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Abstract: Large and extensive manufacturing systems consume a large proportion of manufacturing
energy. A key component of energy efficiency management is the accurate prediction of energy
efficiency. However, the nonlinear and vibration characteristics of machining systems’ energy
consumption (EC) pose a challenge to the accurate prediction of system EC. To address this challenge,
an energy consumption prediction method for machining systems is presented, which is based on
an improved particle swarm optimization (IPSO) algorithm to optimize long short-term memory
(LSTM) neural networks. The proposed method optimizes the LSTM hyperparameters by improving
the particle swarm algorithm with dynamic inertia weights (DIWPSO-LSTM), which enhances the
prediction accuracy and efficiency of the model. In the experimental results, we compared several
improved optimization algorithms, and the proposed method has a performance improvement of
more than 30% in mean absolute error (MAE)and mean error(ME).

Keywords: energy consumption prediction; particle swarm optimization algorithm of dynamic
inertia weights (DIWPSO); long short-term memory network (LSTM); machining systems; deep
learning

1. Introduction

Energy and environmental issues have received extensive attention in recent
years [1–3]. Due to the wide use of machine tools, machining systems are considered
to be the largest energy consumer in the manufacturing industry [4,5]. Research shows
that the EC of machining systems accounts for 74.7% of the total EC of the manufacturing
industry [6]. The growing energy demand has become an important factor in current
environmental and economic challenges [7]. If the EC of the processing process can be
predicted in advance and optimized in a targeted manner, it will have a positive effect on
energy problems and environmental improvement.

Experts and scholars have conducted numerous studies on the energy consumption
prediction of machining systems. The more mainstream EC forecasting methods can be
divided into traditional forecasting methods and data-driven forecasting methods. Tra-
ditional EC forecasting models include time series models, regression models, and gray
models. Predictions are made primarily through historical data, empirical formula deriva-
tion, and limited experimental data. Liu et al. [8] used a linear empirical model to describe
the relationship between the tool tip cutting power and the total power consumption of the
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machine tool. Shi et al. [9] developed an improved cutting-power-based EC model which
consists of an idle part as a function of spindle speed and an additional part proportional
to the cutting power. Wang et al. [10] took the machining feature as the entry point; di-
vided the prism machining feature into plane, step, groove, hole, etc.; and then summed
the cutting EC of all features. Based on the model of the material removal mechanism,
He et al. [11] proposed a method for predicting the machining EC of turning workpieces
that integrates design parameters and manufacturing parameters. Lv et al. [12] established
a spindle acceleration EC model for computer numerical control (CNC) lathes and derived
and counted spindle acceleration EC by theoretical equations. In other EC forecasts, time
series models are used more widely. A hybrid-autoregressive-score-integrated moving
average and least square support vector machine model to predict short-term wind power
generation is proposed by Yuan et al. [13].

On the other hand, with the development of artificial intelligence, data-driven forecast-
ing is booming. Hu et al. [14] considered that the EC of machine tools includes cutting and
non-cutting EC and used two optimization methods, depth-first search (DFS) and genetic
algorithm (GA), to optimize the machining sequence to reduce EC. Brillinger et al. [15]
and Li et al. [16] used the use of RF and GPR to construct EC prediction models for CNC
machining processes, respectively. Qin et al. [17] used linear regression (LR), k-nearest
neighbor (k-NN), and decision tree (DT) to predict EC in additive manufacturing processes.
Liu et al. [18] proposed a hybrid prediction method combining data-driven machine learn-
ing and process mechanics to predict the specific cutting energy. Kim et al. [19] created
a transfer learning approach for processing power prediction by transferring knowledge
gained from previous processing to a target processing environment lacking processing
power data. He et al. [20] and Kahraman et al. [21] used a convolutional neural network
(CNN) and deep neural networks as the prediction model.

Machine learning methods (such as BP, SVM, and RF) are shallow networks, and the
prediction accuracy still needs to be improved. Deep-learning-based prediction methods
are mostly used for the prediction of time series data, such as the prediction of building
energy consumption using LSTM [22–24], predicting residential electricity consumption
using CNN and LSTM [25–27], and predicting building energy consumption using GAN
networks [28]. Alternatively, a comparison between traditional machine learning and
deep learning methods finds that deep learning prediction methods have better results.
For example, Xiao et al. [29] used three traditional machine learning algorithms and
three deep learning methods for a comparative study of workshop energy consumption,
showing that traditional machine learning algorithms are more suitable for small sample
situations, while deep learning algorithms have better feature learning performance on
images and time series. A relatively small number of studies have been conducted on the
use of deep learning models for energy consumption prediction of machining systems
at present. This is mainly because the machining system is a typical nonlinear system
with dynamic disturbance factors. The processing energy consumption is closely related
to the processing task, processing technology, processing characteristics, and processing
environment. Therefore, it is challenging to establish a complete energy consumption
prediction model. Additionally, it is difficult to collect data on machining system energy
consumption characteristics. Therefore, we wanted to construct a basic energy consumption
dataset, integrating influencing factors such as process parameters, processing time, tool
blade number, etc. At the same time, the optimization algorithm is integrated into the deep
learning model to improve the efficiency of super parameter selection. This is to improve
the prediction efficiency and accuracy of the energy consumption prediction model.

Therefore, this paper constructs an energy consumption prediction model for machin-
ing systems based on deep LSTM techniques, automatically optimizing the hyperparam-
eters of LSTM by an improved particle swarm algorithm, reducing the time of manual
parameter tuning, and improving the accuracy and prediction efficiency of short-time
machining system EC prediction. The contributions of this paper are as follows:
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• A framework for predicting the EC of machining systems based on deep learning is
proposed. A particle swarm algorithm is improved using dynamic inertia weights, and
then a double-layer LSTM network is introduced to predict the EC of machining systems.

• A novel method for constructing EC datasets is proposed. This method is intended
to improve the generalization ability of the prediction model by mixing EC data
generated in different ways to produce a novel EC dataset.

• The EC patterns of the machining systems are classified according to the processing
characteristics. The processing energy consumption data of different processing
characteristics are collected, so as to accurately predict the processing EC.

This paper is organized as follows. In the second section, the related work is reviewed.
The third section proposes a data-driven method for predicting EC in milling operations.
In the fourth section, we build an experimental platform and conduct case analyses based
on it. The conclusion is presented in the last section.

2. Theoretical Background

This section details the theoretical background of the EC prediction of machining
systems, particle swarm optimization algorithms, and long short-term memory neural
networks.

2.1. EC Characteristics of Machining Systems

Consider multi-source EC prediction for machining systems with n different variables,
that is, deploying multiple sensors in the machining systems, such as photoelectric velocity
sensors on the spindle and high-temperature infrared sensors near the spindle. For each
time stamp, the energy consumed by the machining systems consists of energy-consuming
components, such as spindles, feed axes, lighting units, hydraulic lubrication units, and
workpiece characteristics, and process parameters. Different energy-consuming component
units contain a variety of processing parameters, mainly including spindle speed, feed
rate, cutting depth, number of cutting edges, tool diameter, etc., which can be expressed by
Equation (1).

X =


x1

1, x2
1, x3

1, · · · xj
1, · · · xn

1

x1
2, x2

2, x3
2, · · · xj

2, · · · xn
2

...
...

x1
t , x2

t , x3
t , · · · xj

t, · · · x
n
t

 (1)

where xj
t represents the value of the j-th parameter at moment t.

Under the action of various parameters, the instantaneous EC of the machining system
at time t is Et. The Et can be expressed by Equation (2).

Et = f (Vr, Vf , ap, ae, Ne), (2)

where Vr, Vf , ap, ae, Ne indicate the spindle speed, feed rate, depth of cut, cutting width,
and number of cutting edges, etc.

2.2. Long Short-Term Memory

The LSTM was originally proposed by Hochreiter and Schmidhuber [30]. Due to the
rise of deep learning, LSTM has undergone several development phases, resulting in a
relatively systematic and complete LSTM framework, which has been widely used in many
fields. The LSTM neural networks are a significant improvement to RNN networks that
use self-connected memory units and gate units in the hidden layer to solve the vanishing
gradient problem or gradient explosion problem in RNN [31]. The LSTM has a strong
generalization capability and high learning ability for both larger and smaller datasets,
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which is advantageous in dealing with nonlinear problems [32]. The structure of the basic
LSTM unit is shown in Figure 1.

Figure 1. LSTM basic unit structure.

Unlike traditional RNN, LSTM consists of memory blocks with one or more memory
cells acting as neurons with multiplicative gates (input gate it, forget gate ft, and output
gate Ot). The ft is a vector, which can be expressed by Equation (3), usually using sigmoid
as the activation function; the output of sigmoid is a value between [0,1].

ft = σ(W f · [ht−1, xt] + b f ). (3)

where ft is called the forget gate; σ is the sigmoid function; xt is the input at time t; W f , b f
are the weight matrix and bias vector; and ht−1 is the hidden layer state at time t− 1.

The input gate it is used to update the cell state. The output value of sigmoid is
multiplied by the output value of tanh to decide which information is important and needs
to be retained. The input gate it is calculated by Equation (4).

it = σ(Wi · [ht−1, xt] + bi). (4)

where it is the input gate, and Wi, bi are the weight matrix and bias vector.
The current information received by the memory cell is represented by Equation (5),

and the cell state is calculated by Equation (6).

C∼t = tanh(Wc · [ht−1, xt] + bc). (5)

Ct = ft ∗ Ct−1 + it ∗ C∼t . (6)

where C∼t is the input node state at time t, and Ct−1 and Ct are the cell states at time t− 1
and t, respectively. Tanh is a hyperbolic tangent function. Wc,bc are the corresponding
weight matrix and bias vector.

The output gate Ot is used to determine the value of the next hidden state, which
contains the information of the previous input. The previous hidden state and the current
input are passed to the sigmoid function, and then the newly obtained cell state is passed
to the tanh function. Subsequently, the output of tanh is multiplied with the output of
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sigmoid to determine what information the hidden state should carry. The mathematical
model of the output gate is represented as follows:

Ot = σ(Wo · [ht−1, xt] + bo), (7)

and,
ht = Ot ∗ tanh(Ct). (8)

where σ is the sigmoid function, and ht−1 and ht are the outputs at time t − 1 and t,
respectively; Wo, bo are the corresponding weight matrix and bias vector.

In practical applications, the initial values of the weights and bias terms of the LSTM
are randomly generated during the training process. As the selection of the key parameters
of LSTM greatly influences the prediction effect of processing EC, these hyperparameters
need to be selected thoughtfully.

2.3. Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) is an evolutionary computation technique whose
basic idea is to find the optimal solution through collaboration and information sharing
among individuals in a population [33]. The particles have two attributes: velocity and
position. Each particle individually searches for the optimal solution in the search space,
which is recorded as the most recent individual extreme value and shared with the other
particles in the whole particle swarm. All particles in the swarm adjust their velocities and
positions according to the current individual extreme values they find. In addition, they
share a global optimal solution shared by the whole swarm. The updated equation for the
velocity and position of the i-th particle at time t is

Vi,t = ωVi,t−1 + C1R1(Pi,t−1 − Xi,t−1) + C2R2(Gi,t−1 − Xi,t−1), (9)

and
Xi,t = Xi,t-1 + Vi,t, (10)

where ω is the inertia factor; Vi,t−1 is the velocity of the i-th particle at moment t− 1; C1
and C2 are the acceleration constants, and C1, C2 ∈ [0, 4]; R1 and R2 are random numbers
between [0, 1]; Pi,t−1, Xi,t−1, and Gi,t−1 are the individual optimal value, position, and
global optimal solution of the i-th example at moment t− 1, respectively.

3. Methodology

In this section, an energy consumption prediction method relying on particle swarm
algorithm optimized LSTM with dynamic inertia weights (DIWPSO-LSTM) is introduced.
Firstly, the framework of energy consumption prediction is built, and then the process of
the energy consumption prediction method based on deep learning is introduced. This
prediction method is a data-driven deep learning method that can accurately predict the
short-term energy consumption of machining systems between a cutting and non-cutting
energy consumption mode state change (time change).

3.1. A Framework for Predicting EC in Machining Systems

The proposed processing EC prediction model framework consists of four parts:
(1) data acquisition and storage layer; (2) data preprocessing layer; (3) data analysis layer;
(4) application layer. Each layer is composed of several modules to realize the prediction of
processing EC, as shown in Figure 2.
(1) Data acquisition and storage

The EC data acquisition of the machining systems includes two methods: (1) collect
power, current, and voltage data through a high-precision power tester; (2) arrange photo-
electric sensors on the spindle and feed axis, and use LabVIEW programming to collect
spindle speed, power, EC, and other data. The data generated in both ways are saved
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in csv format for further processing and use. Details about the data generation and the
construction of the dataset are given in Section 4.2.

Figure 2. A framework for EC prediction of machining system.

(2) Data preprocessing
Raw data collected and stored by a power tester or LabVIEW platform often contain

noise or missing data due to malfunctions, etc. Generally, missing data are cleaned by
sliding windows, moving average filters, and interpolation techniques [34]. The data
were also subjected to max-min normalization before model training to facilitate stable
convergence of the weights and biases of the learning model. The preprocessed EC datasets
were randomly mixed, and a total of 80% of the energy consumption dataset was used for
training, 20% of the data was used for prediction, and 200 groups of verification data were
randomly selected from the training data.
(3) Data analysis

The data analysis layer is used to analyze the prediction based on the processed data
and optimize the hyperparameters of the LSTM network (such as learning rate, number
of hidden layers, and gradient threshold, etc.), utilizing an IPSO algorithm to improve
prediction accuracy and efficiency. The double-layer LSTM network is then used to predict
the EC of the milling machining process. The training is completed when the root mean
square error and loss function of DIWPSO-LSTM are minimized.
(4) Application

In the production workshop or machining center, we can remotely monitor the state of
machining energy consumption of mechanical machining systems to reduce the production
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cost. In addition, we use DIWPSO-LSTM to predict the energy consumption of processing.
If instantaneous processing energy consumption deviates from the set threshold range, an
emergency or fault may occur during the processing of the workpiece. Energy consumption
data can be used by operators to provide energy efficiency alerts and adjust processing
parameters or shut down equipment for inspection to reduce energy consumption.

3.2. DIWPSO-LSTM: Energy Consumption Prediction Method

The main goal of DIWPSO-LSTM is to minimize the prediction error and iterative
training time of the LSTM by identifying the optimal combination of hyperparameters. The
double-layer LSTM for the milling machining EC prediction model consists of an input
layer, hidden layers, dropout layers, fully connected layer, and output layer. The structure
of the double-layer LSTM prediction model is shown in Figure 3. The pseudocode of the
process energy prediction model is shown in Algorithm 1.

Figure 3. Double-layer LSTM prediction model network structure.

The overall work of DIWPSO-LSTM can be divided into six stages: (1) data prepro-
cessing; (2) encoding; (3) training a double-layer LSTM; (4) evaluating DIWPSO-LSTM;
(5) termination condition; and (6) position update. The workflow is shown in Figure 4. The
steps of DIWPSO-LSTM are as follows.

Figure 4. DIWPSO-LSTM workflow.
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Algorithm 1 Process energy prediction model based on DIWPSO-LSTM.

Input: DEC ← x(t), s.t. t ∈ N∗ and t ≤ n // Energy consumption dataset
Output: Hun∗ ← Optimal number of Hidden units;

Lr∗ ← Optimal learning rate;
Lrd f ∗ ← Optimal learning rate descent factor;
Lrdp∗ ← Optimal learning rate descent period.

1: function DIWPSO-LSTM()
2: Initialize the values of number of population (NPpv), maximum number of genera-

tion (tmax), and:
t← 0, f it← 0, best f it ← 0, gbest f it ← 0

3: Data set segmentation:
Dtrain ← x(t); {t = 1, 2, · · · , n ∗ 0.8}
Dval ← x(t); {t = (n ∗ 0.8− 200), · · · n ∗ 0.8}
Dtest ← x(t); {t = (n ∗ 0.8 + 1), · · · n}

4: for each i ∈
[
1, NPpv

]
do

5: for each dimension t do
6: Initailize the positon and velocity Ppvi and vi,t, and compute the hyperpa-

rameters using Equations (11) and (12).
7: end for
8: end for
9: Train the double-layer LSTM using computed hyperparameters and Dtrain.

10: Calculate the f iti for Ppvi with Dval .
11: if f iti(RMSE) ≤ f it(pbesti) then
12: pbest f it ← best f it
13: end if
14: gbestPpv ← Ppv(bestindex)
15: Update the position with gbestPpv using Equation (19).
16: for each i← 1 to NPpv do
17: while t ≤ tmax do
18: Compute the Ppvi using Equation (12).
19: Train the LSTM using computed hyperparameters and Dtrain.
20: Calculate the f iti for Ppvi with Dval .
21: if f iti(RMSE) ≤ f it(pbesti) then
22: pbest f it ← best f it
23: gbestPpv ← Ppv(bestindex)
24: end if
25: t← t + 1
26: end while
27: end for
28: Construction of double-layer LSTM models using optimal hyperparameters.
29: Predict the results using the Dtest and calculate MAE, ME, RMSE, R2.
30: end function

Step 1: Data preprocessing. Interpolation and smoothing techniques are used to
process the collected experimental data to obtain the processing energy dataset, and then
the mapminmax is applied to normalize the processing energy dataset X, so that the data
in the dataset are all in the range of [−1, 1]. The training and test samples are drawn using
a no-replacement random sampling technique with a ratio of 8:2. Then, 200 samples are
randomly selected for verification.

Step 2: Encoding strategy. The DIWPSO-LSTM uses a vector encoding strategy to
generate the initial population because it has to adjust several parameters (such as the
number of hidden units, learning rate, learning rate descent factor, maximum number
of iterations, etc.), each with a defined range. In the encoding strategy, the position of
each population is represented as a vector whose length corresponds to the number of
parameters to be optimized. We optimize four hyperparameters in our paper, namely
number of hidden units(Hun), learning rate(Lr), learning rate descent factor(Lrdf), and
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learning rate descent period(Lrdp) in DIWPSO-LSTM. The particle population vector is
(Ppv) expressed in Equation (11).

Ppvi = [Huni, Lri, Lrd fi, Lrdpi]; i = (1, 2 · · · , NPpv), (11)

where NPpv is the total number of the population.
We generate each population vector in a random manner in the range [0, 1] and convert

it to the corresponding specific parameter range using Equation (12):

Opv = Ppv ∗ (PpvMax − PpvMin) + PpvMin, (12)

where Opv is the overall population vector; PpvMax and PpvMin are the the maximum val-
ues and minimum values of the hyperparameter; and Ppv is the randomly
generated population.

Step 3: Training the double-layer LSTM. During the training process, the hyper-
parameters obtained from each population (Step 2) and the training dataset are used to
train the double-layer LSTM. A double-layer LSTM for superposition is found to have
a better prediction effect based on experiments with different layers of LSTM. Finally, a
double-layer LSTM is chosen as the model used in this experiment, and the prediction
effect is significantly higher than that of the low-level model. Because the more layers that
are superimposed, the higher the computational consumption and the greater the chance
of overfitting, the double-layer LSTM model is the most suitable choice.

Step 4: Evaluating DIWPSO-LSTM. The hyperparametric training LSTM perfor-
mance is evaluated for each population using the validation dataset in terms of loss
function and root mean square error (RMSE) as shown in Equations (13) and (14). The
performance evaluation of the double-layer LSTM model prediction results is evaluated in
terms of mean absolute error (MAE), mean error (ME), root mean square error (RMSE), and
coefficient of determination (R2). The specific formulas are given in Equations (14)–(17).

LOSS =
1
N

N

∑
t=1

(|ŷt − yt|)2, (13)

RMSE =

√√√√ 1
N

N

∑
t=1
|ŷt − yt|, (14)

MAE =
1
N

N

∑
t=1
|ŷt − yt|, (15)

ME = max(|ŷt − yt|), (16)

R2 = 1−

N
∑

t=1
(yt − ŷt)

2

N
∑

t=1
(yt − ȳt)

2
, (17)

where ŷt is the predicted processing EC at time stamp t, yt is the actual processing EC at
time stamp t, ȳt is the average of the actual processing EC up to moment t, and N is the
total number of data points in the dataset.

Step 5: Termination condition. The evaluation of LSTM is to identify the population
with the smallest RMSE (fitness value) as the potential solution. Therefore, MAE, ME,
RMSE, and R2 were used to evaluate the performance of the double-layer LSTM.

Step 6: Position update. The traditional PSO algorithm uses a fixed inertia weight,
which can easily fall into local extreme values, and affects the globality of the search and
the speed of convergence [35]. We introduce an exponential function based on the bata
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distribution to dynamically adjust the inertia weights for position updating in PSO. The
calculation formula is shown in Equation (18). The ‘Betarnd’ is a random number that can
be randomly generated to match the bata distribution, which can increase the ability of
the algorithm to search globally and reduce the possibility of the algorithm falling into
localization in the late PSO. The position of each population is updated using Equation (19).
When R ≤ VP is satisfied, random points (hyperparameters) are selected from the overall
vector and the corresponding hyperparameter values are calculated using Equation (19)
and Equation (20). During this procedure, the variance probability of the random number
R is VP, expressed by Equation (21):

ω = ωmin+(ωmax–ωmin)*exp(−t/tmax)+σ*betarnd(p,q), (18)

Ppvi,t = ωPpvi,t−1 + C1R(pi,t−1 − Xi,t−1) + C2R(gi,t−1 − Xi,t−1), (19)

Xi,t = Xi,t-1 + Ppvi,t, (20)

VP = 1− t/tmax , (21)

where t is the current iteration number, tmax is the maximum iteration number, σ is the
inertia adjustment factor and is taken as 0.1; ωmax and ωmin are the initial inertia weight
and the inertia weight at the maximum iteration number, respectively; ωmax and ωmin are
generally taken as 1.2 and 0.8; p is generally taken as 1, and q is generally taken as 3; R is a
random number between [0, 1]; and C1 and C2 are acceleration constants, which are taken
as 2 in this paper.

4. Case Study
4.1. Construction of Experimental Platform

A real-time EC acquisition experimental platform was established, as shown in
Figure 5. The experimental platform is implemented based on LabVIEW programming and
Swallow simulation software. The platform consists of a photoelectric sensor, XK713 CNC
milling machine, high-precision power tester, computer host, simulator, and communica-
tion terminal. The milling experiments were performed by selecting different combinations
of parameters to machine different features and collecting energy consumption data, some
of which are shown in Figure 6. The sampling frequency is set to 100 ms, and the real-time
data are smoothed twice.

Figure 5. Milling machining energy efficiency prediction platform. (a) CNC milling machine;
(b) photoelectric sensor; (c) Hall sensor; (d) CNC machining simulator; (e) real-time EC acquisition;
(f) power tester and host computer.
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Figure 6. Acquisition of real-time power data for processing different features. (a) Real-time power
of milling planes. (b) Real-time power for drilling. (c) Real-time power for milling slots.

4.2. Process EC Dataset Construction

The construction of the dataset is crucial for the effect of EC prediction. Machine
learning methods can be used to perform small sample sampling and prediction, but their
accuracy cannot be guaranteed. Therefore, when the deep learning method is adopted,
the amount of data required is relatively large. When a complete dataset is constructed,
the prediction model of deep learning can ensure a better prediction effect. The method of
constructing the processing energy dataset in this paper is as follows. Firstly, the WT1800
high-precision power tester was used to collect real-time EC data of the machining process;
secondly, LabVIEW was used to program and deploy sensors to collect real-time machining
EC data. The data collected by both methods are mixed 7:3 to build the updated EC dataset.
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The specific data composition is shown in Table 1, and the sample dataset is shown in
Table 2.

Table 1. Process energy dataset.

Drilling
Data

Milling Plane
Data

Milling Slot
Data Data Ratio

WT1800 PowerTester 12,298 1936 10,587 70%
LabVIEW Programming 1168 1072 1525 30%

Total data 8959 1677 7868 100%

Table 2. Sample dataset.

Time Millisecond Current
(A)

Voltage
(V)

Power
(W)

Spindle
Speed
(r/min)

Feed
Speed
(r/min)

Depth
of Cut

Number
of Blades

Energy
Consumption

(W.h)

15:48:40 289 0.587 406.22 298.4 1200 2000 2.5 4 261.307
15:48:40 388 0.585 406.22 298.2 1200 2000 2.5 4 261.317
15:48:41 199 0.585 405.85 297.7 1200 2000 2.5 4 261.399
15:48:51 181 3.539 405.28 1213.7 1200 2000 2.5 4 264.948
16:07:15 81 2.002 404.86 760.9 1800 2500 2.5 4 456.939
16:07:16 76 1.978 404.94 752.4 1800 2500 2.5 4 457.16
16:12:14 93 2.935 404.52 1043.9 2000 2000 2.5 4 514.282
16:12:27 779 2.728 404.37 1015.7 2000 2000 2.5 4 518.659
16:12:28 84 2.714 404.25 1013.4 2000 2000 2.5 4 518.723
16:12:41 61 2.737 404.64 1032.9 2000 2000 2.5 4 522.913
16:13:03 79 2.814 403.53 1014 1000 1500 2.5 4 529.826
16:13:13 877 2.675 403.92 786 1000 1500 2.5 4 533.22
16:31:27 490 2.163 405.02 790 1000 1500 2.5 4 705.344
16:32:53 155 1.969 404.51 761.3 1000 1500 2.5 4 726.112
16:32:53 471 1.964 404.55 753.2 1000 1500 2.5 4 726.16
15:52:11 605 2.605 405.21 954.2 1200 2000 2.5 4 327.364
15:52:15 289 2.514 405.5 955.7 1200 2000 2.5 4 328.471
16:28:09 74 2.138 405.03 298.4 1200 2000 2.5 4 655.898
16:30:59 970 2.083 404.64 771.6 1000 1500 2.5 4 698.641
16:41:01 670 1.934 405.75 755.7 800 1200 2.5 4 825.252
16:42:06 180 0.602 405.06 299.9 800 1200 2.5 4 840.396

... ... ... ... ... ... ... ... ... ...

4.3. Model Parameter Settings

The DIWPSO-LSTM model consists of an input layer, two LSTM layers, two dropout
layers, a fully connected layer, and an output layer. The number of hidden layer neurons
(Hun), learning rate (Lr), learning rate decline factor (Lrdf), and learning rate decline
period (Lrdp) are set as the hyperparameters to be optimized, and the initial setting range
of hyperparameters is shown in Table 3. Other parameters are set as follows: Maxepochs =
300, GradientThreshold = 1, InitialLearnRate = 0.005, and inertia weight = [0.8, 1.2]. The
training process based on DIWPSO-LSTM is performed on the server with the following
parameters: the GPU is NVIDIA 3090, CPU is i7-12700K, RAM 32G, Matlab 2020a.

Table 3. Hyperparameter setting and optimization results.

Hyperparameters Initial Range Setting Optimization Results

hiddenUnit_num (Hun) [90, 200] 146
LearningRate (Lr) [0.001, 0.15] 0.01211
LearnRateDropFactor (Lrdf) [0.01, 0.5] 0.2
LearnRateDropPeriod (Lrdp) [80, 200] 125
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4.4. Results and Discussion

The proposed DIWPSO-LSTM method is compared with the conventional PSO-LSTM,
LSTM, and other improved PSO methods, such as IPSO-LSTM and ACMPSO-LSTM; the
predicted experimental comparison results are shown in Figure 7, and Table 4 shows the
numerical results. The training, validation, and prediction results of EC data for milling
slot machining using DIWPSO-LSTM are shown in Figures 8–10.

Figure 7. Comparison of the results of the proposed method with other methods.

Table 4. Values of predicted results by different methods.

MAE ME RMSE R2

LSTM 6.12214 1.11289 6.36465 0.99882
PSO-LSTM 6.76289 −1.11015 8.11697 0.99885
IPSO-LSTM 7.27200 −1.81000 8.72457 0.99830
ACMPSO-LSTM 7.28726 −1.15409 8.35037 0.99863
DIWPSO-LSTM 3.68966 −0.07248 5.23745 0.99891

Figure 8. Real-time machining energy training for milling slots using DIWPSO-LSTM.



Sustainability 2023, 15, 5781 14 of 17

Figure 9. Real-time machining energy verification of milling slots using DIWPSO-LSTM.

Figure 10. Real-time machining energy prediction for milling slots using DIWPSO-LSTM.

The mean errors of the five methods were 1.113, −1.110, −1.810, −1.154, and −0.0725.
It is shown that the DIWPSO-LSTM method proposed in this paper is superior to other
methods in terms of ME value. The MAE of the DIWPSO-LSTM method also improved
by 39.73%, 45.44%, 49.26%, and 49.36% compared to other methods. The RMSE of the
DIWPSO-LSTM method improved by 17.70%, 35.47%, 36.96%, and 37.27% compared to
other methods. Through experimental comparison, it is found that the double-layer LSTM
prediction model works much better than other improved methods.

Compared with PSO-LSTM, IPSO-LSTM, and ACMPSO-LSTM methods, the itera-
tive search time of the recommended method is shorter by 12.05%, 12.96%, and 18.2%,
respectively. When using a single-layer LSTM, the training time is not much different for
either method. When using the double-layer LSTM model for prediction, the training time
tends to be longer, and the comparison of the specific training time is shown in Table 5.
The training time for the double-layer LSTM model is twice as long as the other methods,
which also indicates that prediction accuracy is improved by increasing the training time to
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achieve the prediction effect, which is acceptable. If the number of layers of LSTM increases,
the training time is prolonged, and overfitting will also occur. Therefore, for this paper,
choosing a double-layer LSTM is the most appropriate choice.

Table 5. Comparison of iterative optimization time and training time results of different methods.

Optimization
Time (Second) Inertia Weight Training

Time (Second)

Network
Layers
Numbers

PSO-LSTM 371.0 0.80000 30.00000 4
IPSO-LSTM 374.0 0.80000 32.40000 4
ACMPSO-LSTM 391.3 0.77000 33.90000 4
DIWPSO-LSTM 331.1 0.97187 63.30000 7

5. Conclusions

The IPSO algorithm using dynamic inertial weights (DIWPSO) is proposed to optimize
the hyperparameters of LSTM networks to improve the prediction accuracy of LSTM
neural networks. The comparison with LSTM, PSO-LSTM, IPSO-LSTM, and ACMPSO-
LSTM models shows that the proposed method (DIWPSO-LSTM) has higher prediction
accuracy, reduces overfitting, and shortens iterative optimization time. Furthermore, the
proposed method can also be applied to the EC prediction of machining systems in a wide
range of applications.

A method of constructing a machining EC prediction dataset is proposed. This method
segments and fuses the machining EC dataset by different acquisition methods. The
generalization performance of the model can be improved by using the fused dataset as a
basis for EC prediction.

The evaluation index system of the machining EC prediction results is supplemented
with the evaluation of the coefficient of determination (goodness of fit). As a result, the
results of the EC prediction for machining systems are more accurate and reliable. However,
there are some shortcomings in this paper, mainly that the machined blank parts are simple
parts. Next, we will explore the use of a double-layer LSTM prediction model to handle
the problem of machining EC prediction for complex parts. Is it possible to use other
deep learning methods, such as the transformer or informer model, with higher prediction
accuracy and shorter training time? In addition, for the construction of processing EC
datasets, the next step is to consider utilizing simulation software to simulate the processing
process. This will enable the simulation to generate a large amount of data, which can
reduce the time of experimental sampling and improve efficiency.
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