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Abstract: In order to address the problems of redundancy and waste of resources in the deployment
of monitoring points in mesoscale chemical hazard areas, we propose a method for the deployment of
monitoring points in mesoscale chemical hazard areas by combining weight and fireworks algorithms.
Taking the mesoscale chemical hazard monitoring area as the research background, we take the
probabilistic sensing model of telemetry sensor nodes as the research object, make a reasonable
grid division of the mesoscale monitoring area, calculate the importance of each grid and perform
clustering, utilize the diversity of the fireworks algorithm and the rapidity of the solution to solve
the monitoring point deployment model and discuss the relevant factors affecting the deployment
scheme. The simulation results show that the proposed algorithm can achieve the optimal coverage
monitoring for monitoring areas with different importance and reduce the number of monitoring
nodes and redundancy; meanwhile, the relevant factors such as the grid edge length, the number of
clusters, and the average importance of monitoring areas have different degrees of influence on the
complexity of the algorithm and the deployment scheme.

Keywords: chemical hazards; fireworks algorithm; k-means clustering; telemetry; monitoring
point placement

1. Introduction

With the continuous development of modern science and technology, the variety and
quantity of various hazardous chemicals are constantly growing, bringing convenience to
people while posing more serious chemical threats to social security. First of all, the tradi-
tional chemical threat caused by great power competition and regional conflicts of interest
has not dissipated with the signing of the Chemical Weapons Convention [1]. As of the
25th anniversary of the entry into the Chemical Weapons Convention in 2022, the progress
of chemical weapons destruction is still seriously lagging behind, and there are numerous
security risks, including the serious delay in the destruction of chemical weapons in some
countries represented by the United States, the slow progress of the disposal of chemical
weapons abandoned by Japan in China, and still-unsigned Chemical Weapons Conventions
in some countries [2]. Secondly, the international trend of chemical terrorism is intensifying
and, compared with other types of terrorist weapons, chemical terrorism is susceptible to
being abused because of its characteristics of easy availability of materials, low cost, ease
of synthesis, and the suddenness, group catastrophe, concealment, and human damage
when performed [3]. According to the statistics of chemical terrorist attacks in the Global
Terrorism Index from 1970 to 2015 [4], chemical poison gas has frequently appeared in
terrorist attacks in recent years. In addition, the threat of secondary biochemistry caused by
chemical accidents is gradually becoming prominent. The consequences of chemical hazard
gas diffusion in accidents such as chemical dangerous leakage, coal mine gas explosion, and
earthquake secondary toxic gas leakage in chemical parks are highly severe even though the
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chemical hazardous gases contribute to the economic and social value of the industry [5].
The chemical hazards produced by hazardous gases can cause fatal casualties and serious
social impacts, so monitoring areas of potential chemical hazards has become significant.

The formation of chemical hazard areas and the deployment of monitoring points
are related to the content of atmospheric dispersion [6]. According to the scale and size of
atmospheric dispersion research, it is generally divided into three categories: micro-scale
research ranges from less than one meter to hundreds of meters; small-scale typically
ranges from one to several kilometers; and the mesoscale usually ranges from tens of
kilometers [7]. There are many ways to deploy monitoring points, and at this stage, the
research on the deployment of chemical hazard monitoring points is more focused on the
micro-scale and small-scale, and the larger-scale deployment problems can be considered
in combination with GIS [8–12]. The traditional monitoring point deployment of chemical
hazard areas is usually characterized by the deployment and monitoring of areas where
hazards have occurred, which can only achieve fixed-point measurement, and is affected
by detection conditions such as ambient temperature and wind speed, and is mainly used
for small-scale chemical hazard monitoring areas. Jung [13], for instance, proposed a
deployment method for combustible gas monitoring points considering risk indicators,
simulated the diffusion results of combustible gas in the combination of different risk
factors, and evaluated the risk probability of leakage scenarios to optimize the deployment
of monitoring points. When the scope of chemical hazard area is above the medium scale,
considering the risk of toxic and harmful gas leakage, long-distance telemetry of dangerous
gases has become one of the important research directions of gas monitoring to ensure
the life safety of relevant practitioners. Gas telemetry has been developed for decades
and does not require direct contact with the target to track, detect, identify, and estimate
concentrations in regions [14,15]. The long-distance telemetry technology developed at
this stage is divided into passive telemetry technology, such as Fourier transform infrared
spectroscopy [16–19], and active telemetry technology, such as differential absorption lidar
(DIAL) technology [20–23], Raman scattering spectrum technology [24–28], etc. Long-
distance telemetry has non-contact remote detection capability for continuous wave media,
which can meet the requirements of remote monitoring, and its strong flexibility is more in
line with the requirements of monitoring chemical hazard areas at the medium scale, which
can achieve the goal of real-time online remote monitoring and early warning, to a certain
extent. In the current research, the research on the location problems of chemical hazard
gas monitoring points primarily focuses on the sensor site selection research of small-scale
monitoring areas with leakage source determination and diffusion space determination,
while the research on the deployment of chemical hazard monitoring points within tens of
kilometers of potential leakage sources and monitoring areas needs to be resolved urgently.
Therefore, the site selection and efficient monitoring of mesoscale chemical hazard gas
monitoring points have become scientific issues to be solved at the national social security
level and have important research significance.

In this paper, we mainly study the model construction method of the deployment of
mesoscale chemical hazard monitoring points and select the remote telemetry gas sensor
as the monitoring equipment. In view of the differences between the layout method of
telemetry sensors in mesoscale scenarios and the traditional micro-scale point-taking style
sensor deployment methods, as well as the problem of monitoring resource redundancy
that tends to occur in mesoscale chemical hazard monitoring, this paper takes typical
mesoscale chemical hazard monitoring areas as the research background, establishes a
weight-based chemical hazard area monitoring point coverage model, uses the rapidity
of fireworks algorithm convergence and the diversity of fireworks operators to solve the
model, and discusses the effectiveness and superiority of models and algorithms under
different parameter scenarios.

Our contributions are as follows:

• A novel method for constructing a model for the deployment of mesoscale chemical
hazard monitoring points considering weights is proposed to achieve the intensive
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monitoring of mesoscale chemical hazards through the correspondence between re-
gional importance and coverage, which solves the problem of monitoring redundancy;

• Combined with the existing optimization methods and the characteristics of chemical
hazard areas, the deployment optimization method of telemetry chemical monitoring
equipment suitable for mesoscale gas diffusion monitoring and early warning is found,
and the influence of each parameter on the model and algorithm is discussed;

• This method can be applied to other mesoscale monitoring models, and the solution
algorithm for the deployment of mesoscale chemical hazard monitoring points can
also be improved by combining with other heuristic algorithms.

The study is divided into six parts, and the rest of the article is organized as follows.
Section 2 describes the work of coverage location problems and fireworks algorithms. The
construction method of the mesoscale chemical hazard area monitoring point deployment
model considering weights is detailed in Section 3. Section 4 describes the fireworks
algorithm used for model solving. In Section 5, experiments are utilized to confirm the
feasibility of the model construction approach and solution algorithm, and the impact of
various parameters on the findings of the monitoring point layout is discussed. Section 6 is
the conclusion.

The workflow diagram is shown in Figure 1 below:

Sustainability 2023, 15, x FOR PEER REVIEW 3 of 20 
 

model, and discusses the effectiveness and superiority of models and algorithms under 
different parameter scenarios. 

Our contributions are as follows: 
• A novel method for constructing a model for the deployment of mesoscale chemical 

hazard monitoring points considering weights is proposed to achieve the intensive 
monitoring of mesoscale chemical hazards through the correspondence between re-
gional importance and coverage, which solves the problem of monitoring redun-
dancy; 

• Combined with the existing optimization methods and the characteristics of chemical 
hazard areas, the deployment optimization method of telemetry chemical monitor-
ing equipment suitable for mesoscale gas diffusion monitoring and early warning is 
found, and the influence of each parameter on the model and algorithm is discussed; 

• This method can be applied to other mesoscale monitoring models, and the solution 
algorithm for the deployment of mesoscale chemical hazard monitoring points can 
also be improved by combining with other heuristic algorithms. 
The study is divided into six parts, and the rest of the article is organized as follows. 

Section 2 describes the work of coverage location problems and fireworks algorithms. The 
construction method of the mesoscale chemical hazard area monitoring point deployment 
model considering weights is detailed in Section 3. Section 4 describes the fireworks algo-
rithm used for model solving. In Section 5, experiments are utilized to confirm the feasi-
bility of the model construction approach and solution algorithm, and the impact of vari-
ous parameters on the findings of the monitoring point layout is discussed. Section 6 is 
the conclusion. 

The workflow diagram is shown in Figure 1 below: 

 
Figure 1. Flowchart of the research on the deployment of monitoring points in mesoscale chemical 
hazard areas by combining weight and fireworks algorithms. 

2. Related Work 
It is inevitable that there will be areas within the monitoring range that lack monitor-

ing significance when the monitoring area is broad, but if the entire monitoring area is 
laid out indiscriminately, it is easy to squander resources. In order to achieve the purpose 
of monitoring key areas, it is necessary to further refine the monitoring areas, calculate 
the importance of the refined areas according to the scientific quantitative model of the 

Figure 1. Flowchart of the research on the deployment of monitoring points in mesoscale chemical
hazard areas by combining weight and fireworks algorithms.

2. Related Work

It is inevitable that there will be areas within the monitoring range that lack monitoring
significance when the monitoring area is broad, but if the entire monitoring area is laid
out indiscriminately, it is easy to squander resources. In order to achieve the purpose
of monitoring key areas, it is necessary to further refine the monitoring areas, calculate
the importance of the refined areas according to the scientific quantitative model of the
importance ranking of chemical hazard monitoring areas, and select the most important
areas in the monitoring area to cover the monitoring points and choose the site of the
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monitoring points, so as to efficiently and accurately detect the gas leakage information of
the chemical hazard area. Coverage location problems [29] include location set covering
problem (LSCP) [30–34] and maximum coverage location problem (MCLP) [35,36]. Among
them, LSCP is committed to establishing the fewest site selection points to cover all demand
points under the premise of covering the specified requirements, and transforming the
location problem into a problem of minimizing the number of required site selection points.
For example, ref. [37] attempted to apply an advanced location allocation model to locate
and allocate disaster victims during floods, using LSCP as an allocation model to determine
the minimum number of relief centers required to cover all evacuees or affected populations
within a specific distance. Ref. [38] used two optimization models, the LSCP model and
the MCLP model, to solve the location problem, and found the best location by comparing
the corresponding methods and results of different models to optimize the site selection of
the location problem of the ready-mix concrete plant in Thailand. Ref. [39] utilized models
such as LSCP to minimize disaster risk by determining the minimum number of emergency
evacuation centers required to serve all points of need within a specified coverage distance
or itinerary.

It is difficult to accurately calculate the complex coverage location problem, and so
it is necessary to solve the location model with the aid of mathematical methods and
computer technology, and the optimization algorithm. In recent years, many scholars
have studied heuristic algorithms such as genetic algorithm [40], ant colony algorithm [41],
firefly algorithm [42] and fireworks algorithm [43] to determine the approximate optimal
solution of the problem. The fireworks algorithm is a special swarm intelligence algorithm,
inspired by the phenomenon of fireworks explosions that can radiate around, introducing
random factors and selecting strategy methods to generate a feasible solution by performing
an explosive global and local search of the problem, which solves quickly and achieves
remarkable global optimization capabilities [44–48]. In recent years, many scholars have
used fireworks algorithms to solve the problem of sensor deployment. For example,
Tian [49] designed a multi-sensor network optimization model based on the fireworks
algorithm for the optimization problem of sensor network deployment in the modern
battlefield, using three aspects of total area coverage, common viewing parameters of key
targets and sensor resource utilization as evaluation indicators. The simulation results
showed that the fireworks algorithm solves quickly, which can make the total area coverage
and common viewing parameters of key areas exceed 90%, and the utilization rate of
sensor resources is high, which is conducive to improving the coverage of key areas
of the battlefield. Gui [50] proposed a fault diagnosis method based on the fireworks
algorithm optimization convolutional neural network algorithm to accurately diagnose
faulty sensor nodes. They utilized the self-regulation mechanism of global and local search
capabilities of the fireworks algorithm to optimize the weights and biases of convolutional
neural networks, so as to solve the problem of limited judgment and convergence speed of
convolutional neural networks. It can be seen that it is feasible to solve the model by using
the convergence speed of the fireworks algorithm and the diversity of fireworks operators.

3. The Deployment Model for Mesoscale Chemical Hazard Area Monitoring Point
Considering Weight

When constructing a mesoscale chemical hazard area monitoring a point deployment
model considering weights, the sensing model of sensors at monitoring points is initially
considered, and the exponential decay probability sensing model is selected as the sensing
model of monitoring points; a suitable coverage location model, or the LSCP model, is
selected according to the monitoring requirements; then, the mesoscale area to be monitored
is gridded, and a suitable grid is selected by combining the specific characteristics of the
deployment model to achieve a balance between accuracy and computational, and the
importance of each grid after division is calculated; the grids are clustered into regions of
different importance, the importance of the regions is also obtained, a relationship between
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the importance of the regions and the coverage threshold is defined, and, finally, the model
is constructed.

3.1. Sensing Model

In the study on sensor deployment problems, the most-used sensing model is the
Boolean sensing model, and in addition to this, there are probability sensing models,
oriented sensing models, etc. [51]. The exponential decay probability sensing model among
the perceptual models is chosen as the sensor model in this paper to be closer to reality.
Assuming that the monitoring probability f (s, p) that the point p

(
xp, yp

)
in the chemical

hazard area is detected by the sensor at the monitoring point, s(xs, ys) satisfies Equation (1).

f (s, p) =
{

e−λd(s,p), d(s, p) ≤ Rs
0, d(s, p) > Rs

(1)

where λ denotes the parameter related to the physical characteristics of the sensor; Rs
is the maximum sensing radius of the monitoring point; d(s, p) denotes the Euclidean
distance between the monitoring point s(xs, ys) and the monitored point p

(
xp, yp

)
, as in

Equation (2).

d(s, p) =
√(

xs − xp
)2

+
(
ys − yp

)2 (2)

The probability f (p) that point p
(
xp, yp

)
is monitored by the set S of monitoring points

satisfies Equation (3).

f (p) = 1−
k

∏
i=1

(1− f (si, p)) (3)

It is known that the minimum perception probability of a monitoring point is fmin. The
more sensitive the sensor is, the smaller the value of its minimum perception probability
fmin is, and vice versa. When the monitoring probability f (p) of the monitoring point set
S for point p

(
xp, yp

)
is greater than fmin, it is defined that the point can be monitored and

the monitoring effect Fc(p) is marked as 1. The monitoring effect Fc(p) is expressed as 0/1
as follows in Equation (4).

Fc(p) =
{

1, f (p) ≥ fmin
0, f (p) < fmin

fmin ∈ [0, 1] (4)

3.2. Mesh Generation and Mesh Importance

The discretization of the area to be monitored into a series of grid points is a common
method in the deployment of sensing network nodes, and general shapes used for mesh
generation are triangles, squares, square hexagons, etc. [52]. This paper adopts the square
mesh generation method, and meshed chemical hazard areas with Rg as the edge length.
The importance ωi of mesh generation is calculated through the importance ranking model
of chemical hazard areas.

We set the central point of each grid as the discrete alternative points when conducting
the research on deployment problems of monitoring point, and assigned importance
weight value within each grid to the central points. If the grid edge length is smaller, the
mesh generation is denser, the accuracy is higher and the calculation amount is larger.
Additionally, the grid statistical method is used to calculate area coverage rate. When the
detection range of the monitoring point completely covers the grid, this grid is defined to
be monitored, and so the edge of grid Rg satisfies the constraint relation Equation (5):

e−λ
Rg√

2 ≥ fmin (5)
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After arranging, we have Equation (6):

Rg ≤ −
√

2ln fmin
λ

(6)

where fmin is the minimum perceived probability of monitoring points.
Subsequently, the importance of each grid in the monitoring area is calculated based

on the quantitative model of the importance ranking of the chemical hazard monitoring
area, and the importance value ωi of each grid is obtained i.

3.3. Regional Importance and Coverage Threshold

In the case of limited monitoring nodes, priority should be given to the coverage
of important areas within the monitoring region. The requirement of the corresponding
coverage for different regional importance is also disparate. For instance, the requirement
of coverage rate in sparsely populated areas of no significant value is far below that of
geographical locations where command departments are located, in which deploying the
monitoring point in non-essential areas not only occupies the transmission of communica-
tion channels, but also is a waste of deployment resources. k-means clustering of each grid
importance ωi is performed to form regions to be monitored with different importance.
The mean value of importance ωave of the whole region is used to calibrate the importance
distribution of this monitoring region.

We used the k-means clustering algorithm to cluster a larger number of meshes to
form several clusters, i.e., regions of different importance, and obtained the importance
ωci(0 < i < C) of each region and the number Aωci of meshes in each region. According to
the different importance of the regions formed after clustering, the corresponding minimum
coverage, i.e., the coverage threshold Pωci is introduced, and its calculation formula is as in
Equation (7).

Pωci =
1
2

sin
(

πωci −
π

2

)
+

1
2

(7)

The higher the importance of the area, i.e., the greater the ωci, the greater the corre-
sponding coverage, i.e., the larger the required coverage threshold value Pωci .

3.4. The Definition of Chemical Hazard Monitoring Points Deployment Model Considering Weight

In the m× n chemical hazard monitoring area A, dividing the grid with Rg as the
radius, the coordinates of each target point of each grid importance are calculated as
p
(

xp, yp
)(

0 ≤ xp ≤ m, 0 ≤ yp ≤ n
)
. Assuming that K wireless sensor monitoring nodes

are deployed, denoting as S, each node coordinate is s(xs, ys)(0 ≤ xs ≤ m, 0 ≤ ys ≤ n). The
largest sensing radius of sensor is Rs and its communication radius is Rc, which we have
known Rc > 2Rs, so there are no communication problems by default.

When there are two or more monitoring points si(xsi, ysi) and sj
(
xsj, ysj

)
in the moni-

toring area at the same time with monitoring probabilities f (si, p) and f
(
sj, p

)
greater than

fmin for mesh point p
(
xp, yp

)
, it is defined that the point p is repeatedly monitored. The

redundancy Fr(si, p) of monitoring point si(xsi, ysi) to point p
(
xp, yp

)
is marked as 1, and,

similarly, Fr
(
sj, p

)
is also 1, as in Equation (8), and the redundancy coverage Fr(p) of point

p
(

xp, yp
)

under the monitoring point set S is shown in Equation (9):

Fr(si, p) =
{

1, f (si, p) ≥ fmin, f
(
sj, p

)
≥ fmin

0, otherwise
(8)

Fr(p) =
k

∑
i=1

Fr(si, p)− 1 (9)
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The coverage Pcov.ωci of the monitoring area with importance ωci is calculated by the
following Equation (10).

Pcov.ωci =
Sarea.ωci

Aarea.ωci

=
∑m×n

i=1 Fc(pi)

Aωci

(10)

where Sarea.ωci is the total area of all monitored target points at that importance; Aarea.ωci is
the total area of the monitored area with importance ωci; Fc(pi) is the monitoring effect of
the set S of monitored points on point pi; Aωci is the number of meshes with importance ωci.

The calculation formula for the coverage redundancy Prec of this safeguard area is
as follows:

Prec =
Srea

Sarea
=

∑m×n
i=1 Fr(pi)

∑m×n
i=1 Fc(pi)

(11)

Srea denotes the total area of re-monitored target points; Sarea is the total area of all
monitored target points.

To construct a model for the deployment of chemical hazard monitoring points con-
sidering the weight, with the coverage of each important region as the constraint, to reduce
the redundancy of regional coverage and the number of deployed monitoring points that is
the optimization objective, the formula is Equations (12) and (13).

minQ = K + 10× Prec (12)

s.t Pcov.ωci ≥ Pωci , i ∈ (0, C] (13)

where K is the number of sensor monitoring nodes in the coverage area; Prec is the coverage
redundancy of this monitoring area; Pcov.ωci represents the coverage of the monitoring
area with importance ωci; Pωci denotes the coverage threshold of the monitoring area with
importance ωci; C is the k-means clustering number of clusters.

4. Model Solution Algorithms
4.1. k-Means Clustering Algorithm and Fireworks Algorithm

Based on the grid importance values of the chemical hazard monitoring area in the
previous chapter, the k-means clustering algorithm was used to recluster the importance
into several clusters to form the importance level of the monitoring point deployment.
k-means clustering algorithm is the most familiar clustering algorithm, which assigns each
piece of data to the nearest cluster in the cluster represented by the center point, given K
values and K initial cluster centers. After all the data is allocated, the center of this type of
cluster is calculated according to a class cluster in a data center, and then the procedures of
assigning data and updating class cluster centers are iteratively performed until the cluster
center point changes little or reaches the specified number of iterations.

There are many types of heuristic algorithms [53]. Fireworks algorithm is an intelligent
optimization algorithm that simulates the explosion process of fireworks to solve complex
optimization problems [54]. Fireworks algorithm uses the new generation of fireworks and
variant fireworks which are produced by each generation of fireworks and its explosion to
construct solution space determines the feasibility of solution through adaptation value,
and obtains the optimal solution after several iterations, which consist of explosion operator,
mutation operator, mapping rule, and selection strategy [49].

4.2. Middle-Scale Chemical Hazard Monitoring Point Model Solution Steps Considering Weights

Based on the above introduction of k-means clustering algorithm and fireworks algo-
rithm, this paper designs a solution algorithm for mesoscale chemical hazard monitoring
point deployment coverage model considering regional importance, and the specific steps
are as follows:

Step 1: (k-means clustering) randomly select K samples as the initial cluster center;
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Step 2: for the importance data of each grid, calculate the distance to the center of each
type of cluster, find the center of the closest cluster, and assign the data to this cluster;

Step 3: recalculate the position of the center of each type of cluster;
Step 4: Determine whether the center position of the cluster has changed. If it changes,

repeat the steps of iterating Step 2–Step 3; if it remains the same, then output the result
and obtain the clustered clusters that are different importance areas, and the obtained
cluster center is the importance value of each region, and the regional importance value is
converted into regional coverage by Formula (7) for the calculation of the fitness value of
the fireworks algorithm;

Step 5: (fireworks algorithm initialization) initialize various parameters: set the num-
ber of explosions M, the number of fireworks, and the maximum number of iterations;
initialize the fireworks position, randomly generate some fireworks in a specific solution
space, and each firework xi represents a solution;

Step 6: Calculate the fitness value f (xi) of each firework according to the optimization
objective function to judge the quality of the fireworks. According to Formula (14)–(16), the
fireworks explosion amplitude radius Ai and the number of fireworks of the new generation
Bi were calculated. According to Equation (15), the number of daughter operators produced
by the explosion of fireworks operators is limited to ensure population diversity and
optimization speed.

Ai = A× f (xi)−Vmin + ε

∑N
i=1[ f (xi)−Vmin] + ε

(14)

Bi = B× Vmax − f (xi) + ε

∑N
i=1[Vmax − f (xi)] + ε

(15)

Bi =


round(αB) (Bi < αm)
round(βB) (Bi < βm)
round(Bi) otherwise

(16)

A is a constant parameter that controls the explosion radius of the fireworks operator; Li
represents each firework in the current population; Vmin = min f (xi) is the minimum fitness
of fireworks operators in the current population; Vmax = max f (xi) is the maximum fitness
of the fireworks operator in the current population; ε is the minimal constant value that
must be set to avoid zero denominator during algorithm calculation; N is the number of
total fireworks operators; B is a constant parameter that controls the number of offspring
fireworks produced by the explosion of the fireworks operator; round( ) is the rounding
function; α. β is constant and α < β < 1;

Step 7: Generate explosive sparks and Gaussian sparks. Operate displacement to
fireworks according to Formula (17); to ensure population diversity and avoid falling into
the local optimal solution, a Gaussian mutation operator with high burst is added, and
some fireworks operators are randomly selected to perform Gaussian mutation according
to Formula (18). Calculate the fitness value f (xi) for all sparks and update the global
optimal solution; during the operation, the offspring fireworks operator that exceeds the
solution domain space is transferred to the solution space according to the mapping rules
of Equation (19).

∆xk
i = xk

i + round(0, Ai) (17)

∆xi = xig (18)

xk = xk
min +

∣∣∣xk
∣∣∣%(xk

max − xk
min

)
(19)

where g is a random number that obeys a Gaussian distribution with a mean of 1 and a
variance of 1; xk is the position information of the fireworks operator beyond the solution
space in k-dimension; xk

max and xk
min are the upper and lower boundary information of the

solution domain space in the kth dimension, respectively; % represents the operation of
the modulus;
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Step 8: Apply the selection strategy to Next Generation Fireworks for selection. Ac-
cording to Formula (20), the high-quality operator part is selected from the operator set
generated by the explosion and mutation process by the roulette wheel method based on
the Euclidean distance as the parent generation of the new generation fireworks algorithm.

P(xi) =
R(xi)

∑j∈K R(xi)
(20)

where R(xi) is the sum of the distances between the individual xi of the fireworks operator
and all other operators in space; P(xi) is the probability that the individual fireworks Li
will be retained;

Step 9: Determine whether the termination conditions are met. If it is satisfied, stop
the search and print the results. Otherwise, return to Step 6.

Through the solution process of Step 1 to Step 9 above, the optimal solution of the
mesoscale chemical hazard monitoring point location optimization model can be obtained,
so as to monitor the mesoscale chemical hazard area efficiently and reliably, and issue accu-
rate and timely early warning when chemical hazards occur in important areas, providing
reliable technical support for scientific emergency measures.

5. Experiment Analysis

The typical deployment scene of chemical hazard area monitoring points has been
designed to verify the effectiveness of deployment models and its solving algorithms. The
experimental scene is a 50 × 50 km chemical hazard area to be monitored, the perceptual
radius of monitoring nodes is 5 km, the related parameter of sensor physical features is
λ = 0.5, the minimum perceptual probability of monitoring point is fmin = 0.2, and Rg km
is used as the edge length to divide the square grid to calculate the importance ω(ω ∈ [0, 1])
of each grid through the importance ranking model of chemical hazard areas and regional
importance mean value ωave, and then the k-means clustering is applied for the calculated
importance of each grid cell with the number of clusters C.

The variation of edge length, number of clusters, and importance distribution can not
only change the importance of each grid in chemical hazard areas, but also influence the
deployment location, number of monitoring nodes, etc. In order to ensure the accuracy of
experiment data, we chose the mean value of experiment data for 100 times as the result.
The execution time of the choosing process, the number of nodes, and redundancy are used
as the measurement indexes of the algorithm’s pros and cons.

5.1. Effect of Grid Edge Length

The effect of different grid edge lengths on the execution time of algorithms, the
number of nodes, and redundancy and the variation of a grid’s radius directly affects the
changes of alternative points and further causes changes in their node deployment, and
even in the amount of computation when the monitoring areas remain unchanged. The
monitoring areas are set unaltered in the experiment, the grid edge length Rg is 1, 2, 3, 4
respectively, and other parameter settings are: number of clustering C = 3, ωave = 0.3.

When the number of iterations is 500, the optimal results of each experiment are shown
in Figure 2:
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length Rg = 1 km, K = 188, Prec = 1.84, Time = 61,969.814 s. (b) Grid edge length Rg = 2 km, K = 45,
Prec = 0.039, Time = 4021.676 s. (c) Grid edge length Rg = 3 km, K = 15, Prec = 0.02, Time = 996.881 s.
(d) Grid edge length Rg = 4 km, K = 39, Prec = 0, Time = 430.556 s.

From the analysis of experiment results, we find that grid edge lengths not only affect
program run time, but also largely influence the redundancy and number of monitoring
points, and the specific results are arranged as shown in Figure 3:
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Figure 3. Parameters related to the deployment of monitoring points with different grid edge lengths:
(a) effect of grid edge length on the number of monitoring points. (b) Effect of grid edge length
on redundancy. (c) Effect of grid edge length on running time. (d) Mean vs. minimum values
for monitoring points with different grid edge lengths. (e) Mean vs. minimum of redundancy for
different grid edge lengths. (f) Mean vs. minimum runtime for different grid edge lengths.

From the above Figure 3, we can find that: (1) as the number of iterations increases,
the number of monitoring points and redundancy gradually decrease and stabilize, and the
smaller the edge lengths of the grid, the faster the decreasing gradient; (2) as the grid edge
lengths increases, the redundancy decreases and the running time rises, and meanwhile,
the overall change shows an initial fast followed by a slow trend, and then gradually
tends to stabilize; (3) as the increasing of grid edge lengths after the iteration stabilizes,
the variation trends of the mean and minimum values of the number of monitoring point,
redundancy, and running time are consistent, in which the number of monitoring points
displays an initial decrease followed by a rising trend, and redundancy and running time
show a fast and then slow downward trend; (4) a comprehensive analysis shows that grid
edge lengths have a vital influence on the deployment scheme of monitoring points, in
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which the number of monitoring points is minimum when the grid edge length is 3 km,
which is 92.6% less than when the edge length is 1 km, the redundancy is 95.7% less, and
the running time is 98.5% less, so the comprehensive monitoring effect is optimal.

5.2. Effect of the Number of Bunches of Clustering

The effect of the number of bunches of clustering on program running time, the
number of nodes, and redundancy under the same monitoring areas. The importance of
each grid remains unchanged in the experiment, the number of clustering bunches are 3, 4,
5, respectively, and other parameter settings are: grid edge length Rg = 3 km, ωave = 0.3.

When the number of iterations is 500, the optimal results of each experiment are shown
in Figure 4:
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Figure 4. The calculation result of monitoring point deployment in different clustering bunches (unit:
km) (In the figure: pink grids indicate different importance areas, blue dots represent monitoring
point locations, and blue circles represent monitoring range of monitoring points.): (a) The number
of clusters C = 3, K = 15, Prec = 0.2, Time = 996.881 s. (b) The number of clusters C = 4, K = 15,
Prec = 0.2, Time = 1036.814 s. (c) The number of clusters C = 5, K = 16, Prec = 0.22, Time = 1117.41 s.

To further illustrate the effect of the number of clusters on the experimental results,
the specific results of the experiment are organized as shown in Figure 5 below:
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Figure 5. The related parameters of monitoring point deployment in different clustering bunches:
(a) effect of the number of clusters on the number of monitoring points. (b) Effect of the number of
clusters on redundancy. (c) Effect of the number of clusters on running time. (d) Mean vs. minimum
value of the number of monitoring points for different numbers of clusters. (e) Mean vs. minimum of
redundancy for different number of clusters. (f) Mean vs. minimum of running time for different
numbers of clusters.

From the above Figure 5, we can receive that: (1) as the number of iterations increases,
the number of monitoring points K, and redundancy Prec gradually decrease and stabilize,
and the running time gradually increases, and further, the more number of clustering
bunches, the slower the variation trend of monitoring points; (2) the number of monitoring
points, redundancy, and running time of the three types of clusters fluctuate less after the
iteration stabilized; (3) according to the mean change of the experimental results, when the
number of clusters increases from 3 to 5, the number of monitoring points increase from
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17 to 19, which thus increase by 7.43%; the redundancy rises from 0.093 to 0.105, which
increases it by 12.5%; and the running time fluctuates by 21.6 s, which is an increase of
2.21% compared with the minimum time. Comprehensive analysis reveals that the number
of clusters has a small effect on the monitoring point deployment scheme.

5.3. Effect of Average Importance of Monitoring Areas

The influence of importance on the program running time, number of nodes, and
redundancy in this area. In disparate monitoring areas, since the importance in each grid cell
is different, the distribution of weight in entire monitoring areas is also diverse, and in this
paper, average importance as the parameter is utilized to monitor the overall importance
distribution of the region and if the average importance is higher, it indicates that there are
more important grid cells in the monitoring area and, conversely, if the average importance
is lower, it suggests that there are more unimportant grid cells distributed in the monitoring
area. The experiment set C = 3; Rg = 3 km; ωave = 0.3/0.5/0.7. The optimal results of the
experiment are shown in Figure 6a–c:
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Figure 6. Calculated results of monitoring point deployment with different average importance
and related parameters (units of Figure (a–c): km) (in Figure (a–c)): the pink grid indicates areas
of different importance, the blue dots represent the location of monitoring points, and the blue
circles represent the monitoring range of monitoring points): (a) The average importance ωave =
0.3, K = 15, Prec = 0.02, Time = 996.881 s. (b) The average importance ωave = 0.5, K = 38, Prec = 0.2,
Time = 1036.814 s. (c) The average importance ωave = 0.7, K = 55, Prec = 0.22, Time = 1117.41 s. (d)
Effect of average importance on the number of monitoring points. (e) Effect of average importance
on redundancy. (f) Effect of average importance on running time. (g) Mean vs. minimum value
of the number of monitoring points with different average importance. (h) Mean vs. minimum of
redundancy with different average importance. (i) Mean vs. minimum running time for different
average importance.

From the analysis of Figure 6d–i, we can obtain that: (1) as the number of iterations
increases and the higher of average importance, the faster the gradient of decreasing
number of monitoring points, the faster the trend of increasing running time; (2) as the
iteration tends to be stabilized, the variation trends of average value and minimum value
of those three indicators are basically the same, and as the increasing of average importance
and the number of monitoring points, the redundancy increasing trend becomes slower,
the increasing trend of running time become faster; and (3) according to the mean change
of the experimental results, when the average importance increases from 0.3 to 0.7, the
number of monitoring points increases from 17 to 60, with an increase of 244.57%; the
redundancy increases from 0.093 to 0.274, with an increase of 193.75%; and the running
time increases from 994.67 s to 1157 s, with an increase of 16.32%. It can be concluded that
the average importance of the monitoring area has an essential influence on the monitoring
point deployment scheme.

5.4. Effect of Weighted Coverage and Unweighted Coverage

Comparing the weighted area coverage algorithm with the unweighted area coverage
algorithm. The algorithm proposed by this paper is compared with the deployment method
of indifferent universe coverage, and in the deployment method of indifferent universe
coverage, according to the coverage range of the sensor, the diamond-shaped coverage is
selected and shown in Figure 7b, in order to achieve a coverage of 1 in all areas with the
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minimum number of monitoring points. The experiment compared the final number of
nodes, redundancy, and running time of two algorithms, and set parameters: Rg = 3 km and
the deployment of monitoring points based on weight is shown in a, and C = 3, ωave = 0.3;
the design sketch of indifferent monitoring universe coverage is shown in Figure 7b:
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The comparison diagram is obtained from data and as shown in Figure 8: the weight-
based coverage algorithm reduces the number of monitoring points by 80.5% on average;
contrast that with indifferent coverage, while decreasing the redundancy by 87.5%, signifi-
cantly increasing the utilization of monitoring points, improving monitoring efficiency, and
avoiding the waste of monitoring resources. However, the weight-based coverage requires
a lot of calculation time, whereas the indifferent coverage can be deployed directly.
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6. Conclusions

This paper uses the monitoring point deployment in chemical hazard areas under
mesoscale as the research background, establishes a mathematical model of telemetry
sensor deployment under grid division, and on this basis, constructs a weight-based model
for the monitoring point deployment in chemical hazard areas, using the k-means clustering
algorithm combined with the importance of grid cells, and solves the monitoring point
deployment model using rapid convergent fireworks algorithm. This paper discusses
the effects of different indicators on parameters such as the number of monitoring points,
redundancy, and running time. Moreover, the experiment results indicate that the grid
edge length divided by importance and the importance distribution situation of monitoring
areas have significant influence on monitoring point deployment scheme, but the choosing
of clustering number has relatively small influence. By comparing with the scheme of
indifferent universe coverage, the effectiveness of the deployment model and solution
algorithm is verified, and the focused problem of monitoring point deployment is solved,
and the reasonable control index parameters can improve the monitoring efficiency to a
certain agreement and avoid the excessive waste of deployment resources.

In our future work, we will continue our research in the following three areas.

• We can choose multiple heuristic algorithms to solve the model. In our research, we
only rely on the fireworks algorithm to solve the model, and find a better
algorithm to choose instead through the comparison and verification of multiple
heuristic algorithms;

• We can improve the location optimization algorithm by combining it with other
heuristics, such as simulated annealing, ant colony algorithm, and genetic algorithm;

• We can extend the research content to the optimization of the deployment of spatial
monitoring points [55]. The location of sensors used to monitor the diffusion of
chemically hazardous gases has only been studied in a two-dimensional planar area,
and three-dimensional space with height has not been considered.
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