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Abstract: Vegetation phenology is one of the most sensitive indicators to understanding terrestrial
ecosystem status and change. However, few studies have been conducted to reveal vegetation
phenology variation characteristics over the past two decades, especially under the background of the
global warming hiatus since 1998. The agricultural pastoral ecotone of northern China (APENC) is an
ideal place to analyze land surface phenology (LSP) variation. Therefore, the spatiotemporal patterns
of LSP were quantitatively analyzed at regional, basin and pixel scales based on time-series MODIS
NDVI data (2001–2021). Results showed that: (i) The start of the growing season (SOS) occurred
in 105–141 Julian days, the end of the growing season (EOS) was between 257 and 281 Julian days
and the length of the growing season (LOS) varied from 130 to 172 days. The later SOS was mainly
distributed in croplands and typical grassland areas, while the early SOS was observed in forests and
sandy vegetation coverage areas. The early EOS occurred in typical grasslands, and the later EOS
was concentrated in the southeast boundary. The magnitude of the SOS and LOS fluctuation was
less than EOS. (ii) The SOS and EOS exhibited overall insignificant advanced and delayed trends at
a rate of −0.09 days·yr−1 and 0.12 days·yr−1, respectively, and the LOS displayed an insignificant
extended trend at a rate of 0.26 days·yr−1 at a regional scale. The trends of phenological metrics
were consistent with the APENC in the Yellow River and Haihe River Basins. The shortened trend
of LOS occurred due to the delayed SOS and advanced EOS in the Songliao River and Continental
Basins. (iii) The SOS variation gradually changed from an advanced trend to a delayed trend from a
southwest to northeast direction in cropland and grassland ecosystems, whereas an opposite trend
was found for EOS. The LOS exhibited a significant extended trend due to the significant advanced
and delayed trend of SOS and EOS at p < 0.01 in forest ecosystems. This work provides a critical
reference for the vegetation phenology dynamic research of semi-arid and semi-humid regions.

Keywords: land surface phenology; spatiotemporal patterns; different ecosystem; MODIS; APENC

1. Introduction

Climate change has become the largest non-traditional security challenge facing hu-
man development [1]. The Intergovernmental Panel on Climate Change Sixth Assessment
Report pointed out that the global average temperature has increased by 1.09 ◦C compared
with pre-industrial levels [2]. Climate warming has had a profound influence on the struc-
ture and function of terrestrial ecosystems and has become the focus of scientists and the
public [3]. Vegetation phenology refers to the periodic life activities of plants driven by
climate and other environmental factors [4]. It is one of the most sensitive indicators to
understanding terrestrial ecosystem status and change, and its change is also the primary
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manifestation of plant adaptation to climate change [5]. Many studies have shown that
the occurrence and duration of phenological events has changed dramatically because
of global warming, leading to a significant influence on global carbon cycle, water cycle,
energy flows and even human health [6–8]. Therefore, obtaining vegetation phenological
dynamics can help us to understand the evolution of plant communities and the behavioral
responses of the Earth’s ecosystems in the face of climate change [9].

A direct phenological record of individual species or a dominant community life cycle,
based on ground observation and phenological cameras, is a major means to analyzing
vegetation phenology changes at specie and plot scales [8,10–12]. Ground-based manual
observations provide very accurate long-term phenology data for individual plant species,
but have limitations in terms of spatial coverage and time resolution [13,14]. Phenological
cameras monitor continuous vegetation changes at canopy and specie scales by configuring
the visible, multispectral and hyperspectral automated cameras [15–17]. This approach
has become a powerful tool for phenology research because of the less costly, easy to set
up and high frequent real-time observation. However, the spatial distribution of ground
sites is very rare in China. The Chinese Phenological Observation Network shows that the
phenological information of thirty sites have been recorded since 1963 (http://www.cpon.
ac.cn/, accessed on 2 December 2022). Phenological camera sites are mainly distributed
in America, Europe, Japan and Australia, and the phenological data of only two sites (the
Jurong and Shangqiu sites) can be accessed within China (https://phenocam.nau.edu/,
accessed on 10 January 2023). Thus, it is difficult to reveal the integrative phenology
patterns in continuous space due to the spatial discontinuity of the ground observation.

Satellite remote sensing has been commonly utilized to monitor the dynamic change
of vegetation phenology since it has the advantage of obtaining spatial continuous informa-
tion. Land surface phenology (LSP) refers to vegetation phenology derived from satellite
data. Long time-series satellite data mainly come from sensors such as NOAA-AVHRR,
Terra/Aqua-MODIS and SPOT-VGT, since 1980 [4,18,19]. These datasets are used to an-
alyze vegetation phenology dynamics at regional and global scales [20,21]. Landsat and
Sentinel data are used for LSP research at a local scale [22]. Phenological metrics, including
the start of the growing season (SOS), end of the growing season (EOS) and length of
growing season (LOS), can be identified based on LSP extraction methods and various
time-series remote sensing data [23].

During the past few decades, many phenological metrics extraction methods, in-
cluding thresholding, autoregressive moving average, derivative, machine learning and
shape model fitting, have been developed based on optical vegetation indices, microwave
vegetation opacity depth and solar induced chlorophyll fluorescence [24–27]. Among
the vegetation indices, AVHRR GIMMS NDVI and MODIS NDVI are the most used data
sources for large-scale phenological metrics simulation. The AVHRR, with a coarse spatial
resolution (8 km) and 10-day composites, carried out LSP studies at global, hemisphere
or continental scales since 1982. However, the LSP parameters may not be accurately
estimated in the high heterogenous vegetation coverage areas based on AVHRR data due to
the coarse resolution, data quality and data missing problems [28]. The MODIS, available
from 2000 to the present, and at a 250 m–5.6 km spatial resolution with 16-day compos-
ites, is considered more appropriate for estimating phenological metrics and revealing
the spatiotemporal patterns of LSP in the past two decades due to its moderate spatial
resolution, high observation frequency and data quality. Previous LSP studies are mainly
focused on the temperature sensitivity of spring phenology and the response of forest
phenology in middle and high latitudes to climate change [3,8,13,29,30]. However, the
research on EOS, LOS and the phenological changes of grassland and cropland ecosystems
in middle latitude areas is not sufficient. Meanwhile, there is a lack of consideration of
land use change in most LSP studies, which may not accurately reflect the spatiotemporal
evolution characteristics of phenology in different ecosystems. In addition, previous LSP
research mainly focuses on the period from 1982 to 2010, based on the AVHRR GIMMS

http://www.cpon.ac.cn/
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data due to the limitation of data availability. How LSP changed in the last 20 years should
be addressed, especially in the context of the global warming hiatus since 1998 [31].

The agricultural pastural ecotone of northern China (APENC) is an ecological transi-
tion zone connecting agricultural cultivation and animal husbandry [32]. To protect the
north China plain and Beijing-Tianjin-Hebei region against a sandstorm invasion, a great
deal of ecological restoration projects have been performed by the Chinese government
since 1999 [33]. The land use has changed dramatically, vegetation productivity has been
increased significantly and vegetation has shown a greening trend under the influence of
man-made protection and a warming-drying climate trend over the APENC [34]. Against
this background, there is an urgent need to reveal the spatiotemporal patterns and trend
characteristics of LSP in the past two decades. This work will provide a critical reference
for the vegetation phenology dynamic research of semi-arid and semi-humid regions. The
purposes of this study are to: (i) analyze the spatiotemporal patterns and trend charac-
teristics of LSP quantitatively at regional, basin and pixel scales from 2001 to 2021, and
(ii) reveal the phenological evolution process of different ecosystems.

2. Materials and Methods
2.1. Study Area

APENC is situated in the southeast edge of the Mongolia Plateau and northern part of
the Loess Plateau, between 33.5◦–48.6◦ N and 101◦–126.5◦ E (Figure 1 [35]). The APENC
covers an area of 8.35 × 105 km2, and more than 50% of the area is grassland. The
mean annual precipitation ranges from 300 to 450 mm, and about 60–70% of precipitation
is mainly concentrated in summer. Precipitation variability belongs to 15–30%. The
mean annual evaporation ranges from 1600 to 2500 mm, and the frost-free period lasts
130–160 days. The land use pattern is characterized by the interlacing of agriculture and
animal husbandry affected by the monsoon climate [36,37].

2.2. Datasets and Pre-Processing
2.2.1. MODIS Data

We used the 16-day composite data of the MODIS NDVI product (MOD13Q1 V006)
to estimate the key LSP parameters, with the spatial resolution of 231.7 m from 2001 to
2021. The preprocessing such as image mosaic and clipping, projection and data format
conversion, etc., were carried out using the MODIS Reprojection Tool. However, there
are still many singular values, although the pre-composited eight-day surface reflectance
data were used to generate the MOD13Q1 dataset. In this study, the harmonic analysis
of time series approach was utilized to reconstruct cloud-free time-series MODIS NDVI
data [38]. The optimal harmonic parameter combination suited for reconstructing high-
quality MODIS NDVI data over the APENC has been determined by Wei et al. (2020) [39].
Furthermore, areas such as bare rock, Gobi, desert and waterbody were masked based on
the threshold method due to no or sparse vegetation coverage, and 98% of study area was
finally considered.

2.2.2. Basin and Land Use Data

The basin data was derived from the data center for resource and environmental
sciences of Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 15 January
2023), and the APENC was divided into four basins: Yellow River Basin, Haihe River
Basin. Songliao River Basin and Continental Basin (Figure 1). The GlobeLand30 data, with
a spatial resolution of 30 m in 2000, 2010 and 2020, were used to reflect the ecosystem
situation [40]. The main land use types are grasslands, croplands and forests in AEPNC,
accounting for more than 96% of the study area [35]. Thus, this study mainly focused
on the change characteristics of the vegetation phenology in these three ecosystems. To
avoid the impact of land use change on analysis results, the Globeland30 in 2000, 2010 and
2020 were firstly upscaled to 231.7 m using the preponderant area method, and then the
unchanged land use type pixels were chosen based on the spatial overlay analysis method,

https://www.resdc.cn/
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and the corresponding phenological metrics of grasslands, croplands and forests were
finally extracted.
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2.2.3. Plant Phenological Observation Dataset

The vegetation phenology observation dataset was collected from the Chinese Ecosys-
tem Research Network Data Center (CERN, http://www.nesdc.org.cn/, accessed on 20 De-
cember 2022) and was used to evaluate the accuracy of the SOS and EOS parameters. This
dataset records the phenological observation information of more than 660 plant species
at 21 ecological sites during the period of 2003–2015 [41]. The dataset was divided into
a woody plant subset and an herbaceous plant subset because of the distinct differences
between the phenological stages of woody and herbaceous plants. The woody plant subset
reflects the leaf bud breaking phase, leaf unfolding phase, first bloom phase, full flow-
ering phase, fruit or seed ripening phase, leaf turning to autumn color phase and leaf
falling phase. The herbaceous plant subset reflects the germination or turning green phase,
flowering phase, fruit or seed ripening phase, seed dispersal phase and autumn wilting
phase. Four ecological sites that are distributed within the boundary of the study area were
selected, including Inner Mongolia, Naiman, Ordos and Beijing sites (Figure 1 and Table 1).
In this study, the phenological information of dominant species were used to reflect the
basic status of plant phenology in four sites.

http://www.nesdc.org.cn/
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Table 1. The basic information of four ecological sites in the APENC.

Scheme Location Ecosystem Type Dominant Species

Inner Mongolia 43.55◦ N, 116.68◦ E Grassland Leymus chinensis, Stipa grandis, Agropyron
cristatum and Cleistogenes squarrosa

Naiman 42.93◦ N, 120.70◦ E Grassland and desert Caragana microphylla, Artemisia halodendron
and Setaria viridis

Ordos 39.49◦ N, 110.19◦ E Grassland and desert
Artemisia ordosica, Hedysarum leave, Salix
psammophila, Dysphania aristate, Leymus

secalinus and Cleistogenes squarrosa

Beijing 39.96◦ N, 115.43◦ E Forest Pinus tabuliformis, Larix principis-rupprechtii
and Quercus wutaishanica

2.3. Phenological Metrics Extraction and Validation
2.3.1. Phenological Metrics Extraction

The cumulative NDVI-based logistic regression curves, as one of the derivative meth-
ods, was proven to have a higher accuracy for extracting the grassland phenology in the
Mongolia Plateau and Northern China [42,43]. This approach was put forward on the basis
of the piecewise logistic function by Zhang et al. (2003) [24], and it has an advantage since
it does not identify the growth or senescence phase modelling the NDVI curve using a
logistic function [42]. Therefore, the cumulative NDVI-based logistic regression curves
approach was used to identify the LSP parameters.

The cumulative NDVI curve is calculated through a logistic regression function:

yt =
c

1 + ea+bt + d (1)

where t indicates the Julian day, yt indicates the fitted NDVI value at time t, d indicates the
initial background value of NDVI, and is replaced by the minimum NDVI value in a year in
this study, c + d indicates the maximum value of the cumulative NDVI and a and b are fitting
coefficients and can be determined based on the Levenberg-Marquardt method. To realize
the matching between simulated phenology and ground observation data, the 16-day NDVI
data was resampled to daily NDVI data using a linear interpolation algorithm.

The first curvature for Equation (1) at time t is calculated as follows:

K =
b2cz(1− z)(1 + z)3

[(1 + z)4 + (bcz)2]
1.5 (2)

z = ea+bt (3)

where K is the first curvature, and the local maximum and minimum value of first curvature
correspond to the date of SOS and EOS, respectively.

2.3.2. Accuracy validation

Three indicators, including the root mean squared error (RMSE), determination coeffi-
cient (R2) and relative root mean squared error (RRMSE), were computed to validate the
accuracy of simulated phenology [44]. The formulas are shown:

R2 = 1−

n
∑

i=1
(Pobei − Pexti)

2

n
∑

i=1
(Pobei − Pobe)

2
(4)



Sustainability 2023, 15, 5830 6 of 19

RMSE =

√√√√ n

∑
i=1

(Pexti − Pobei)
2

n
(5)

RRMSE = (1− RMSE
Pobe

)× 100% (6)

where n indicates the number of samples, Pobei and Pexti indicate the observed and simu-
lated values, respectively, and Pobe indicates the average of all the observation samples.

2.4. Data Analyses

The multiyear average and standard deviation of phenological metrics were com-
puted at pixel level to reflect the spatial distribution and fluctuation degree of vegetation
phenology. The temporal, trend characteristics and phenological dynamics of different
ecosystems were analyzed at regional, basin and pixel scales based on two non-parametric
methods—Sen’s slope estimator and the Mann-Kendall trend test. These two methods are
neither affected by outliers nor in need of data to obey a certain distribution, and they have
a good avoidance ability for measurement errors or discrete data [45].

2.4.1. Sen’s Slope Estimator

Sen’s slope estimator is a non-parametric procedure that involves choosing the median
of slopes, which was developed by Sen (1968) [46]. The trend detection of vegetation
phenology was completed using Sen’s slope. The formula is as follows:

βi = Median(
xj − xk

j− k
) f or i = 1, 2, · · · · · ·N (7)

where βi indicates the Sen’s slope and xj and xk indicate the NDVI data values at time j and
k (j > k), respectively.

2.4.2. Mann-Kendall Trend Test

The Mann-Kendall test (M-K test) was used to identify the trend significance of
vegetation phenological variation. The M-K test statistic S is computed as:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(xj − xi) (8)

where xi and xj stand for NDVI values at time i and j (j > i), respectively, n indicates the
number of NDVI values and sgn(xj − xi) is the sign function:

sgn(xj − xi) =


+1 i f xj > xi

0 i f xj = xi

−1 i f xj < xi

(9)

The variance Var(s) is calculated as:

Var(S) =

n(n− 1)(2n + 5)−
g
∑

p=1
tp(tp − 1)(2tp + 5)

18
(10)
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where n indicates the number of NDVI values, g indicates the number of tied groups and tp
indicates the number of ties of extent p. The test statistic Z is calculated as:

Z =


S−1√
Var(S)

i f S > 0

0 i f S = 0
S+1√
Var(S)

i f S < 0
(11)

The Z value with a positive sign indicates an increasing trend, and a negative sign
indicates decreasing trends. In this study, testing trends were conducted when the signif-
icance level was set to 0.05 and 0.01, respectively. The significant trend was accepted if
|Z| > 1.96 at 0.05 significance level and accepted if |Z| > 2.576 at 0.01 significance level.
All analyses were performed in ArcGIS 10.2, ENVI/IDL 5.3 and MATLAB R2017a software.

3. Results
3.1. Validation of Land Surface Phenology

Overall, the extracted results of phenological metrics were highly consistent with
ground observation using the cumulative NDVI-based logistic regression curves method
(Figure 2). Results showed that the determination coefficient (R2), RMSE and RRMSE
between the simulated SOS and ground observation value were 0.678, 8.7 days and 92.37%,
respectively (Figure 2a); while the three indicators corresponding to EOS were 0.695,
5.8 days and 97.84% (Figure 2b). This meant that the extracted phenological metrics could
be used to analyze the spatiotemporal pattern of vegetation phenology over the APENC.
Meanwhile, we found that the simulation accuracy of EOS was obviously higher than
that of SOS, although the SOS, EOS and ground observed phenology showed significant
correlation at p < 0.01.
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The extraction precision of phenological metrics in different ecosystems was further
assessed (Figure 3). We could see that the grassland-desert ecosystem had the highest accu-
racy, followed by the grassland ecosystem, and the forest ecosystem was relatively inferior.
There were significant correlations between SOS, EOS and ground observation at p < 0.01
and p < 0.05 in the grassland-desert ecosystem (Naiman and Ordos sites; Figure 3a,b). The
values of RMSE and RRMSE were 6.1 days (SOS), 6.2 days (EOS), 94.72% (SOS) and 97.72%
(EOS). No significant correlations (p > 0.05) were identified between SOS, EOS and ground
observed phenology in the grassland ecosystem (Inner Mongolia site) with a RMSE and
RRMSE of 9.1 days and 93.1% for SOS and 5.8 days and 97.76% for EOS, respectively
(Figure 3c,d). The RMSE and RRMSE were 11.6 days and 88.76% for SOS and 5.3 days and
98.06% for EOS in the forest ecosystem (Beijing site), and the simulated values for SOS and
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EOS showed significant correlations at p < 0.05 and p < 0.01 with measured phenology,
respectively (Figure 3e,f).
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3.2. Spatiotemporal and Trend Variation of Land Surface Phenology
3.2.1. Spatial Pattern of Land Surface Phenology

Figure 4 shows the distribution of the average and standard deviation of LSP parame-
ters from 2001 to 2021 over the APENC. It was found that about 91.5% of the average SOS
primarily occurred between 105 to 141 Julian days, that is, from 15 April to 20 May, and
the SOS variation showed a significant spatial heterogeneity (Figure 4a). The later SOS
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(>129 Julian days) was mainly distributed in the typical grasslands to the west of Greater
Khingan and croplands areas, including the Songliao Plain in the northeast, Xinzhou,
Datong and Xuanhua Basins, Tumochuan Plain and the hinterland of the Loess Plateau to
the west of Lvliang Mountain in the middle, along Qingshui river in the southwest of the
study area. The relatively early SOS (<111 Julian days) was found in the forest coverage
areas such as the Greater Khingan and Yanshan Mountains in the northeast, Lvliang Moun-
tain in the middle, Liupan and Lianhua Mountains in the southwest of APENC and the
sparse vegetation coverage areas located in Horqin and Mu Us Sandy Lands. The spatial
distribution of the standard deviation showed that the fluctuation degree of SOS was in the
range of 3–15 days, accounting for 96.5% of the study area in the recent 20 years (Figure 4b).
The magnitude of SOS fluctuation exceeded 15 days in part of the downstream of Huolin
River and the northern margin of the Yinshan Mountain regions.

The average EOS occurred between 257 to 281 Julian days (from September 14 to
October 8; Figure 4c) with the counting of pixels for 95.4%. The early EOS (<266 Julian
days) mainly occurred in the typical grassland to the west of Greater Khingan and the
north of the Yanshan Mountain. The later EOS (>278 Julian days) was mainly distributed
in the southeast boundary of APENC, such as forest coverage areas in Yanshan Mountain,
croplands and grassland coverage areas in the Yellow River Basin. The magnitude of EOS
fluctuation was relatively small compared with SOS, and the fluctuation degree with 89.5%
of the research area ranged from 3 to 9 days (Figure 4d).
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The average LOS varied from 130 to 172 days, accounting for 93.6% of APENC
(Figure 4e). The values of LOS were controlled by SOS and EOS. The LOS was less than
130 days in the typical grassland areas with later SOS and early EOS, and the LOS was
primarily concentrated within 130 to 151 days in the croplands area with later SOS. The
LOS exceeded 169 days in forest coverage areas with early SOS. The fluctuation degree of
LOS ranged from 3 to 15 days with 95% of study area, and the LOS fluctuated more than
15 days in desert steppe in the north of Yinshan Mountain (Figure 4f).

3.2.2. Temporal Trend of Land Surface Phenology at Regional and Basin Scales

Figure 5 shows the temporal trend variation of phenological metrics at regional and
basin scales from 2001 to 2021. We could clearly see that the SOS exhibited an advanced
trend (slope =−0.09 days·yr−1), and a delay trend occurred in EOS (slope = 0.12 days·yr−1),
leading to an extended trend for LOS (slope = 0.26 days·yr−1) over the APENC (Figure 5e).
However, the trend variation of phenological metrics was not significant (p > 0.05) for the
entire whole period. The temporal trends of SOS, EOS and LOS in the Yellow River and
Haihe River Basins were consistent with that of the whole study area, and the significant
delayed EOS and extended LOS trends were observed with a rate of 0.11 days·yr−1 (p < 0.05)
and 0.39 days·yr−1 (p < 0.01) in the Yellow River Basin, and 0.28 days·yr−1 (p < 0.01) and
0.63 days·yr−1 (p < 0.01) in the Haihe River Basin, respectively (Figure 5a,b). However, the
change of LSP parameters in the Songliao River and Continental Basins was opposite to
that of the whole study area (Figure 5c,d). The LOS exhibited a shortened trend because of
the delayed SOS and advanced EOS. Nevertheless, this trend did not pass the significance
test at a 0.05 level.
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3.2.3. Trend Change Characteristic of Land Surface Phenology at Pixel Level

The trend characteristic and significance of phenological metrics were calculated at
pixel level based on Sen’s slope and M-K test methods (Figure 6). From 2001 to 2021, the
change rate of SOS ranged from −2.18 days·yr−1 to 1.99 days·yr−1. The mean value was
−0.14 days·yr−1, and it generally showed an advanced trend. The area of advanced SOS
accounted for 60.47% of APENC. Among them, the SOS exhibited an extremely significant
and significant advancing trend with the area of 13.02% and 8.1%, respectively. These
regions were mainly distributed in the southeast boundary of APENC. The advanced trend
of SOS reached −0.85 days·yr−1 (p < 0.01) and −0.60 days·yr−1 (p < 0.05). Meanwhile,
the SOS with an area of 2.83% and 1.9% displayed a significant and extremely significant
delaying trend, and the delayed rates reached 0.67 days·yr−1 (p < 0.05) and 0.88 days·yr−1

(p < 0.01), respectively. These regions mainly occurred in Horqin Sandy Land to the east of
the Great Khingan, Mu Us Sandy Land to the south of the Yellow River and Hulu River
Basin to the west of Liupan Mountain.
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The change rate of EOS ranged from −1.25 days·yr−1 to 1.93 days·yr−1, and the
average was 0.15 days·yr−1. The EOS with an area of 68.54% was greater than 0, which
indicated that the EOS generally showed a delayed trend over the APENC. The EOS with
areas of 7.52% and 8.29% displayed a significant and extremely significant delayed trend,
and the delayed rates were 0.43 d·yr−1 (p < 0.05) and 0.62 d·yr−1 (p < 0.01), respectively.
From the perspective of spatial distribution, these areas were mainly concentrated in the
southeast boundary, that is, the area extending from northeast to southwest to the east of
Lvliang Mountain, the hinterland of Mu Us Sandy Land and the Qingshui, Zhuanglang
and Taohe River Basins in the southwest. In addition, the EOS had a significant advanced
trend at a rate of −0.47 days·yr−1 (p < 0.05) with the area of 1.37%, which was mainly
scattered in Horqin Sandy Land and the Songhua River Basin in the northeast of APENC.

The LOS tended to an extended trend due to the advanced SOS and delayed EOS. The
change rate of LOS ranged from −2.01 day·yr−1 and 2.99 days·yr−1, and the average was
0.27 days·yr−1. The area of extended LOS accounted for 64.86% of the study area, and
the LOS with areas of 8.46% and 22.57% displayed a significant and extremely significant
extended trend. The extended rates were 0.67 days·yr−1 (p < 0.05) and 1.04 days·yr−1

(p < 0.01), which mainly occurred in the Great Khingan, along southeast boundary, Tu-
mochuan Plain and part of a region southwest of the study area. The significant advanced
LOS was basically consistent with the regions of significant delayed SOS. These areas
accounted for 2.28% and 1.52% of the study area, and the advanced rate of LOS were
−0.78 days·yr−1 and −0.99 days·yr−1.

3.3. Land Surface Phenology Variation in Relation to Different Ecosystems

The change characteristics of phenological metrics were computed in different ecosys-
tems at regional and basin scales in the recent 20 years (Table 2). The SOS of the cropland
ecosystem displayed a no-significant advanced trend at a regional scale with a rate of
−0.053 days·yr−1 (p > 0.05). At the basin scale, we found that the SOS of croplands changed
from an advanced trend to a delayed trend from a southwest to northeast direction (from
the Yellow River Basin to the Songliao River Basin). The SOS was advanced with a rate of
−0.182 days·yr−1 (p < 0.05) and −0.16 days·yr−1 (p > 0.05) in the Yellow River and Haihe
River Basins, respectively. However, the opposite trend occurred in the Songliao River and
Continental Basins with a rate of 0.059 days·yr−1 and 0.165 days·yr−1, respectively. The
EOS of croplands showed a no-significant delayed trend with a rate of 0.065 days·yr−1

(p > 0.05) at a regional scale. At the basin scale, the EOS gradually changed from an ex-
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tremely significant delayed trend of 0.196 days·yr−1 (p < 0.01) to a no-significant advanced
trend of −0.014 days·yr−1 from a southwest to northeast direction. The LOS tended to
an extended trend because of advanced SOS and delayed EOS in APENC, Yellow River
and Haihe River Basins. The LOS tended to a shortened trend due to the delayed SOS and
advanced EOS in the Songliao River. The LOS also tended to a shortened trend since the
delayed rate of SOS was faster than the delayed rate of EOS in the Continental Basin.

Table 2. LSP variation in different ecosystems from 2001 to 2021 at regional and basin scales.

APENC YB HB SLB CB APENC YB HB SLB CB APENC YB HB SLB CB

SOS EOS LOS

Croplands
Slope −0.053 −0.182 * −0.160 0.059 0.165 0.065 0.196 ** 0.149 −0.014 0.016 0.176 0.436 ** 0.297 * −0.097 −0.184

Z value −0.997 −1.962 −1.057 0.513 0.936 0.876 2.990 1.782 −0.091 0.151 1.842 3.835 1.963 −0.393 −0.815
p value 0.319 0.047 0.291 0.608 0.349 0.381 0.003 0.075 0.928 0.880 0.066 0.000 0.049 0.695 0.415

Grasslands
Slope −0.045 −0.250 * −0.128 0.008 0.255 −0.008 0.069 0.101 −0.005 −0.160 0.106 0.388 ** 0.145 −0.078 −0.177

Z value −0.453 −2.084 −0.634 0.211 1.299 −0.030 1.117 0.936 −0.030 −0.936 1.117 3.050 1.178 −0.091 −1.117
p value 0.651 0.037 0.526 0.833 0.194 0.976 0.264 0.349 0.976 0.349 0.264 0.002 0.239 0.928 0.264

Forests
Slope −0.665 ** −0.775 ** −0.578 ** −0.627 ** - 0.334 ** 0.321 ** 0.413 ** 0.261 * - 0.964 ** 1.102 ** 0.982 ** 0.867 ** -

Z value −3.533 −4.439 −3.231 −2.808 - 3.895 3.110 3.775 2.386 - 4.318 5.164 4.801 3.352 -
p value 0.000 0.000 0.001 0.005 - 0.000 0.002 0.000 0.017 - 0.000 0.000 0.000 0.001 -

Notes: YB, Yellow River Basin; HB, Haihe River Basin; SLB, Songliao River Basin; CB Continental Basin. The
characters (‘*’ and ‘**’) indicate the significant (trends at p < 0.05 and p < 0.01, respectively). The sample sizes
of cropland pixels are 4,755,492, 1,559,074, 570,867, 2,282,696 and 342,855 in APENC, YB, HB, SLB and CB,
respectively; the grasslands are 6,261,773, 2,162,689, 504,429, 1,961,625 and 1,633,030, and the forests are 586,026,
116,741, 298,032, 156,765 and 14,488.

The SOS variations of the grassland ecosystem were consistent with the cropland
ecosystem at regional and basin scales. The EOS exhibited an advanced trend in APENC,
Songliao and Continental Basins while the delayed trend was observed in the Yellow River
and Haihe River Basins. Meanwhile, we noticed that the EOS of the grassland ecosystem
changed from a delayed trend with a rate of 0.07 days·yr−1 to an advanced trend with
a rate of −0.01 days·yr−1 from a southwest to northeast direction, which was consistent
with the EOS variation of croplands. The change of LOS tended to a shortened trend in the
Songliao River and Continental Basin while a delayed trend occurred in APENC, Yellow
River and Haihe River Basins.

The SOS of the forest ecosystem exhibited an advanced trend, and the EOS exhibited
a delayed trend, leading to an extended trend for LOS at regional and basin scales. The
trends passed the significant test at the 0.01 level. The forests were mainly concentrated
in the Lianhua, Liupan, Yinshan and Lvliang Mountains in the Yellow River Basin with
the SOS, EOS and LOS of −0.77 days·yr−1, 0.32 days·yr−1 and 1.1 days·yr−1, respectively.
The change rate of the SOS, EOS and LOS were −0.58 days·yr−1, 0.41 days·yr−1 and
0.98 days·yr−1, which was observed in the Wutai, Hengshan and Yanshan Mountains
in the Haihe River Basin. The forests were mainly distributed in the Great Khingan,
Songling, Nuluerhu and Yiwulv Mountains with the SOS, EOS and LOS of−0.63 days·yr−1,
0.26 days·yr−1 and 0.87 days·yr−1, respectively.

4. Discussion

The vegetation phenology is known as “canary in a coal mine”, and it can directly
reflect the characteristics of climate change and is a comprehensive indicator to measure
environmental change [47]. The vegetation coverage of APENC has changed dramatically
under the influence of human activities and the warming-drying climate trend [34,48]. In
this context, how the vegetation phenology changed in spatiotemporal and trend character-
istics in the recent 20 years need to be further explored, especially since the global warming
hiatus in 1998.

The simulated phenology was verified using ground observation data, and it was seen
that the cumulative NDVI-based logistic regression curves approach could achieve the
extraction of vegetation phenology information with high precision over the APENC. The
simulation of EOS was better than that of SOS. This result was consistent with the finding of
the analysis of the grassland phenology in northern China based on SPOT VEGETATIONT
NDVI data, conducted by Hou et al. (2014) [42]. Climate change, especially temperature
change, has a significant influence on vegetation phenology [5,18,44]. The climate change
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characteristic of the study area is that the air temperature fluctuates greatly in spring,
and the SOS varied considerably in different years, affecting the simulation results of
remote sensing. The fluctuation of air temperature is small in autumn, and the climate
conditions are relatively stable. So, the EOS could be obtained with higher accuracy [49,50].
Furthermore, the 16-day time-series MODIS NDVI data were resampled to the daily data
through the linear interpolation method in order to realize the matching between simulated
and ground observation data. The vegetation change, however, is a nonlinear process,
which might increase the simulation error of the SOS to some extent [51,52].

The areas with later SOS were mainly distributed in croplands and typical grasslands.
The phenological variations of croplands are more complex than that of natural vegeta-
tion [53]. The majority of croplands belong to a typical rain-fed agriculture over the APENC.
The crops’ sowing date was usually chosen before the rainy season (from late April to
early May), and was also affected by human farming activities such as planting structure
and crop layout, resulting in the later SOS [35]. In typical grassland areas, we noted that
SOS appeared later while EOS appeared early, making the LOS less than 130 days. This
is because the region is affected by the southeast movement of cyclones and anticyclones
in the mid-latitude westerly belt of the East Asian continent, and blocked by the Great
Khingan and Yinshan Mountains, which brings abundant snowfall in winter and early
spring, accompanied by the appearance of strong wind and cold wave weather [54,55]. At
the same time, the frost weather comes earlier in autumn, which makes the temperature
stay at a low level for a long time, leading to such phenological changes [56].

The early SOS and later EOS were observed in forest coverage areas. The forests
were mainly concentrated in the mountains at the southeast boundary of APENC. The
distribution of surface heat is sufficient in these areas, and the land surface temperature has
increased significantly over the past two decades [57]. The snow cover in winter provides
sufficient water conditions for spring vegetation green-up, leading to the early SOS. The
East Asian monsoon climate has brought abundant precipitation in summer and autumn,
which might be the reason for later EOS [58]. Meanwhile, the early SOS also occurred in
sandy vegetation coverage areas. The reason was that the sandy vegetation had a higher
sensitivity to precipitation, and a small amount of precipitation could promote the rapid
green-up of vegetation [19].

The estimated key LSP parameters indicated that the LOS was extended due to the
advanced SOS and delayed EOS at a regional scale. The results were consistent with the
conclusion analysis of the vegetation phenology change at global and continental scales
based on ARHRR GIMMS NDVI data [28,59,60]. However, the trends of phenological
metrics did not pass the significant test at a 0.05 level. Wei et al. (2021) [57] analyzed
the variation trend of land surface temperature based on MYD11A2 data product over
the APENC during the period of 2003–2020 and found that the land surface temperature
exhibited a no-significant warming trend with the rate of 0.007 ◦C·yr−1. This might be the
reason why the change in the vegetation phenology trend was not significant in this area.

The variation of vegetation phenology in different ecosystems varied considerably at
the basin scale. The SOS gradually changed from an advanced trend to a delayed trend
from southwest to northeast in the cropland and grassland ecosystems, whereas a contrary
trend was found for EOS. These trends were also observed by Tao et al. (2011) [61] when
analyzing the phenological dynamics of croplands in central and eastern Inner Mongolia
based on MODIS EVI data. However, the driving mechanism is still unclear.

The phenological variation of the forest ecosystem was consistent at regional and basin
scales, and the trends passed the significant test at a 0.01 level. The results were consistent
with the conclusion analysis of forests phenology in northern China based on AVHRR
GIMMS and MODIS NDVI data, respectively, conducted by Zhao et al. (2023) [62] and
Zheng et al. (2022) [44]. For example, Zhao et al. (2023) [62] argued that the SOS and EOS
of the forest ecosystem were significantly advanced and delayed by −0.18 days·yr−1 and
0.14 days·yr−1 at p < 0.01, respectively, resulting in a significant extended (p < 0.01) for LOS
with a rate of 0.32 days·yr−1 during 1982–2015. In addition, we noted that the magnitude
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of forest phenological metrics change was obviously higher than that of cropland and
grassland ecosystems. This partly reflects that forest ecosystems might be more sensitive to
climate change.

In this study, we systematically revealed the space, time and trend characteristics of
vegetation phenology and its variations in different ecosystems over the APENC during
the period of 2001–2021. However, the impact of climate change (e.g., temperature, rainfall
and soil moisture, etc.) and human activities on LSP variations cannot be analyzed, which
could limit the interpretability and relevance of the results. Therefore, it is necessary to
make further efforts to discuss the contribution of climate change and human activities
on LSP variations in future studies. In addition, the potential impacts of LSP variations
on ecosystem services, such as carbon sequestration, water regulation and biodiversity
conservation, will be considered in the future.

5. Conclusions

We systematically analyzed the spatiotemporal patterns and trend characteristics of
LSP based on time-series Terra/MODIS NDVI data at regional, basin and pixel scales over
the past two decades (2001–2021). The major findings are as follows:

(1) There was high consistency between simulated phenology and ground observation.
The determination coefficient, RMSE and RRMSE were 0.678, 8.7 days and 92.37% for SOS
and 0.697, 5.8 days and 97.84% for EOS, respectively. The simulation accuracy of EOS was
obviously higher than that of SOS.

(2) The SOS of vegetation occurred in 105–141 Julian days, the EOS was mainly
between 257 and 281 Julian days and the LOS varied from 130 to 172 days. The later
SOS was distributed in croplands and typical grassland areas, while the early SOS was
observed in forests and sandy vegetation coverage areas. The early EOS occurred in typical
grasslands, and the later EOS was mainly concentrated in the southeast boundary of
APENC. The magnitude of SOS and LOS fluctuation ranged from 3 to 15 days, and the
fluctuation degree of EOS was relatively small, ranging from 3 to 9 days.

(3) The SOS and EOS exhibited overall insignificant advanced and delayed trends at
a rate of −0.09 days·yr−1 and 0.12 days·yr−1 at a regional scale, and the LOS showed an
insignificant extended trend at a rate of 0.26 days·yr−1. The trends of phenological metrics
were consistent with the APENC in the Yellow River and Haihe River Basins. While an
opposite trend was observed in the Songliao River and Continental Basins, the shortened
trend of LOS occurred due to the delayed SOS and advanced EOS.

(4) The SOS variation gradually changed from an advanced trend to a delayed trend
from southwest to northeast in cropland and grassland ecosystems, whereas an opposite
trend was found for EOS. The LOS exhibited a significant extended trend at p < 0.01 due to
the significant advanced and delayed trend of SOS and EOS in the forest ecosystem.
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