpolation methods. In addition, more and more kinds of remote sensing
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images have been applied to salinity monitoring. For example, Junying Chen et al. [59]
used unmanned aerial vehicle (UAV) aerial imagery and high-resolution remote sensing
imagery to construct a salinity inversion model and used an improved scale conversion
method to achieve soil salinity monitoring at the ascending scale. Predictive inversion of
soil salinity was achieved by using radar remote sensing data combined with soil moisture
and pH factors by Zaytungul Yakup et al. [60]. The monitoring model developed in this
paper does not need to consider complex dielectric constants. This can meet the needs of
soil salinity monitoring to a certain extent and promotes the application of Phased Array
type L-band Synthetic Aperture Radar data in soil salinity monitoring. Yumei Li et al. [61]
focused on the current status of the application of lidar three-dimensional remote sensing
observation technology in the three-dimensional dynamic monitoring of various natural
resources. The paper provides a comprehensive analysis of the potential and limitations of
lidar applications in natural resource surveys. These authors are also considering how to
combine multi-source, multi-scale, and multi-platform remote sensing data with artificial
intelligence. The goal is to build an integrated “sky-air-ground” natural resources survey
and monitoring technology system. This is the developmental direction of future methods
for three-dimensional dynamic monitoring of natural resources.
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New theories and technologies in image processing [62,63], machine learning [64],
remote sensing monitoring [65], and other research fields are gradually developing and
innovating. By summarizing a large number of domestic and foreign researchers’ studies
in recent years, it is clear that research using satellite remote sensing data to extract salinity
information by classification or soil salinity inversion by multiple spectral indices has
further deepened [66,67]. At the same time, more researchers are also focusing on the
application of integration between different observation elements, different scales, and
different data. We try to improve the accuracy of inversion of soil salinization information
in terms of classification algorithms and model construction. This will provide reliable
information for the development of saline soil management, ecological maintenance, and
sustainable agricultural development in China.

4. Main Modeling Approaches for Soil Salinity Remote Sensing Monitoring

In recent years, countless domestic and international researchers have created many
additional soil salinity monitoring techniques by tirelessly decoding an enormous amount
of sensing image data. Keyword burst detection analysis was performed in CiteSpace
software using the retrieved literature dataset related to soil salinity monitoring from
1981 to 2022 obtained by searching in the CNKI and the WOS databases (Figure 7). This
analysis can be used to detect large changes in the number of citations of keywords in the
literature during a certain time period. Thus, it helps to obtain the latest information on the
frontiers of research in the field. The keyword burst detection mapping shows that since
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the information extraction and dynamic monitoring of salinized soil, many researchers
have started to focus on the construction of models for soil salinization information by
remote sensing. For example, “classification” appeared in 2012, “feature space” appeared
in 2013, “quantitative models” appeared in 2015, “neural networks” and “random forest”
appeared in 2016, “methods plsr” appeared in 2018, and “model”, “machine learning”,
and “monitoring models” appeared in 2020. Among the 35 main keywords obtained
from the analysis, a variety of keywords related to remote sensing monitoring modeling
studies have begun to appear frequently in the last decade. These modeling studies are
updated quickly and span a long period of time, and all of them have gradually achieved
valuable research results while broadening the methods of soil salinity monitoring. This
indicates that modeling studies have become a hot method in remote sensing monitoring
of soil salinity.
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The core method of quantitative assessment of soil salinity using remote sensing
data is to explore the correlation between the content of relevant salinity indicators and
remote sensing data [68]. Among them, salinity indexes can be obtained by bringing soil
samples collected from field surveys back to the laboratory and performing measurement
experiments for analysis. Pre-processed remote sensing image data are rich in spectral
information of features, which are contained in the reflectance of different wavelength
bands of remote sensing data. The spectral information contained in a single band is
limited. Therefore, after extracting the spectral reflectance of the bands of the remotely
sensed image, a combination operation between different bands can be performed. These
indices are usually a priori formulas derived from existing studies (Tables 1 and 2).

Table 1. Salinity indexes and related calculation formulas.

Salinity Index Calculation Formula Note Reference

Salinity Index (SI)
√

B× R B is the blue band
R is the red band [69]

Salinity Index 1 (SI1)
√

G× R
G is the green band

R is the red band [70]

Salinity Index 2 (SI2)
√

G2 + R2 + NIR2
G is the green band

R is the red band
NIR is the near infrared band

[71]

Salinity Index 7 (SI7) NIR×R
G

NIR is the near infrared band
R is the red band

G is the green band
[72]

Salinity Index-T (SI-T) R
NIR × 100 R is the red band

NIR is the near infrared band [73]

Salinity Index (S) R
NIR

R is the red band
NIR is the near infrared band [74]

Salinity Index (S1) B
R

B is the blue band
R is the red band [74]

Salinity Index (S2) B−R
B+R

B is the blue band
R is the red band [74]

Salinity Index (S3) G×R
B

G is the green band
R is the red band
B is the blue band

[74]

Salinity Index (S5) B×R
G

B is the blue band
R is the red band

G is the green band
[74]

Brightness Index (BI)
√

R2 + NIR2 R is the red band
NIR is the near infrared band [75]

Brightness Index (BRI)
√

G2 + R2 G is the green band
R is the red band [76]

Intensity Index 1 (Int1) G+R
2

G is the green band
R is the red band [77]

Intensity Index 2 (Int2) G+R+NIR
2

G is the green band
R is the red band

NIR is the near infrared band
[77]

Salinity Ratio Index (SRI) (R− NIR)× (G + NIR)
R is the red band

NIR is the near infrared band
G is the green band

[78]

Normalized Difference
Salinity Index (NDSI)

R−NIR
R+NIR

R is the red band
NIR is the near infrared band [79]

Normalized Difference
Water Index (NDWI)

G−NIR
G+NIR

G is the green band
NIR is the near infrared band [79]

Canopy Response
Salinity Index (CRSI)

√
(NIR×R)−(G×B)
(NIR×R)+(G×B)

NIR is the near infrared band
R is the red band

G is the green band
B is the blue band

[80]

Clay Index (CLEX) SWIR1
SWIR2

SWIR1 and SWIR2
are the short-wave infrared bands [81]

Carbonate Index (CAEX) R
G

R is the red band
G is the green band [82]
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Table 2. Vegetation indexes and related calculation formulas.

Vegetation Index Calculation Formula Note Reference

Ratio Vegetation Index (RVI) NIR
R

NIR is the near infrared band
R is the red band [83]

Enhanced Ratio
Vegetation Index (ERVI)

NIR+SWIR2
R

NIR is the near infrared band
SWIR2 is the short-wave infrared band

R is the red band
[83]

Green Ratio Vegetation Index (GRVI) NIR
G

NIR is the near infrared band
G is the green band [84]

Difference Vegetation Index (DVI) NIR− R NIR is the near infrared band
R is the red band [85]

Enhanced Difference
Vegetation Index (EDVI) NIR + SWIR1− R

NIR is the near infrared band
SWIR1 is the short-wave infrared band

R is the red band
[86]

Renormalized Difference
Vegetation Index (RDVI)

NIR−R√
NIR+R

NIR is the near infrared band
R is the red band [87]

Generalized Difference
Vegetation Index (GDVI)

NIR2−R2

NIR2+R2

NIR is the near infrared band
R is the red band [88]

Normalized Difference
Vegetation Index (NDVI)

NIR−R
NIR+R

NIR is the near infrared band
R is the red band [89]

Green Normalized Difference
Vegetation Index (GNDVI)

NIR−G
NIR+G

NIR is the near infrared band
G is the green band [90]

Extended Normalized Difference
Vegetation Index (ENDVI)

NIR+SWIR2−R
NIR+SWIR2+R

NIR is the near infrared band
SWIR2 is the short-wave infrared band

R is the red band
[91]

Enhanced Vegetation Index (EVI) 2.5× NIR−R
NIR+6R−7.5B+1

NIR is the near infrared band
R is the red band
B is the blue band

[92]

Two Band Enhanced
Vegetation Index (EVI2) 2.5× NIR−R

NIR+2.4R+1
NIR is the near infrared band

R is the red band [93]

Chlorophyll Index Green (CIgreen) NIR
G − 1 NIR is the near infrared band

G is the green band [94]

Simple Ratio Index (SRI) NIR
R

NIR is the near infrared band
R is the red band [95]

Nonlinear Vegetation Index (NLI) NIR2−R
NIR2+R

NIR is the near infrared band
R is the red band [96]

Modified Nonlinear
Vegetation Index (MNLI)

1.5(NIR2−R)
NIR2+R+0.5

NIR is the near infrared band
R is the red band [96]

Modified Simple Ratio (MSR) NIR−B
R+B

NIR is the near infrared band
B is the blue band
R is the red band

[97]

Triangular Vegetation Index (TVI) 0.5[120(NIR− G)− 200(R− G)]
NIR is the near infrared band

G is the green band
R is the red band

[98]

Modified Triangular
Vegetation Index (MTVI) 1.2[1.2(NIR− G)− 200(R− G)]

NIR is the near infrared band
G is the green band

R is the red band
[99]

Soil-Adjusted Vegetation Index (SAVI) (1+L)(NIR−R)
NIR+R+L

L is the soil adjustment coefficient,
which is generally close to 0.5
NIR is the near infrared band

R is the red band

[100]

Green Soil-Adjusted
Vegetation Index (GSAVI) (1 + L) NIR−G

NIR+G+L

NIR is the near infrared band
G is the green band

L is the soil adjustment coefficient,
which is generally close to 0.5

[101]

Optimization Soil-Adjusted
Vegetation Index (OSAVI)

NIR−R
NIR+R+0.16

NIR is the near infrared band
R is the red band [102]

Green Optimization Soil-Adjusted
Vegetation Index (GOSAVI)

NIR−G
NIR+G+0.16

NIR is the near infrared band
G is the green band [103]

Composite Spectral
Response Index (COSRI)

B+G
R+NIR ×

NIR−R
NIR+R

B is the blue band
G is the green band

NIR is the near infrared band
R is the red band

[104]

Visible Atmospherically
Resistant Index (VARI)

G−R
G+R−B

G is the green band
R is the red band
B is the blue band

[105]

Atmospherically Resistant
Vegetation Index (ARVI)

NIR−(2R−B)
NIR+(2R+B)

NIR is the near infrared band
R is the red band
B is the blue band

[106]
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A remote sensing monitoring model was constructed with the aim of establishing
the relationship between soil salinity content and the abovementioned modeling factors.
Therefore, the research hotspot of remote sensing monitoring of soil salinity mainly lies
in the construction of an efficient and reliable remote sensing monitoring model [107,108].
Various models are used to extract salinity information mainly by remote sensing tech-
nology to obtain more accurate inversion results and to assess the regional soil salinity
distribution. Among them, the most commonly used remote sensing models for salinity
monitoring mainly include the following.

4.1. Partial Least Squares Regression

Partial least squares regression (PLSR) is a new multivariate statistical data analysis
algorithm that combines the advantages of multiple stepwise linear regression models,
principal component models, and simple linear regression models in one [109,110]. Partial
least squares regression implements a combination of simplified data, structural regres-
sion modeling, and the analysis of correlations between two groups of variables. It also
implements cross-validity validation of component extraction in the calculation process,
reorganization and screening of information in the variable system, and selection of several
new components with the best systematic explanatory power for regression modeling. This
provides a great convenience for statistical analysis of multivariate data [111]. Therefore,
partial least squares regression, which can automatically filter variables based on correlation
and ensure model stability, has been widely used in recent years to model spectral data
and achieve high-accuracy predictions.

Viscarra Rossel et al. [112] showed that the partial least squares regression method has
better soil nutrient prediction capability. This method allows modeling when the number
of sample points is smaller than the number of variables and provides excellent processing
and analysis capabilities for complex problems. Numerous researchers have also used
this model to invert soil organic matter and to filter the most important organic matter
content variables from spectral data [113], resulting in better robustness of the established
models. For example, Yumiti Maiming et al. [114] set the independent variable as the
original spectral reflectance and the dependent variable as the soil organic matter content
to construct an estimation model based on methods such as partial least squares regression.
It was shown that the inverse logarithmic first-order differential transformation could help
to improve the accuracy of the partial least squares regression estimation model.

4.2. Support Vector Machines

Support vector machines (SVM) are a method that better implements the idea of
structural risk minimization. It can better solve practical problems such as small samples,
nonlinearity, and high-dimensional data. It can be extended to other machine learning
problems such as function fitting [115]. Support vector machines are a kind of machine
learning method based on statistical theory, which has a strong mathematical foundation
and is intuitive, stable, accurate, and efficient. Compared with traditional statistical meth-
ods, it has the advantages of strong functional expression, good generalization ability,
and high learning efficiency. It is widely used in the fields of soil salinity information
extraction because it is easy to combine with multiple sources of information and has
relatively high accuracy [116]. However, at the same time, support vector machines are
also too sensitive to the selection of parameters and functions and have shortcomings in
solving multi-classification problems [117].

Using the spectral information of Landsat ETM+ images, Fei Zhang et al. [118] found
that the support vector machines regression method based on texture features had an
improved effect on the monitoring accuracy of soil salinity information. Similarly, Yiliyas
Jiang [119] referred to the salinity classification system and used support vector machines to
determine the optimal parameters, thus obtaining more accurate soil salinity classification
information. In addition, Xi Wang et al. [120] selected support vector machines as a model-
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ing method for machine learning based on the small sample size and practical situation of
the study and performed remote sensing inversion of salinized soil organic matter.

4.3. BP Neural Network

BP neural network (BPNN) is a multilayer feedforward neural network trained ac-
cording to the error back-propagation algorithm. It mainly contains two processes: forward
propagation of signals and backward propagation of errors. BP neural networks can iden-
tify nonlinear relationships between input and output data sets in complex systems without
constructing mathematical equations. It can eliminate the influence of specific values to
a certain extent, has strong self-learning ability, strong adaptability, and anti-interference
ability, and it is widely used by researchers in the inversion monitoring of salinity [121].

Wenzhe Feng et al. [122] simultaneously introduced BP neural network, support vector
machines, and extreme learning machines to build a soil salinity monitoring model so as to
improve the monitoring accuracy of soil salinity by satellite remote sensing. Among them,
a three-layer BP neural network was used to build a soil salinity dynamics model according
to the principle of relatively small error in training results. The results showed that the
BP neural network model based on multi-source remote sensing images is more accurate.
Xueli Feng et al. [123] found that the stability and prediction accuracy of the BP neural
network model combining the second-order derivatives of spectral feature bands, radar
backscattering characteristics, and combined surface roughness were higher than the rest
of the models. This shows that the BP neural network model combined with multi-source
remote sensing data can quickly and accurately monitor the distribution of soil salinization,
which provides important guidance for the prevention and control of soil degradation.

4.4. Random Forest

Random forest (RF) is a new classification and prediction model that uses multiple
decision trees for training and prediction of samples. The model randomly selects the
training sample set with split attribute set, which is a combination of multiple decision
trees and is less sensitive to outliers [124]. This gives random forest models high noise
immunity and nonlinear mining ability, and the distribution of data does not need to
conform to any assumptions, which performs well in the randomization training phase of
samples and variables. Random forest models have been increasingly used for classification
and regression in recent years because of their high accuracy in predicting results, the
importance of computable variables, and the ability to model complex interactions among
a large number of predictor variables [125,126].

Jie Hu [127] compared partial least squares regression and random forest regression
methods using hyperspectral first-order differentiation, broad-band spectral indices, and
narrow-band spectral indices as independent variables. The results showed that the random
forest regression model could better predict soil salinity using spectral data, and the model
for the bare soil area had the highest prediction accuracy compared to the model for
the other sample areas. Meanwhile, in order to monitor the spatial variability of soil
salinity as accurately as possible on a large scale, Lina Meng [128] used ordinary kriging,
geographically weighted regression, and a random forest model combined with several
environmental auxiliary variables to map the distribution of surface soil salinity in the
study area. The results show that the random forest model has the highest prediction
accuracy among the various prediction methods, indicating that the model is effective in
quantitatively estimating soil salinity at the regional scale.

4.5. Feature Space

The modeling method based on the spectral feature space can also be applied to
construct a soil remote sensing monitoring model [129]. The distance to a certain feature
point in the two-dimensional or three-dimensional feature space of soil salinization co-
variates can reflect different degrees of salinity and determine the change trend between
different covariates. We can analyze the scattered spatial map with practical experience



Sustainability 2023, 15, 5874 15 of 25

so that we can use spatial characteristic covariates of the scattered map to build the corre-
sponding model [130]. Among them, two-dimensional feature space can clearly express
the distribution pattern of factors affecting the soil salinization process. For example, the
two-dimensional scatter diagram between vegetation and soil salinity has been elaborated
and discussed by domestic and foreign researchers. In view of the future development path
of soil salinity monitoring, two-dimensional feature space can no longer satisfy the analysis
and display of multiple factors involved in salinization at the same time. With the develop-
ment of remote sensing technology, the emergence of three-dimensional technology can
help promote the development of soil salinity feature space research to three-dimensional
or multi-dimensional space.

On the one hand, in the study of two-dimensional feature space application, Jianli Ding
et al. [131] constructed a two-dimensional feature space based on a modified soil-adjusted
vegetation index and moisture index to derive a remote sensing monitoring index model for
soil salinization. The results showed that the two-dimensional feature space correlated well
with the soil surface salinity of the oasis in the arid zone. Fei Wang et al. [132] constructed
a quantitative relationship between surface-based feature vectors and the occurrence of the
salinization process. It was found that the feature space model could invert the soil salinity
distribution of the delta oasis in the study area more accurately. In addition, Lingling Bian
et al. [133] quantitatively explored the patterns between soil salinity and surface biophysical
parameters and also constructed a soil salinity eigenspace model. The results showed that
the salinity index and albedo characteristic spatial model has a strong predictive ability
and is most suitable for the inversion of salinization in coastal areas.

On the other hand, the use of three-dimensional feature spaces is increasingly de-
veloped. The relationship between soil salinization, albedo, and the modified type of
soil adjusting the vegetation index was used by Juan Feng et al. to construct the feature
space [134] The monitoring model constructed by surface albedo and soil-adjusted vegeta-
tion index was found to have a high correlation with soil salinity, which can better quantify
and monitor the degree of soil salinization in the study area. Not only that, XuePing Ha
et al. [135] used the relationship between salinity index, surface albedo, and soil salinity
based on three-dimensional feature space to efficiently and accurately extract salinization
information of the oasis in the study area.

5. Discussion

The extraction of soil salinization information by remote sensing monitoring technol-
ogy has recently become a hot spot in the field of remote sensing research. Many researchers
domestic and abroad are gradually developing new technical means and research methods
to expand research in the field of high-precision monitoring of regional soil salinization.

Various models including those summarized above have been widely used for remote
sensing monitoring of soil salinity. Many of these improved and optimized mathematical
models have been continuously applied to the study of the spatial distribution of soil
salinity (Table 3). In addition, the back trajectory model can be used to track the trajectory
of saline sands and salt dusts. The vertical distribution characteristics of sands and dusts
in the atmosphere are detected by using satellite remote sensing data or UAV remote
sensing data combined with the back trajectory model for the purpose of monitoring the
time-series trajectory of saline soils [136,137]. Many of these models, which have achieved
high accuracy, provide a favorable basis for spatial and temporal analysis and prediction of
regional salinization. At the same time, however, this paper argues that there are still some
shortcomings in the current research on soil salinity monitoring in China that need to be
further discussed and addressed by researchers.
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Table 3. Multiple modeling approaches for remote sensing to monitor soil salinity.

Authors Monitoring Model Reference

Jie Wang et al. Multiple Linear Regression
(MLR) [138]

Jianwen Wang et al. Multiple Stepwise Linear Regression
(MSLR) [139]

Yasenjiang Kahaer et al. Nonlinear Regression
(NR) [140]

Haifeng Wang et al. Quadratic Polynomial Regression
(QPR) [141]

Elia Scudiero et al. Ordinary Least Square
(OLS) [142]

Shengmin Peng et al. Partial Least Squares Regression
(PLSR) [143]

Lornbardo et al. Quantile Regression
(QR) [144]

Pingping Jia et al. Poisson Regression
(PR) [145]

Richard H. Anderson et al. Ridge Regression
(RR) [146]

Glen Fox et al. Principal Component Regression
(PCR) [147]

Yan Shen et al. Stepwise Regression
(SR) [148]

Haorui Chen et al. Multiple Mixed Regression
(MMR) [149]

Ayetiguli Sidike et al. Stepwise Multiple Regression
(SMR) [150]

Nurmemet Erkin et al. Multiple Adaptive Regression Spline
(MARS) [151]

Akshar Tripathi et al. Decision Tree Algorithm
(DTA) [152]

Yinyin Wang et al. Random Forest
(RF) [153]

Jinjie Wang et al. Classification and Regression Tree
(CART) [154]

Xiaoyan Guan et al. Support Vector Machine
(SVM) [115]

Xiaoping Wang et al. Grid Search Support Vector Machine
(GSSVM) [155]

Utpal Barman et al.
Differential Evolutionary Support Vector

Machine
(DESVM)

[156]

Zheng Wang et al.
Particle Swarm Optimization Support Vector

Machine
(PSOSVM)

[157]

Zhongyi Qu et al. BP Neural Network
(BPNN) [158]

Christina Corbane et al. Convolutional Neural Network
(CNN) [159]

Sedaghat A. et al. Artificial Neural Network
(ANN) [160]

Dawei Hu et al. BP Artificial Neural Network
(BPANN) [161]

Xiaoping Wang et al. Bootstrap-BP Neural Network
(Bootstrap-BPNN) [162]

Gopal Ramdas Mahajan et al. Ordinary Krieger
(OK) [163]

Jialin Zhang et al. Universal Kriging
(UK) [164]
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Table 3. Cont.

Authors Monitoring Model Reference

Eldeiry A. A. et al. Modified Residual Kriging
(MRK) [165]

Ku Wang et al. Residual Universal Kriging
(RUK) [166]

Ting Du et al. Two-Dimensional Feature Space
(2DFS) [167]

Bing Guo et al. Three-Dimensional Feature Space
(3DFS) [168]

Yueru Wu et al. Dobson Model
(DM) [169]

Ya Liu et al. Structural Equation Model
(SEM) [170]

Purandara B. K. et al. Solute Transport Model
(STM) [171]

Suchithra M. S. et al. Extreme Learning Machine
(ELM) [172]

Ya Liu et al. Spectral Index Regression
(SIR) [173]

Elia Scudiero et al. Spatial Autoregressive Model
(SAM) [174]

Zhen Li et al. Geographically Weighted Regression
(GWR) [175]

First of all, the most important shortcoming is that the universal applicability of moni-
toring models needs to be further improved. Saline soil resources in China are distributed
in different climatic zones, and there are large differences in soil types, water and heat
conditions, and planting methods. Therefore, the physical and chemical properties of soils
in the current study area, temporal and climatic conditions, relevant environmental factors,
and model application preferences considered by researchers in constructing monitoring
models can lead to a generally low applicability of the optimal models derived from the
final experiments. However, this can invert the soil salinization information of the current
study area with high accuracy. Nevertheless, it is difficult for it to be applied to other
seasons in the same study area or to other study areas with different environmental states.

Secondly, sometimes there are more types and a greater abundance of salt-tolerant
vegetation cover in the study area. The soil salinity monitoring model constructed in the
study area needs to be adjusted because of the large differences in spectral characteristics
between different vegetation types and bare soil. Therefore, the model can be applied to
areas with different vegetation growth stages and areas with different arable, grassland,
and woodland coverage to eliminate the influence of vegetation on monitoring results as
much as possible. This not only increases the difficulty of designing and executing the
distribution of soil sampling points during fieldwork but also incorporates more variables
into the construction of the model. This will lead to a decrease in the accuracy of monitoring
models to invert salinity. Therefore, how to construct a salinity monitoring model that
can efficiently and accurately reflect the salinity of vegetation cover areas will be a major
problem to be faced in this field in the future.

6. Research Perspectives on Soil Salinity Monitoring in China

A synthesis of previous studies carried out on soil salinization shows that most
monitoring methods are based on the spectral response characteristics of salinized soils.
Researchers have combined the spectral information obtained from different remote sensing
data with non-remote sensing parameters to establish inverse models for regional soil
salinity monitoring. However, due to the high correlation between water and salt in
soil salinization, salt moves with water, and soil salinity is easily shifted with changes in
moisture. In the monitoring of salinity, not only the salt but also the water will be considered
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to further develop water–salt synergistic monitoring so as to achieve the purpose of high
monitoring accuracy and effective monitoring.

For the scale studies of salinized soils, researchers have mostly conducted a single scale
or chosen the administrative district as the scale indicator for analysis. Some results have
been obtained for soil salinity monitoring at different scales, such as field and regional scales.
However, the correlation between different scales and their transformation have been less
studied. Various reasons, such as surface heterogeneity, complexity of the salinization
process, and significant variability in the dominant factors affecting the spatial variability
of soil salinity at different scales [176], can lead to large differences in the autocorrelation
of the same variable at different scales. There are limitations in studying salinization at a
single scale.

The variability of soil salinity shows obvious scale effects with spatial scales. If the
analysis is performed only at large scales, it may cause the spatial structural features at
small scales to be obscured, making it difficult to analyze the structural features of soil
spatial variability in depth. Soil salinity research based on multi-scale methods as well as
scale-transformation methods can solve this problem well, which will provide new research
ideas for soil salinity monitoring.

7. Conclusions

The proper management of saline soil resources in China is related to national food
security and ecological stability. The leaders of the Party and the State attach great impor-
tance to the management and utilization of saline soils. As an important land resource
in China, saline soils of different types, vast areas, and great potential provide unique
research conditions for our researchers. Efficient and accurate monitoring of salinization
information along with the management and development of unused saline soils provides
more room for development to expand the country’s arable land resources and expand the
path of agricultural development.

With the continuous progress of remote sensing technology, research on soil saliniza-
tion information extraction methods has developed over a long period. In order to obtain
more accurate inversion data to characterize the interrelationship between soil salinity
status and its influencing factors, the construction of remote sensing monitoring models
has gradually become a research hotspot in the field of soil salinity monitoring. In future
research, the exploration of soil salinization information extraction will become more ex-
tensive, will generate more data, and will be more accurate in judgment [176]. In general,
according to current scientific needs and national demands, soil salinization research in
China will play an important role for national food security [177], arable land security [178],
saline land improvement [179], land use protection [180], ecology, and sustainable agricul-
tural development. In the face of today’s increasingly serious soil salinization situation,
it is important to seek more efficient, reliable, accurate, and economical soil salinization
monitoring technologies.
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