
Citation: Saicharan, V.; Rangaswamy,

S.H. A Comparison and Ranking

Study of Monthly Average Rainfall

Datasets with IMD Gridded Data in

India. Sustainability 2023, 15, 5758.

https://doi.org/10.3390/su15075758

Academic Editor: Sushant Mehan

Received: 19 November 2022

Revised: 20 March 2023

Accepted: 22 March 2023

Published: 25 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

A Comparison and Ranking Study of Monthly Average Rainfall
Datasets with IMD Gridded Data in India
Vasala Saicharan and Shwetha Hassan Rangaswamy *

Department of Water Resources and Ocean Engineering, National Institute of Technology Karnataka,
Surathkal 575025, India
* Correspondence: hrshwetha@nitk.edu.in

Abstract: Precise rainfall measurement is essential for achieving reliable results in hydrologic appli-
cations. The technological advancement has brought numerous rainfall datasets that can be available
to assess rainfall patterns. However, the suitability of a given dataset for a specific location remains
an open question. The objective of this study is to find which rainfall datasets perform well in India
at various spatial resolutions: pixel level, meteorological sub-divisions (MSDs) level, and India as a
whole and temporal resolutions: monthly and yearly. This study performs skill metrics analysis on
seven widely used rainfall datasets—GPM, CRU, CHIRPS, GLDAS, PERSIANN-CDR, SM2RAIN,
and TerraClimate—using the Indian Meteorological Department’s (IMD) gridded data as a reference.
The rule-based decision tree techniques are employed on the obtained skill metrics analysis values
to find the good-performing rainfall dataset at each pixel value among all the datasets used. The
MSD and pixel-wise analyses reveal that GPM performs well, while TerraClimate performed the
most poorly in almost all MSDs. The analysis suggests that of the satellite-derived, gauged, and
merged datasets, merged-type are the good-performing datasets at the MSD level, with approximately
17 MSDs demonstrating the same. The temporal analysis (in both month- and year-wise scales) also
suggests that GPM is a good-performing dataset. This study obtained the optimal dataset for each
pixel among the seven selected datasets. The GPM dataset typically ranks as a good-performing fit,
followed by CHIRPS and then PERSIANN-CDR. Despite its finer resolution, the TerraClimate dataset
ranks lowest at the pixel level. This research will aid in selecting the optimal dataset for MSDs and
pixels to obtain reliable results for hydrologic and agricultural applications, which will contribute to
sustainable development.

Keywords: skill metric analysis; rainfall; MSDs; hydrology; satellite-derived; GPM; CRU; CHIRPS;
GLDAS; PERSIANN-CDR; SM2RAIN

1. Introduction

Rainfall significantly impacts the earth’s hydrological cycle and energy balance. Precise
rainfall measurement is essential to hydrologic modelling, agriculture, drought monitoring,
water resource management, numerical weather forecasting, moisture budget calculations,
and other hydro-meteorological applications [1–8]. It also helps us enhance our insight into
rainfall’s impact in various domains.

Rain gauges are the principal source of direct rainfall data [9]. The uneven and scat-
tered distribution of rain gauges in remote areas is the main reason for inadequate spatial
coverage, reducing the overall accuracy of rainfall estimation over large regions [10]. Earth
observation technology helps to overcome these limitations, as advancements in remote
sensing and science have made it possible to retrieve rainfall estimates from satellite obser-
vations [11]. Remote sensing is a cost-effective, continuous, and uninterrupted technique
for retrieving a worldwide rainfall dataset with passive radiative sources at various spatial
and temporal resolutions, even in data-scarce regions and under adverse conditions [12–14].

The accuracy of satellite-derived rainfall datasets requires attention, as rainfall is a
significant input for many applications. In this regard, rigorous evaluation and validation
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are necessary to ensure that datasets accurately represent rainfall in various physiographic
locations [15–17]. Several studies have assessed the suitability of satellite rainfall data
in a particular region or country, application, and time duration by comparing it to rain
gauge data. For the Indian subcontinent during the Indian summer monsoon, Kumar
Singh et al. [18] examined the HE (Hydro Estimator) and IMSRA (INSAT Multispectral
Rainfall Algorithm) datasets based on the Indian National Satellite System (INSAT), Global
Precipitation Measurement (GPM) and Global Land Data Assimilation System (GLDAS)
datasets. They found that GLDAS gives the best results among all selected datasets, and
GPM gives the best results in the satellite datasets category at a monthly temporal resolution.
Kumar Singh et al. [19] evaluated INSAT HE & IMSRA, GPM, and National Center for
Medium-Range Weather Forecasting (NCMRWF), Merged Satellite Gauge (NMSG) of IMD
for the southwest monsoon season of 2016 at a weekly temporal resolution. Their study
showed that NMSG and GPM are the best datasets among all the datasets. Thakur et al. [20]
evaluated Integrated MultisatellitE Retrievals (IMERG) of GPM data in India during the
southwest monsoon between 2014 and 2017 against IMD gridded data and found that it was
good to use for weather forecasting and hazard management. Kumar et al. [21] employed
the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis
(TMPA), and IMERG data were employed against IMD data also during the monsoon,
between 1998 and 2017, and suggested that both were the best datasets. V. Pandey et al. [22]
used Climate Hazards Group Infrared Precipitation with Station (CHIRPS) and TRMM
datasets for drought monitoring in the Bundelkhand region, India and found that TRMM
yielded better results when evaluated against ground-measured IMD data. Singh et al. [23]
used INSAT-3D HE & IMSRA and GPM datasets for heavy rainfall events during the winter
monsoon over peninsular India. Their results showed that GPM better estimated heavy
rainfall compared to INSAT-3D HE and IMSRA. Kommu et al. [24] validated monthly
CHIRPS, PERSIANN-CDR and TRMM datasets against IMD gridded data between 2000
and 2012 in the Tungabhadra basin, India, using skill metrics such as the coefficient of
correlation, percent bias (PBIAS) and Nash–Sutcliffe efficiency (NSE). The study found that
TRMM was best able to mimic high rainfall patterns precisely, whereas the PERSIANN-CDR
dataset better captured low precipitation. Later, Gupta et al. [25] evaluated and validated
CHIRPS, SM2RAIN-Advanced SCATterometer (SM2RAIN-ASCAT) and TRMM/GPM
datasets with IMD gridded data between 2007 and 2016 and found that the TRMM and
CHIRPS performed well across most regions in India, while the SM2RAIN-ASCAT dataset
underperformed, especially for extreme rainfall cases. The TRMM satellite rainfall was
also compared with the IMD rainfall over Maharashtra, India, for monsoon months from
2004 to 2013 [26], and it was found that TRMM correlates well with IMD data, where the
western ghat (mountain range) impact is more significant [6].

Various studies have evaluated satellite rainfall datasets derived from TRMM [27–30]
and the Indian satellite INSAT [23,31], INSAT HE and IMSRA, GPM and GLDAS [18],
TMPA and IMERG [21] using ground-based rainfall measurements obtained across different
regions of the Indian subcontinent. The GPM-based (IMERG-V4 and Global Satellite
Mapping of Precipitation (GSMaP) GSMaP-V6), INSAT3D Multispectral Rainfall Algorithm
(IMR) and Hydro-Estimator (HE) method and IMD–National Centre for Medium-Range
Weather Forecasting (NCMRWF) merged products have been evaluated using gridded
gauge-based IMD rainfall data on daily, monthly and seasonal scales [32]. All of the
datasets show a noticeable bias in producing rainfall over orographic regions (i.e., the
Western Ghats and foothills of the Himalayas) and North-East India. However, there exists
a significant difference among the satellite measurements. Overall, IMERG-FNL (GPM)
datasets showed promising results with gauge-based IMD data compared to GSMaP and
INSAT3D estimates.

Researchers have examined the suitability of various rainfall products for other parts
of the world. Liu et al. [33] compared GSMaP, IMERG, and CHIRPS data for Bali, and the
results suggested IMERG was more suitable. Wang et al. [34] applied the CPC MORPHing
technique (CMORPH), TMPA-RT (TRMM), and Precipitation Estimation from Remotely



Sustainability 2023, 15, 5758 3 of 22

Sensed Information using Artificial Neural Networks (PERSIANN) data in Northwest
China during periods of heavy rainfall. The former two were found to be more accurate
than PERSIANN. Ayehu et al. [7] used CHIRPS and TAMSAT 1, 2 and 3 datasets for the
Upper Blue Nile Basin in Ethiopia, and their results showed a more accurate performance
from CHIRPS. The breadth of research signifies that GPM, CHIRPS, and PERSIANN are
widely used datasets across diverse topographical regions.

However, validating datasets at the sub-divisional level is also necessary in addi-
tion to at national or political levels [29]. Researchers have evaluated rainfall datasets
on a seasonal [19,20,32,35], monthly [5,6,22], ten-day [7], weekly [19] and daily time
steps [19,23,31,36,37]. The validation of available rainfall datasets at a monthly scale and
MSD level, and pixel level in India gives the scientific community more confidence in
selecting rainfall products for various applications. It helps to choose the best-performing
rainfall dataset for different applications and provides more information about the rainfall
blueprint of a region. Hence, it also provides useful guidance for agricultural stakeholders
making operational decisions.

To date, rainfall comparison research has aimed to find good-performing datasets
out of two or three selected datasets. Few studies use more than four rainfall datasets;
furthermore, these rainfall products have only been examined India as a whole. There is
also a research gap in the ranking various rainfall products based on their suitability at
each pixel level and MSD level. The primary objectives of this study are: (1) to compare the
monthly rainfall datasets such as GPM, Climatic Research Unit (CRU), CHIRPS, GLDAS,
PERSIANN-CDR, SM2RAIN, and TerraClimate with IMD gridded rainfall data, and (2) to
understand their suitability for India and to choose the most suitable rainfall dataset at
each pixel level and MSD level.

2. Study Area, Datasets Used and Methodology
2.1. Study Area

India’s MSDs were chosen as the spatial resolution of interest because India has
diverse climate zones and four seasons (winter, pre-monsoon, monsoon and post-monsoon).
Moreover, most of the agricultural area falls into the rainfed agricultural region (around
56%) and uses more water per unit of agricultural yield than other nations [38]. Hence,
studying Indian rainfall variation can contribute to sustainable water resource management.
There are currently 36 sub-divisions in India; they are largely delineated based on India’s
historical weather and climate, with certain attention given to practical concerns, the
compilation of statistics, the issuance of weather alerts to government functionaries, and the
education of the general public [39]. This study considers 34 MSDs; the current resampling
resolution of the employed data fails to capture the 1st and 36th MSD, AN and I and
Lakshadweep since they have a small area. Hence, 34 MSDs are considered in this study.
The study area’s pictorial representation is shown in Figure 1, and the acronyms of MSDs
are mentioned in Table 1.

2.2. Datasets

This study uses IMD gridded monthly rainfall data for the years 2015–2019 to validate
seven rainfall datasets: CHIRPS, CRU, GLDAS, GPM, PERSIANN-CDR, SM2RAIN, and
TerraClimate. Out of the seven datasets, three are merged datasets (CHIRPS, GPM, and
GLDAS), two are gauged (CRU and TerraClimate), and the remaining two are satellite-
derived (PERSIANN-CDR and SM2RAIN). The datasets used, their data sources, spatial
and temporal resolution, and data availability are listed in Table 2. These datasets are
chosen for this study as they are widely used in the Indian context for various hydrologic
and agricultural applications [18,19,22,24,40–42].
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Table 1. List of Indian meteorological sub divisions.

1 Andaman and Nicobar Islands
(A and N I) 13 Haryana, Chandigarh and Delhi

(HC and D) 25 Marathwada (MW)

2 Arunachal Pradesh (ARP) 14 Punjab (PN) 26 Vidarbha (VB)

3 Assam & Meghalaya
(A and M) 15 Himachal Pradesh (HP) 27 Chhattisgarh (CG)

4 Nagaland, Manipur, Mizoram
and Tripura (NMMT) 16 Jammu and Kashmir and

Ladakh (JK and L) 28
Coastal Andhra Pradesh and

Yanam
(C-AP and Y)

5 Sub-Himalayan West Bengal
and Sikkim (SHWB) 17 West Rajasthan (W R) 29 Telangana (TS)

6 Gangetic West Bengal (GWB) 18 East Rajasthan
(E R) 30 Rayalaseema (RS)

7 Odisha (OD) 19 West Madhya Pradesh (W MP) 31
Tamil Nadu and Puducherry

and Karaikal
(TN and P)

8 Jharkhand (JH) 20 East Madhya Pradesh (E MP) 32 Coastal Karnataka
(C-KA)

9 Bihar (BH) 21 Gujarat region (GJ) 33 N.I. Karnataka (NI KA)

10 East Uttar Pradesh (E UP) 22 Saurashtra and Kutch (S and K) 34 S.I. Karnataka (SI KA)

11 West Uttar Pradesh (W UP) 23 Konkan and Goa (K and G) 35 Kerala and Mahe (KL)

12 Uttarakhand (UK) 24 Madhya Maharashtra (MH) 36 Lakshadweep (L)
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Table 2. Datasets and Sources.

Parameter Dataset and Source Spatial
Resolution

Temporal
Resolution

Data
Availability

Rainfall

IMD Gridded Data
https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_

Data_Download.html (accessed on 15 September 2020)
0.25◦ Daily 1901–Present

CHIRPS (Merged gauge + satellite)
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_

monthly/tifs/ (accessed on 15 September 2020)
0.05◦ Monthly 1981–Present

CRU (Gauged data)
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/cruts.21

03051243.v4.05/ (accessed on 19 June 2021)
0.5◦ Monthly 1901–Present

GLDAS 2.1 Rain Precipitation Rate
(Combination of Model and Gauged data)

https://giovanni.gsfc.nasa.gov/ (accessed on 15
September 2020)

0.25◦ Monthly 2000–Present

GPM (Merged satellite-gauge precipitation estimate - Final
Run) https://giovanni.gsfc.nasa.gov/ (accessed on 15

September 2020)
0.1◦ Monthly 2000–Present

PERSIANN-CDR (Satellite)
http://chrsdata.eng.uci.edu/ (accessed on 19 June 2021) 0.25◦ Monthly 1983–Present

SM2RAIN (Satellite)
https://zenodo.org/record/4570192#.YORPVOgzY2x

(accessed on 19 June 2021)
0.25◦ Monthly 2007–Present

TerraClimate (Gauged data)
https://www.climatologylab.org/terraclimate.html (accessed

on 19 June 2021)
0.05◦ Monthly 1958–Present

(a) IMD Gridded rainfall datasets

The IMD rainfall gridded dataset is prepared from daily rainfall data and archived
at the National Data Centre, IMD, Pune, using the Shepard method [43], which uses
rainfall records of 6955 rain gauge stations [44]. These datasets are prepared with a spatial
resolution of 25 km and a one-day temporal resolution.

(b) CHIRPS

The CHIRPS dataset has a 0.05◦ resolution and covers 1981 to the present. This dataset
is available in daily, pentad, dekad, monthly, 2-monthly, 3-monthly, and annual time
scales [45].

(c) CRU

The CRU TS (Climatic Research Unit gridded Time Series) is an extensively used
climate dataset with a 0.5◦ * 0.5◦ on a monthly temporal resolution. This study uses the
CRU TS v4.05 dataset, available from 1901 to 2021. It is derived by interpolating monthly
climate anomalies from weather station observations [41].

(d) GLDAS

The Global Land Data Assimilation System (GLDAS) aims to use advanced surface
modelling and data assimilation techniques to build optimum fields of land surface states
and fluxes by ingesting satellite and ground-based observational data sources [46]. This
analysis uses the GLDAS model-derived rain precipitation rate monthly averaged product
with 0.25◦ spatial resolution.

https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_monthly/tifs/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_monthly/tifs/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/cruts.2103051243.v4.05/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/cruts.2103051243.v4.05/
https://giovanni.gsfc.nasa.gov/
https://giovanni.gsfc.nasa.gov/
http://chrsdata.eng.uci.edu/
https://zenodo.org/record/4570192#.YORPVOgzY2x
https://www.climatologylab.org/terraclimate.html
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(e) GPM

The GPM mission core satellite was launched in 2014 to provide global quantitative
precipitation estimates (QPE). With the help of an international constellation of satellites,
the Integrated Multi-satellite Retrievals for GPM (IMERG) produces precipitation estimates
at 0.1◦ resolution in the range 60◦N-S every half hour. The IMERG precipitation dataset is
calibrated to the GPM Microwave Imager/Dual-frequency Precipitation Radar combined
product to provide the best possible estimates of precipitation [47]. The GPM IMERG final
run product was employed in this study.

(f) PERSIANN-CDR

The PERSIANN-CDR dataset was developed by the Center for Hydrometeorology
and Remote Sensing (CHRS). The PERSIANN-CDR dataset is created from the PERSIANN
algorithm using GridSat-B1 infrared data and corrected using the Global Precipitation
Climatology Project (GPCP) monthly product at 0.25◦ spatial resolution from 1983 to the
present [48,49].

(g) SM2RAIN

SM2RAIN-ASCAT rainfall datasets were obtained from the ASCAT satellite soil mois-
ture data through the SM2RAIN algorithm [50,51] at 0.25◦ resolution from 2007 to the
present at a monthly temporal resolution [51].

(h) TerraClimate

TerraClimate combines WorldClim datasets with time-varying and coarser spatial
resolution datasets (CRU Ts4.0 and JRA55) for generating various datasets. TerraClimate
rainfall data are available from 1958 to 2021 and used in this study [52].

2.3. Methodology

IMD gridded rainfall data are used as reference data to validate selected rainfall
datasets for MSDs in India between 2015 and 2019. The source data of IMD is available on a
daily scale; for this research purpose, it needs to be converted to a monthly scale. The daily
gridded data of IMD is converted to monthly data through summation; the number of
days of the month and leap year conditions are considered for this purpose. Python code is
written for performing this task. The selected datasets come in various spatial resolutions;
therefore, they are resampled into 0.25◦ resolution using the nearest neighbour technique
to match the reference dataset. The discrepancy between selected datasets and reference
dataset was measured using skill metrics such as the correlation coefficient (γ), the root
mean square error (RMSE), the Nash–Sutcliffe efficiency (NSE), the percent bias (PBIAS),
and the ratio of the standard deviation of the observation to the root mean square error
(RSR). Skill metrics analysis is performed to assess the suitability of seven widely used
rainfall datasets for each MSD, pixel, dataset and dataset type wise. Rule-based decision
tree techniques are employed on obtained results to find the good-performing datasets
among all the selected datasets at each pixel level and MSD level. The methodology
followed for this research work is shown in Figure 2, and skill metrics used for rainfall
dataset comparison, their equations range, and sources are mentioned in Table 3.

Skill metrics need to be classified into good-performing, moderate-performing, and
low-performing fits to evaluate dataset-wise suitability. Table 4 summarises the five skill
metrics used and their classification criteria. The basis for the range selection was taken
from [53]. The skill metrics values for individual MSDs for selected datasets are repre-
sented in Figure 3, and Figure 4 summarises the classification of MSDs. The MSDs are
categorised as good-, moderate-, and low-performing based on the five skill metrics ranges,
as mentioned in Table 3. The datasets are classified as good-performing if a minimum
of three skill metrics are in a good-performance range, and if more than two parame-
ters are low, it is regarded as low-performing. The intermediate state is considered a
moderate-performing fit.



Sustainability 2023, 15, 5758 7 of 22

Sustainability 2023, 15, x FOR PEER REVIEW 7 of 23 
 

categorised as good-, moderate-, and low-performing based on the five skill metrics 
ranges, as mentioned in Table 3. The datasets are classified as good-performing if a mini-
mum of three skill metrics are in a good-performance range, and if more than two param-
eters are low, it is regarded as low-performing. The intermediate state is considered a 
moderate-performing fit. 

 
Figure 2. Flowchart of methodology. 

Table 3. Skill metrics used for rainfall dataset comparison. 𝑦௜ and 𝑦́௜ represent the actual and pre-
dicted values, respectively, and 𝑦 and 𝑦ప́ are averages of the actual and predicted values, respec-
tively. 

S.No Skill Metrics Equation Range Source 

1 Pearson Correlation Coeffi-
cient (𝜸) 

𝛾 =  ∑ (𝑦௜ − 𝑦) × (𝑦ప̀ − 𝑦ప́ሖ )௡௜ୀଵට∑ (𝑦௜ − 𝑦)ଶ × (𝑦ప́ − 𝑦ప́ሖ )ଶ௡௜ୀଵ  
−1 and 1. where 0 is no correlation, 1 is a 
total positive correlation, and −1 is a to-
tal negative correlation 

(Pearson 1895) 
[54]  

2 
Root Mean Square Error 
(RMSE) 𝑅𝑀𝑆𝐸 = ඨ1𝑛 ෍ (𝑦௜ − 𝑦́௜)ଶ௡௜ୀଵ  

A smaller value indicates good perfor-
mance. 

(Moriasi et al. 
1983) [53] 

3 Nash–Sutcliffe  
Efficiencies (NSE) 𝑁𝑆𝐸 = 1 − ∑ (𝑦௜ − 𝑦́௜)ଶ௡௜ୀଵ∑ (𝑦௜ − 𝑦)ଶ௡௜ୀଵ  

-Infinity to 1.  
If this parameter is closer to 1, the model 
is further accurate. 

(Nash and Sut-
cliffe 1970) [55] 

Figure 2. Flowchart of methodology.

Table 3. Skill metrics used for rainfall dataset comparison. yi and ýi represent the actual and predicted
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is further accurate. 

(Nash and Sut-
cliffe 1970) [55] 

4 Percentage Bias 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = ∑ (𝑦𝑦𝑖𝑖−𝑦́𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=1
∑ 𝑦́𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1

 * 100 A smaller percentage indicates good 
performance. 

(Gupta et al. 
1999) [56] 

−1 and 1. Where 0 is no
correlation, 1 is a total
positive correlation, and
−1 is a total negative
correlation

(Pearson 1895) [54]

2 Root Mean Square
Error (RMSE) RMSE =

√
1
n

n
∑

i=1
(yi − ýi)

2
A smaller value indicates
good performance.

(Moriasi et al. 1983)
[53]

3 Nash–Sutcliffe
Efficiencies (NSE) NSE = 1 − ∑n

i=1(yi−ýi)
2

∑n
i=1(yi−y)2

-Infinity to 1.
If this parameter is closer
to 1, the model is further
accurate.

(Nash and Sutcliffe
1970) [55]

4 Percentage Bias PBIAS = ∑n
i=1(yi−ýi)
∑n

i=1 ýi
* 100

A smaller percentage
indicates good
performance.

(Gupta et al. 1999) [56]

5
RMSE-observations
standard deviation
ratio (RSR)

RSR =

√
∑n

i=1(yi−ýi)
2√

∑n
i=1

(
´yi−ýi

)2

0 to ∞.
≤0.7 indicating a
good-performing range.

(Chu and
Shirmo-hammadi
2004) [57]
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Table 4. Skill metrics and their ranges.

Skill Metrics Good-Performing
Range

Moderate-
Performing

Range

Low-Performing
Range

γ >0.8 0.4–0.80 <0.4

NSE >0.75 0.5–0.75 <0.50

RMSE <25 25–75 >75

PBIAS −10 to +10 10 to 25 or −10 to −25 >25 or <−25

RSR 0–0.5 0.5–0.7 >0.7
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Figure 3. (a–n) Skill metrics representation of each dataset with IMD gridded data in 34 MSDs.
Graphs (a,c,e,g,i,k,m) show the γ, NSE, and RSR variation, and graphs (b,d,f,h,j,l,n) shows the RMSE
and PBIAS in chosen datasets over 34 MSDs.
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MSDs; their names are listed in Table 1).

3. Results
3.1. Dataset-Wise Suitability Analysis

The dataset suitability for each MSD is assessed and illustrated in Figures 3 and 4. The
results of this study are elaborated upon in the following sections. The datasets are classified
into three categories, i.e., good-performing, moderate-performing, and low-performing
and are defined in the Section 2.3.

3.1.1. CHIRPS

Out of 34 MSDs, this dataset performed well in 11, moderately in 6, and low in
17 MSDs. The results reveal that this product is suitable for half of MSDs (18), concentrated
in the central part of India, and not for the northern, southern, and northeastern regions
(except the NMMT) of India. This can be attributed to uncertainty in the dataset that
occurred because of merging CHIRP and station data using inverse distance weighting, as
the scattered distribution of rain gauges might be the reason for the uncertainty [45].

3.1.2. CRU

Overall, CRU performed well in 7 MSDs, moderately in 6 MSDs, and low in 21 MSDs.
Similar to CHIRPS, skill metrics analysis showed that this dataset is not suitable for the
northern, southern (except RS, CKA, and CAPY), and northeastern parts of India, as for
(except NMMT) of India, and suitable for the central regions of India. The low performance
of this dataset can be attributed to the reduced coverage of rain gauges in the northern and
northeastern states and uncertainty in the dataset [41].
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3.1.3. GLDAS

Skill metric analysis showed that GLDAS is suitable for 8 MSDs in India, moderately
suitable for 8 MSDs, and low-performing for 18 MSDs. The results suggest that this dataset
is low performing for the northern and southern parts of India and good-performing in the
central parts of India. This is the only dataset that performs moderately in desert regions,
whereas all other datasets are low performing in those regions.

3.1.4. GPM

This is dataset is overall the most suitable across MSDs, as it performed well in
18 MSDs, moderately in 5 MSDs, and low in only 11. However, it is not suitable for
northern India and is best performing in the central parts of India. This dataset might not
be viable to use in hilly regions. These results are in agreement with those of Thakur et al.,
2020, which found that the GPM dataset performed poorly in hilly regions [20].

3.1.5. PERSIANN-CDR

The analysis shows that this dataset performed well in 10 MSDs, had moderate
performance in 5 MSDs, and was low-performing in 19 MSDs. This suggests that this
dataset performs low for southern and northern India but performs moderately for the
northeast. Except for JH, it is suitable for all central parts of India. Performance in MSDs
across the eastern coast, aside from TNP, is well.

3.1.6. SM2RAIN

Overall, out of the 34 MSDs, SM2RAIN performed well in 7, moderately in 7, and
low in 20 MSDs. This dataset is not suitable for the north, south, and northeastern areas
but moderately suitable for regions along the west coast. It is only suitable in a few
centrally located MSDs (CG, MW, ER, WMP, EMP, OD, and BH). This dataset is suitable
for drought-prone MSD, MW, indicating that it can be useful for measuring small levels
of rainfall.

3.1.7. TerraClimate

The TerraClimate dataset performed the most poorly among the datasets; it performs
poorly in 26 MSDs. This dataset only performed well in five MSDs and moderately in
three MSDs. Regionally, the TerraClimate dataset performed poorly in northern regions,
northeastern states, and across the south. It also performs poorly in central India, with the
exception of CG, ER, GWB, and BH.

3.2. Rainfall Dataset Type Suitability for MSDs

The chosen datasets were divided based on satellite-derived, gauged, and merged
types to determine which type provided the best compatibility (Figure 5). This analysis
demonstrates that none of the dataset types are suitable for 16 MSDs, and only the merged
type is suitable for three MSDs. The satellite-derived-type datasets are found to be suit-
able only in one MSD (GJ), while both merged and gauged-type datasets are suitable for
two MSDs (K and G and NMMT). All types of datasets are suitable for nine MSDs (ER,
WMP, EMP, VB, CG, BH, SK, OD, and GWB). Overall, the merged type is the most suitable
dataset type (17 MSDs).
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3.3. Pixel Wise Analysis

Pixel-wise skill metrics analysis is performed over MSDs in India, using three well-
known continuous skill metrics, γ, RSR, and the NSE; Figures 6–8 show results for the seven
datasets. Based on γ and NSE, none of the datasets is suitable for JK and L (Figures 6 and 7).
In addition, NSE results suggest that none of the datasets are suitable for the Western
Ghats and parts of northeastern states (Figure 7). Based on RSR values for the west coast
and northeast, none of the datasets is suitable (Figure 8). Considering RMSE, no dataset
performed well in the western coast or northeast (Figure 9). Based on PBIAS, the datasets
only perform well in central India (Figure 10).
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India as a Whole

A pixel-wise comparison of India as a whole is performed to understand the suitability
of selected datasets for the entire country using five skill metrics. This study reveals
that among all datasets, GPM is the best-performing, with average values of 0.89, 064,
57.98 mm/month, 0.51 and −8.36 for γ, NSE, RMSE, RSR, and PBIAS, respectively. It
shows that GLDAS is a low-performing dataset, as skill metrics γ, NSE, RMSE, RSR,
and PBIAS average values over India were depicted as 0.83, 0.36, 75.99 mm/month, 0.67,
and −12.42, respectively (Table 5). The best suited to most poorly suited datasets are:
GPM > CHIRPS > PERSIANN-CDR > TerraClimate > CRU > SM2RAIN > GLDAS.

Table 5. Summary of the dataset’s suitability for overall India.

Dataset γ NSE RMSE RSR PBIAS Suitability

CHIRPS 0.84 0.52 69.44 0.62 −14.48 Moderate-Performing

CRU 0.84 0.48 73.38 0.64 −10.45 Moderate-Performing

GLDAS 0.83 0.36 75.99 0.67 −12.42 Low-Performing

GPM 0.89 0.64 57.98 0.51 −8.36 Good-Performing

PERSIANN-CDR 0.86 0.5 71.54 0.62 −17.12 Moderate-Performing

SM2RAIN 0.82 0.46 74.42 0.65 −8.02 Moderate-Performing

Terraclimate 0.84 0.51 74.04 0.63 −7.33 Moderate-Performing

3.4. Temporal Analysis of Rainfall Datasets for India

The temporal analysis of rainfall datasets is performed from 2015 to 2019 for India.
For this analysis, the five skill metrics values are used to find the suitability of the dataset
both monthly and yearly (Figures 11 and 12). The rainy months, such as SE monsoon
rainfall months (June to September) and NE monsoon months (October to December),
are considered for monthly temporal analysis. The five years monthly average values
are considered for identifying the dataset’s suitability purpose. It is found that for July,
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August, September, October and December, the GPM is a good-performing dataset as
their skill metrics values much better than other selected datasets. GPM outperformed
the other datasets except with PBIAS values in all other skill metrics. Whereas for June,
CHIRPS emerges as the best dataset, and for December, it is CRU. The reason behind
CHIRPS emerging as a well-performing dataset in June and CRU in December might be
due to considering of whole India instead of considering only SE monsoon or NE monsoon
occurred regions alone. The temporal analysis based on year-wise analysis was performed
by considering the yearly rainfall of selected datasets compared with the IMD gridded
dataset for the years 2015 to 2019 for the whole India (Figure 12). The results revealed that
GPM is the best-performing dataset for all the years.
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3.5. Good-Performing Datasets at the Pixel Level for India

Rule-based decision tree techniques are employed on three continuous skill metrics
results. The rule-based decision tree technique is a data mining technique in which the class
decisions are taken based on multiple “if... then . . . else” rules and conditions. In the current
study, the skill metrics values are taken, and a set of “if... then . . . else” conditions are
applied to obtain the desired classifications such as good-performing, moderate-performing,
and low-performing. Based on the range classification given in Table 4, the rules are
designed and employed to find India’s good-performing dataset at each pixel level. Datasets
vary in their performance in the 4641 pixels analysed. More specifically, CHIRPS, CRU,
GLDAS, GPM, PERSIANN-CDR, SM2RAIN and TerraClimate fit well in 1989 pixels, 1718
pixels, 1986 pixels, 3105 pixels, 2166 pixels, 1649 pixels, and 1579 pixels respectively
(Figure 13). The order of good-performing datasets is as follows: GPM > CHIRPS >
PERSIANN-CDR > TERRACLIMATE > CRU > SM2RAIN > GLDAS.
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We find that the datasets analysed here are only suitable in 3428 pixels out of 4641 pix-
els. This indicates that 1213 pixels do not have a suitable dataset. Out of 3428 pixels, each
dataset was ranked at the pixel level. This shows which dataset performs the best at each
pixel. Results show that CHIRPS, CRU, GLDAS, GPM, PERSIANN-CDR, SM2RAIN, and
TerraClimate are suitable in 269, 150, 196, 2185, 254, 208, and 166 pixels, respectively. It was
found that GPM is the best-performing dataset for most of the pixels, followed by CHIRPS
and then PERSIANN-CDR. The CRU dataset’s 150 pixels imply that it is unsuitable for
most pixels and is inferior to other datasets (Figure 14). The order of the good-performing
datasets is as follows: GPM > PERSIANN-CDR > CHIRPS > GLDAS > CRU > SM2RAIN >
TERRACLIMATE.
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4. Discussion

The present work is necessary for hydrologic and agricultural applications because an
analysis’ results will vary and can be significantly biased based on which datasets are used.
This analysis provides evidence to help choose the most appropriate dataset for a specific
region. These findings are in contrast to similar work (Kumar Singh et al., 2018), which
found that GLDAS is a better-performing dataset for India than GPM. However, our results
show that GPM performed better than the other datasets evaluated for most parts of India.
Therefore, employing a modified methodology with advanced data mining techniques,
more number of skill metrics (5), and the inclusion of a longer time period might be the
reason for our findings differing from those of Kumar Singh et al., 2018. Pixel-wise analysis
was also undertaken, which reveals that no dataset is suitable for more than 50% of pixels.
The existing literature suggests that GPM is best for India as a whole, but when it comes to
the pixel level, it is outperformed by other datasets in a few pixel locations. Even though
the aim is to find the good-performing datasets in India, out of the seven most widely
used datasets, not even one dataset fits those particular 1213 pixels based on skill metrics
analysis. It has been found that leeward (in the Western Ghats) and mountainous regions
(north and northeastern regions) are where blank pixels are predominant. The reason for
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blank pixels is due to the limitations and uncertainties of the datasets in those pixels. This
analysis identified the good-performing datasets in 3428 pixel locations out of 4641 pixel
locations in India.

5. Summary and Conclusions

The present work investigates CHIRPS, CRU, GLDAS, GPM, PERSIANN-CDR,
SM2RAIN, and TerraClimate’s suitability for rainfall measurement in India. Skill met-
rics (γ, RMSE, NSE, RSR, and PBIAS) are used to understand suitability and choose the
most appropriate rainfall dataset at each pixel level. The study analysed rainfall datasets,
comparing and validating results in terms of spatially (dataset, pixel, dataset type, and
overall, national level suitability) and temporally (month-wise and year-wise).

The dataset-wise analysis shows that GPM performs better in 18 Indian MSDs than
other datasets. Of all the datasets, the TerraClimate dataset is the lowest-performing.
Most of the datasets (i.e., CRU, GLDAS, SM2RAIN, and TerraClimate) failed to give good
performance results in high and low rainfall areas as well as hilly regions. The most suitable
dataset type is merged, which performs well for 17 MSDs. Surprisingly, the satellite-derived
type dataset is the most suitable for GJ. The temporal analysis shows that GPM is best
among all datasets when considering both month-wise and year-wise.

A pixel-wise comparison across India reveals that, among all datasets, GPM performs
the best while GLDAS performs the worst. Good-fitting pixels among the selected datasets
were identified in this study. This study found that in 3105 pixels out of 4641 pixels, GPM
correlated well with the IMD dataset, whereas TerraClimate correlated well only 1579 pixels.
Furthermore, rule-based decision tree techniques are applied to skill metrics in order to
rank the datasets. Results show that GPM is a good-performing dataset for most of the
pixels, followed by CHIRPS, and then PERSIANN-CDR. In contrast, CRU is ranked as
superior to other datasets in only 150 instances. Pixelwise analysis reveals that no dataset
is suitable in over 50% of pixels. It also shows that very few datasets are suitable in certain
locations. Future work can find the good-performing datasets in those blank pixels by
considering a longer temporal aspect at the daily timestep.

Our results suggest that it is necessary to analyse a dataset’s suitability at various
spatial scales, such as the national level, MSD level, and pixel level. This systematic
analysis was needed to choose suitable rainfall datasets. These findings contribute to efforts
to improve hydrologic modelling, agricultural modelling and decision-making, drought
monitoring, water resource management, numerical weather forecasting, moisture budget
calculations, effective rainfall measurements, and water footprint mapping. This monthly
accumulated rainfall analysis provides more information about the rainfall blueprint of
the region of interest and should thus be helpful for agricultural stakeholders in decision-
making. Finally, the findings of this study will be beneficial to satellite data developers in
improving an algorithm that is suitable for diverse topographical regions of India.

Author Contributions: Conceptualization, V.S. and S.H.R.; Methodology, V.S. and S.H.R.; Valida-
tion V.S.; Formal Analysis, V.S.; Investigation, V.S.; Resources, V.S. and S.H.R.; Data Curation, V.S.;
Writing—Original Draft Preparation, V.S.; Writing—Review and Editing, V.S. and S.H.R.; Visualiza-
tion, V.S.; Supervision, S.H.R.; Project Administration, S.H.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are thankful to all the dataset providers for providing those datasets
freely. Constructive suggestions and comments by three anonymous reviewers which helped in
improving the quality of the manuscript are thankfully acknowledged. The first author thanks Rosa
Cuppari for her help with language editing.



Sustainability 2023, 15, 5758 20 of 22

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huang, J.; van den Dool, H.M. Monthly Precipitation-Temperature Relations and Temperature Prediction over the United States.

J. Clim. 1993, 6, 1111–1132. [CrossRef]
2. Hou, A.Y.; Skofronick-Jackson, G.; Kummerow, C.D.; Shepherd, J.M. Global Precipitation Measurement. In Precipitation: Advances

in Measurement, Estimation and Prediction; Springer: Berlin/Heidelberg, Germany, 2008; pp. 131–169. ISBN 9783540776543.
3. Kucera, P.A.; Ebert, E.E.; Turk, F.J.; Levizzani, V.; Kirschbaum, D.; Tapiador, F.J.; Loew, A.; Borsche, M. Precipitation from Space:

Advancing Earth System Science. Bull. Am. Meteorol. Soc. 2013, 94, 365–375. [CrossRef]
4. Stillman, S.; Ninneman, J.; Zeng, X.; Franz, T.; Scott, R.L.; Shuttleworth, W.J.; Cummins, K. Summer Soil Moisture Spatiotemporal

Variability in Southeastern Arizona. J. Hydrometeorol. 2014, 15, 1473–1485. [CrossRef]
5. Toté, C.; Patricio, D.; Boogaard, H.; van der Wijngaart, R.; Tarnavsky, E.; Funk, C. Evaluation of Satellite Rainfall Estimates for

Drought and Flood Monitoring in Mozambique. Remote Sens. 2015, 7, 1758–1776. [CrossRef]
6. Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou, A. Ground Validation of GPM IMERG and Trmm 3B42V7 Rainfall Products over

Southern Tibetan Plateau Based on a High-Density Rain Gauge Network. J. Geophys. Res. 2017, 122, 910–924. [CrossRef]
7. Ayehu, G.T.; Tadesse, T.; Gessesse, B.; Dinku, T. Validation of New Satellite Rainfall Products over the Upper Blue Nile Basin,

Ethiopia. Atmos. Meas. Tech. 2018, 11, 1921–1936. [CrossRef]
8. Charan, V.S.; Naga Jyothi, B.; Saha, R.; Wankhede, T.; Das, I.C.; Venkatesh, J. An Integrated Geohydrology and Geomorphology

Based Subsurface Solid Modelling for Site Suitability of Artificial Groundwater Recharge: Bhalki Micro-Watershed, Karnataka. J.
Geol. Soc. India 2020, 96, 458–466. [CrossRef]

9. Salio, P.; Hobouchian, M.P.; Skabar, Y.G.; Vila, D. Evaluation of High-Resolution Satellite Precipitation Estimates over Southern
South America Using a Dense Rain Gauge Network. Atmos. Res. 2015, 163, 146–161. [CrossRef]

10. Feidas, H.; Kokolatos, G.; Negri, A.; Manyin, M.; Chrysoulakis, N.; Kamarianakis, Y. Validation of an Infrared-Based Satellite
Algorithm to Estimate Accumulated Rainfall over the Mediterranean Basin. Theor. Appl. Climatol. 2009, 95, 91–109. [CrossRef]

11. Barrett, E.C.; Martin, D.W. The Use of Satellite Data in Rainfall Monitoring; Academic Press: London, UK, 1981.
12. Kidd, C. Satellite Rainfall Climatology: A Review. Int. J. Climatol. 2001, 21, 1041–1066. [CrossRef]
13. Rahman, S.H.; Sengupta, D.; Ravichandran, M. Variability of Indian Summer Monsoon Rainfall in Daily Data from Gauge and

Satellite. J. Geophys. Res. Atmos. 2009, 114. [CrossRef]
14. Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global

Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [CrossRef]
15. Sorooshian, S.; AghaKouchak, A.; Arkin, P.; Eylander, J.; Foufoula-Georgiou, E.; Harmon, R.; Hendrickx, J.M.H.; Imam, B.;

Kuligowski, R.; Skahill, B.; et al. Advanced Concepts on Remote Sensing of Precipitation at Multiple Scales. Bull. Am. Meteorol.
Soc. 2011, 92, 1353–1357. [CrossRef]

16. Collins, M.; AchutaRao, K.; Ashok, K.; Bhandari, S.; Mitra, A.K.; Prakash, S.; Srivastava, R.; Turner, A. Observational Challenges
in Evaluating Climate Models. Nat. Clim. Chang. 2013, 3, 940–941. [CrossRef]

17. Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and
Numerical Models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [CrossRef]

18. Kumar Singh, A.; Singh, V.; Singh, K.K.; Tripathi, J.N.; Kumar, A.; Sateesh, M.; Peshin, S.K. Validation of INSAT-3D Derived
Rainfall Estimates (HE & IMSRA), GPM (IMERG) and GLDAS 2.1 Model Rainfall Product with IMD Gridded Rainfall & NMSG
Data over IMD’s Meteorological Sub-Divisions during Monsoon. MAUSAM 2018, 69, 172–198.

19. Kumar Singh, A.; Tripathi, J.N.; Singh, K.K.; Singh, V.; Sateesh, M. Comparison of Different Satellite-Derived Rainfall Products
with IMD Gridded Data over Indian Meteorological Subdivisions during Indian Summer Monsoon (ISM) 2016 at Weekly Temporal
Resolution. J. Hydrol. 2019, 575, 1371–1379. [CrossRef]

20. Thakur, M.K.; Kumar, T.V.L.; Narayanan, M.S.; Kundeti, K.R.; Barbosa, H. Analytical Study of the Performance of the IMERG
over the Indian Landmass. Meteorol. Appl. 2020, 27, e19089. [CrossRef]

21. Kumar, T.V.L.; Barbosa, H.A.; Thakur, M.K.; Paredes-Trejo, F. Validation of Satellite (TMPA and IMERG) Rainfall Products with
the IMD Gridded Data Sets over Monsoon Core Region of India. In Satellite Information Classification and Interpretation; Rustamov,
R.B., Ed.; IntechOpen: Rijeka, Croatia, 2019.

22. Pandey, V.; Srivastava, P.K. Evaluation of Satellite Precipitation Data for Drought Monitoring in Bundelkhand Region, India. In
Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28
July–2 August 2019.

23. Singh, A.K.; Singh, V.; Singh, K.K.; Tripathi, J.N.; Kumar, A.; Soni, A.K.; Sateesh, M.; Khadke, C. A Case Study: Heavy Rainfall
Event Comparison Between Daily Satellite Rainfall Estimation Products with IMD Gridded Rainfall Over Peninsular India During
2015 Winter Monsoon. J. Indian Soc. Remote Sens. 2018, 46, 927–935. [CrossRef]

24. Kommu, R.; Kundapura, S.; Kolluru, V. A Statistical Approach for Comparison of Secondary Precipitation Products; Springer: Singapore,
2021; Volume 99, ISBN 9789811568275.

25. Gupta, V.; Jain, M.K.; Singh, P.K.; Singh, V. An Assessment of Global Satellite-Based Precipitation Datasets in Capturing
Precipitation Extremes: A Comparison with Observed Precipitation Dataset in India. Int. J. Climatol. 2020, 40, 3667–3688.
[CrossRef]

http://doi.org/10.1175/1520-0442(1993)006&lt;1111:MPTRAT&gt;2.0.CO;2
http://doi.org/10.1175/BAMS-D-11-00171.1
http://doi.org/10.1175/JHM-D-13-0173.1
http://doi.org/10.3390/rs70201758
http://doi.org/10.1002/2016JD025418
http://doi.org/10.5194/amt-11-1921-2018
http://doi.org/10.1007/s12594-020-1583-0
http://doi.org/10.1016/j.atmosres.2014.11.017
http://doi.org/10.1007/s00704-007-0360-y
http://doi.org/10.1002/joc.635
http://doi.org/10.1029/2008JD011694
http://doi.org/10.1175/BAMS-D-13-00164.1
http://doi.org/10.1175/2011BAMS3158.1
http://doi.org/10.1038/nclimate2012
http://doi.org/10.1175/BAMS-88-1-47
http://doi.org/10.1016/j.jhydrol.2019.02.016
http://doi.org/10.1002/met.1908
http://doi.org/10.1007/s12524-018-0751-9
http://doi.org/10.1002/joc.6419


Sustainability 2023, 15, 5758 21 of 22

26. Singh, T.P.; Kumbhar, V.; Das, S.; Deshpande, M.M.; Dhoka, K. Comparison of TRMM Multi-Satellite Precipitation Analysis
(TMPA) Estimation with Ground-Based Precipitation Data over Maharashtra, India. Environ. Dev. Sustain. 2020, 22, 5539–5552.
[CrossRef]

27. Nair, S.; Srinivasan, G.; Nemani, R. Evaluation of Multi-Satellite TRMM Derived Rainfall Estimates over a Western State of India.
J. Meteorol. Soc. Jpn. 2009, 87, 927–939. [CrossRef]

28. Uma, R.; Kumar, T.V.L.; Narayanan, M.S.; Rajeevan, M.; Bhate, J.; Kumar, K.N. Large Scale Features and Assessment of Spatial
Scale Correspondence between TMPA and IMD Rainfall Datasets over Indian Landmass. J. Earth Syst. Sci. 2013, 122, 573–588.
[CrossRef]

29. Prakash, S.; Mitra, A.K.; Momin, I.M.; Rajagopal, E.N.; Basu, S.; Collins, M.; Turner, A.G.; Achuta Rao, K.; Ashok, K. Seasonal
Intercomparison of Observational Rainfall Datasets over India during the Southwest Monsoon Season. Int. J. Climatol. 2015, 35,
2326–2338. [CrossRef]

30. Prakash, S.; Mitra, A.K.; Rajagopal, E.N.; Pai, D.S. Assessment of TRMM-Based TMPA-3B42 and GSMaP Precipitation Products
over India for the Peak Southwest Monsoon Season. Int. J. Climatol. 2016, 36, 1614–1631. [CrossRef]

31. Mitra, A.K.; Kaushik, N.; Kumar Singh, A.; Parihar, S.; Bhan, S.C. Evaluation of INSAT-3D Satellite Derived Precipitation
Estimates for Heavy Rainfall Events and Its Validation with Gridded GPM (IMERG) Rainfall Dataset over the Indian Region.
Remote Sens. Appl. Soc. Environ. 2018, 9, 91–99. [CrossRef]

32. Reddy, M.V.; Mitra, A.K.; Momin, I.M.; Mitra, A.K.; Pai, D.S. Evaluation and Inter-Comparison of High-Resolution Multi-Satellite
Rainfall Products over India for the Southwest Monsoon Period. Int. J. Remote Sens. 2019, 40, 4577–4603. [CrossRef]

33. Liu, C.Y.; Aryastana, P.; Liu, G.R.; Huang, W.R. Assessment of Satellite Precipitation Product Estimates over Bali Island. Atmos.
Res. 2020, 244, 105032. [CrossRef]

34. Wang, J.; Wang, H.J.; Hong, Y. Comparison of Satellite-Estimated and Model-Forecasted Rainfall Data during a Deadly Debris-
Flow Event in Zhouqu, Northwest China. Atmos. Ocean. Sci. Lett. 2016, 9, 139–145. [CrossRef]

35. Khan, A.W.; Mahesh, C.; Bushair, M.T.; Gairola, R.M. Estimation and Evaluation of Rainfall from INSAT-3D Improved IMSRA
Algorithm during 2018 Summer Monsoon Season. J. Earth Syst. Sci. 2021, 130, 37. [CrossRef]

36. Durai, V.R.; Bhowmik, S.K.R.O.Y.; Mukhopadhyay, B. Evaluation of Indian Summer Monsoon Rainfall Features Using TRMM
and KALPANA-1 Satellite Derived Precipitation and Rain Gauge Observation. MAUSAM 2010, 61, 317–336. [CrossRef]

37. Dwivedi, S.; Uma, R.; Lakshmi Kumar, T.V.; Narayanan, M.S.; Pokhrel, S.; Kripalani, R.H. New Spatial and Temporal Indices of
Indian Summer Monsoon Rainfall. Theor. Appl. Climatol. 2019, 135, 979–990. [CrossRef]

38. Suresh, A.; Raju, S.S.; Chauhan, S.; Chaudhary, K.R. Rainfed Agriculture in India: An Analysis of Performance and Implications.
Indian J. Agric. Sci. 2014, 84, 1415–1422.

39. Kelkar, R.R.; Sreejith, O.P. Meteorological Sub-Divisions of India and Their Geopolitical Evolution from 1875 to 2020. MAUSAM
2020, 71, 571–584.

40. Prakash, S. Performance Assessment of CHIRPS, MSWEP, SM2RAIN-CCI, and TMPA Precipitation Products across India. J.
Hydrol. 2019, 571, 50–59. [CrossRef]

41. Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS Monthly High-Resolution Gridded Multivariate Climate
Dataset. Sci. Data 2020, 7, 109. [CrossRef] [PubMed]

42. Amorim, J.D.S.; Viola, M.R.; Junqueira, R.; de Oliveira, V.A.; de Mello, C.R. Evaluation of Satellite Precipitation Products for
Hydrological Modeling in the Brazilian Cerrado Biome. Water 2020, 12, 2571. [CrossRef]

43. Shepard, D. A Two-Dimensional Interpolation Function for Irregularly-Spaced Data. In Proceedings of the 1968 23rd ACM
National Conference; Association for Computing Machinery: New York, NY, USA, 1968; pp. 517–524.

44. Pai, D.S.; Sridhar, L.; Rajeevan, M.; Sreejith, O.P.; Satbhai, N.S.; Mukhopadyay, B. Development of a New High Spatial Resolution
(0.25◦ × 0.25◦) Long Period (1901–2010) Daily Gridded Rainfall Data Set over India and Its Comparison with Existing Data Sets
over the Region. MAUSAM 2014, 65, 1–18. [CrossRef]

45. Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The
Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015,
2, 150066. [CrossRef]

46. Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich,
M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [CrossRef]

47. Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.-H. NASA Global Precipitation Measurement (GPM)
Integrated Multi-Satellite Retrievals for GPM (IMERG). Algorithm Theor. Basis Doc. Vers. 2015, 4.

48. Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily
Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc.
2015, 96, 69–83. [CrossRef]

49. Nguyen, P.; Shearer, E.J.; Tran, H.; Ombadi, M.; Hayatbini, N.; Palacios, T.; Huynh, P.; Braithwaite, D.; Updegraff, G.; Hsu, K.; et al.
The CHRS Data Portal, an Easily Accessible Public Repository for PERSIANN Global Satellite Precipitation Data. Sci. Data 2019,
6, 180296. [CrossRef] [PubMed]

50. Brocca, L.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a Natural Rain Gauge: Estimating Global Rainfall
from Satellite Soil Moisture Data. J. Geophys. Res. Atmos. 2014, 119, 5128–5141. [CrossRef]

http://doi.org/10.1007/s10668-019-00437-x
http://doi.org/10.2151/jmsj.87.927
http://doi.org/10.1007/s12040-013-0312-0
http://doi.org/10.1002/joc.4129
http://doi.org/10.1002/joc.4446
http://doi.org/10.1016/j.rsase.2017.12.006
http://doi.org/10.1080/01431161.2019.1569786
http://doi.org/10.1016/j.atmosres.2020.105032
http://doi.org/10.1080/16742834.2016.1142825
http://doi.org/10.1007/s12040-020-01545-3
http://doi.org/10.54302/mausam.v61i3.835
http://doi.org/10.1007/s00704-018-2428-2
http://doi.org/10.1016/j.jhydrol.2019.01.036
http://doi.org/10.1038/s41597-020-0453-3
http://www.ncbi.nlm.nih.gov/pubmed/32246091
http://doi.org/10.3390/w12092571
http://doi.org/10.54302/mausam.v65i1.851
http://doi.org/10.1038/sdata.2015.66
http://doi.org/10.1175/BAMS-85-3-381
http://doi.org/10.1175/BAMS-D-13-00068.1
http://doi.org/10.1038/sdata.2018.296
http://www.ncbi.nlm.nih.gov/pubmed/30620343
http://doi.org/10.1002/2014JD021489


Sustainability 2023, 15, 5758 22 of 22

51. Brocca, L.; Filippucci, P.; Hahn, S.; Ciabatta, L.; Massari, C.; Camici, S.; Schüller, L.; Bojkov, B.; Wagner, W. SM2RAIN-ASCAT
(2007–2018): Global Daily Satellite Rainfall Data from ASCAT Soil Moisture Observations. Earth Syst. Sci. Data 2019, 11, 1583–1601.
[CrossRef]

52. Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly
Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [CrossRef]

53. Moriasi, D.N.; Arnold, J.G.; Liew, M.W.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic
Quantification of Accuracy in Watershed Simulations. Trans. ASAB 2007, 50, 885–900. [CrossRef]

54. Pearson, K. VII. Note on Regression and Inheritance in the Case of Two Parents. Proc. R. Soc. Lond. 1895, 58, 240–242.
55. Nash, J.E.; Sutcliffe, J. V River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970,

10, 282–290. [CrossRef]
56. Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel

Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [CrossRef]
57. Chu, T.W.; Shirmohammadi, A. Evaluation of the SWAT Model’s Hydrology Component in the Piedmont Physiographic Region

of Maryland. Trans. ASAE 2004, 47, 1057. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.5194/essd-11-1583-2019
http://doi.org/10.1038/sdata.2017.191
http://doi.org/10.13031/2013.23153
http://doi.org/10.1016/0022-1694(70)90255-6
http://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)
http://doi.org/10.13031/2013.16579

	Introduction 
	Study Area, Datasets Used and Methodology 
	Study Area 
	Datasets 
	Methodology 

	Results 
	Dataset-Wise Suitability Analysis 
	CHIRPS 
	CRU 
	GLDAS 
	GPM 
	PERSIANN-CDR 
	SM2RAIN 
	TerraClimate 

	Rainfall Dataset Type Suitability for MSDs 
	Pixel Wise Analysis 
	Temporal Analysis of Rainfall Datasets for India 
	Good-Performing Datasets at the Pixel Level for India 

	Discussion 
	Summary and Conclusions 
	References

