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Abstract: For many electrical systems, such as renewable energy sources, their internal parameters
are exposed to degradation due to the operating conditions. Since the model’s accuracy is required
for establishing proper control and management plans, identifying their parameters is a critical and
prominent task. Various techniques have been developed to identify these parameters. However,
metaheuristic algorithms have received much attention for their use in tackling a wide range of
optimization issues relating to parameter extraction. This work provides an exhaustive literature
review on solving parameter extraction utilizing recently developed metaheuristic algorithms. This
paper includes newly published articles in each studied context and its discussion. It aims to
approve the applicability of these algorithms and make understanding their deployment easier.
However, there are not any exact optimization algorithms that can offer a satisfactory performance
to all optimization issues, especially for problems that have large search space dimensions. As a
result, metaheuristic algorithms capable of searching very large spaces of possible solutions have
been thoroughly investigated in the literature review. Furthermore, depending on their behavior,
metaheuristic algorithms have been divided into four types. These types and their details are
included in this paper. Then, the basics of the identification process are presented and discussed. Fuel
cells, electrochemical batteries, and photovoltaic panel parameters identification are investigated
and analyzed.

Keywords: metaheuristic optimization; parameters identification; photovoltaic; battery storage;
fuel cells

1. Introduction

With the rapid depletion of different fossil-fuel-based energy supplies, such as coal, oil,
and natural gas, and the air environment being severely polluted in recent decades, an alter-
native energy supply has become an urgent and vital subject that has piqued widespread
interest. As a result, the extraction and usage of renewable energy will undoubtedly play
an important part in future growth, with solar energy serving as one of the most promising
options [1].

Solar energy may produce electricity or thermal energy without emitting pollutants,
which is critical for environmental issues. Nevertheless, there are still significant problems
with their practical deployment, such as poor photoelectric conversion efficiency and a
lack of precision in photovoltaic (PV) cell modeling. Accurate PV cell modeling is essential
for understanding and forecasting the particular properties of PV systems [2]. Due to
nonlinear PV features and its enormous dependence on radiation level and operating
temperature, the research on PV panel model development remains an open subject. In
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this context, a number of PV models have been created and published, including the
single diode model (SDM) [3], the double diode model (DDM) [4], the triple diode model
(TDM) [5], the improved single diode model (ISDM) [6], SDM with a parasitic capacitor [7],
the improved two diode model (IDDM) [8], the modified double diode model (MDDM) [4],
the diffusion-based model [9] and multi-diode model [10]. On the other hand, the model’s
accuracy varies depending on its predicted parameters. Regretfully, it is challenging to
define fixed numbers for these parameters using manufacturers’ datasheets since they vary
with time. As a result, specific model parameters are required to develop an accurate and
trustworthy PV model.

On the other hand, the generated renewable power is submitted to weather conditions
that may lead to power fluctuations. In addition, sunlight is unavailable at night, which lim-
its the generation during these specified times. To resolve these problems, energy storage
systems such as batteries are required [11]. There are several types of electrochemical bat-
teries; lead acid is the most common, but the lithium-ion type is becoming more commonly
used due to its significant advantages [12]. However, the lifetime of each battery is related
to its physical features, which provides a high nonlinearity to its mode [13]. The lifespan of
a battery cannot be prolonged by reducing power consumption at a certain stage. Instead,
it can be extended by how the power is utilized. Furthermore, persistent high-current
pulling reduces residual battery capacity [14]. As a result, a battery management system
(BMS) is necessary to guarantee that batteries operate safely, reliably, and efficiently. The
BMS’ tasks include guaranteeing a battery’s safe operation, over-temperature prevention,
managing the charging/discharging phases, and calculating the state of charge (SoC) based
on the measured current, voltage, and temperature [15]. However, performing these tasks
and estimating these states depends on the battery model. Therefore, an accurate battery
model is required, and its accuracy is related to the accuracy of the parameters identifica-
tion. Furthermore, parameter identification is critical in PV system modeling, performance
assessment and optimization, and real-time control [16]. Since the importance of parameter
identification has grown significantly, a wide range of studies has been conducted to find
realistic and practical solutions to such difficulties.

In such applications, the batteries cannot store all the produced renewable energy.
Fuel cell systems offer an alternative solution to store this energy and other benefits. These
systems are mainly composed of electrolyzers and fuel cells [17,18]. The electrolyzer splits
the water into oxygen and hydrogen using generated renewable power. Fuel cells transform
hydrogen energy into electricity with a controlled flow of electrons based on electrochemical
reactions between a fuel (the hydrogen) and an oxidant. The fuel cells usually have an
electrical efficiency of >50% in the case of regular cycles and >70% in the case of hybrid
cycles [19]. Additionally, the pollution created by fuel cells is almost nonexistent [18],
and the carbonic emissions per unit of energy produced are decreased using renewable
fuels. Fuel cells are split into four types [20]: Alkaline FC (AFC) [21], Molten carbonate
FC (MCFC) [22], Proton electrolyte membrane FC (PEMFC) [23], Direct Methanol FC
(DMFC) [24], Solid oxide FC (SOFC) [21], and Phosphoric acid FC (PAFC) [25]. The
mathematical modeling of fuel cells is one of the most significant problems associated with
their technological development. Modeling can reveal more information about how this
device works, providing a simulation tool that helps in understanding their performance
and improving it [26]. Accurately assessing the parameters is one of the modeling process’
most significant issues [27]. The multi-physics system primarily causes this challenge, and
its operating circumstances directly impact its parameters [28] due to its ability to accurately
reproduce the behavior of the fuel cell under various operating conditions employing
the polarization curve. The semi-empirical equations-based mathematical models have
received the most attention among all the currently used modeling approaches [29]. The
present problem with these models is that the precise parameters are not readily available.
To produce reliable results, accurately identifying the model’s parameters is crucial.

A variety of techniques, including artificial neural networks and adaptive filter ap-
proaches, have been used for the parameter extraction and modeling of PV panels, batteries,
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and fuel cells. Recently, numerous research has focused on using metaheuristic optimiza-
tion algorithms (MOAs) for parameter identification. This is because of the scalability and
the parallel computing capabilities for identifying the model’s linear and nonlinear pa-
rameters. In addition, their capacity for exploration and finding intriguing domains in the
specified search space at a certain moment makes them an excellent solution. Metaheuristic
optimization algorithms provide optimum or sub-optimal results. They need the objective
function and constraints to solve linear, nonlinear, and nonconvex problems [23]. According
to the reported study by A. Tzanetos and G. Dounias [30], the number of published works
that presents newly created metaheuristic optimization algorithm is rising. The increased
interest in them can explain this. This attracted the authors to review their applicability in
the context of optimal parameter extraction strategies for PVs, FCs, and Li-ion batteries.

To further accelerate the optimal PV cell parameters identification tendency, a number
of metaheuristic algorithms have been used. RTC France solar cell is one of the most popular
PV cells. Its model has been widely used to approve the performance of the optimizers. The
parameters of three models (SDM, DDM, and TDM) have been identified for this type using
the Artificial Hummingbird Algorithm (AHA) [31]. A similar study has been proposed
in [32] using Atomic Orbital Search (AOS), and another one in [33] by using the Marine
Predators Optimizer (MPA). Kyocera KC200GT PV also recieved increased interest in the
parameters identification context, such as Northern Goshawk Optimization (NGO) [34],
Gorilla Troops Optimizer (GTO) [35], Transient Search Optimization (TSO) [36], and Coyote
Optimization Algorithm (COA) [37]. On the other hand, papers that present battery
parameter extraction strategies are more frequently published. The Genetic Algorithm (GA)
has been widely used to extract the parameters of many types of Li-ion batteries, such as
SPM [38,39], simplified SPM [40], and P2D [39,41,42]. Identifying the PEMFC is also an
attractive topic to the academic community. BCS 500 W, NedStack PS6, 250 W stack, and
SR-12 500 W are the most commonly used to extract the parameters. More details about
these and the other systems (PV and Li-ion batteries) will be presented in this paper.

The identification problem can be constructed as an optimization problem, where the
optimization variables are the unknown parameters, and the objective function is based
on the model and the measured system output. This study comprehensively reviews the
metaheuristic optimization algorithms used in the parameter estimation of PV, battery, and
fuel cell models. This paper first presented the model of each system and the parameters to
be identified. Then, three well-known metaheuristic optimization algorithms are presented
to illustrate the optimization process of each one. Then, a set of recent metaheuristic
optimization algorithms used to extract its parameters is listed. The reported results are
discussed, and the optimizer with the best performance is indicated. The following are this
paper’s significant contributions:

• A review of the photovoltaic models, including the SDM, DDM, and TDM;
• A review of the lead-acid and lithium-ion battery models;
• A review of the electrochemical modeling of the PEMFC;
• A comprehensive review of the metaheuristic optimization algorithms’ implementa-

tion in each system’s parameters extraction.

The rest of the paper can be organized according to Figure 1.
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2. Photovoltaic Models

Developing a PV cell model is necessary for studying the characteristics of solar PV
output. Only an exact fitting of PV cell output current–voltage (I-V) and power–voltage
(P-V) curves can accurately analyze and predict PV system performance, which is heavily
reliant on adequately identifying the needed DC parameters from the PV cell model. This
section will provide a quick overview of some frequently used and typical PV models,
such as SDM, DDM, and TDM. Their basic architecture is similar: an ideal constant current
source (iph), a series resistor (Rs), and a shunt resistor (Rsh), with the primary difference
being the number of parallel diodes. The architecture of each type is presented in Figure 2,
and the equation that expresses the output current can be provided as

ic = iph − id − iohm

= iph − id − Vcell+iRs
Rsh

(1)

where id is the diode current and iohm is the ohmic losses current.
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2.1. Single Diode Model (SDM) [43]

It is the simplest model that consists of a photocurrent source, a diode representing
the semiconductor’s losses due to the optical and recombination, and series and shunt
resistances accounting for leakage losses. However, they suffer from low accuracy with
significant irregularity in replicating the characteristics of the I-V curve, especially for the
partial shading conditions. The diode current is denoted as

id = i0

(
eq Vcell+iRs

aVt − 1
)

Vt =
NsKT

q

(2)

where q = 1.6 × 10−19, Ns expresses the number of cells connected in series, K is the
Boltzmann constant (=1.38 × 10−23 J/K), id, i0, Rs, Rsh, and α are the unknown parameters.

2.2. Double Diode Model (DDM) [44]

The presence of an extra diode is the only distinction between SDD and DDM. Com-
pared to the SDD, introducing a second diode improves model accuracy, especially at low
solar irradiation. The second diode works with the first to reflect the recombination losses
in the depletion layer under weak solar irradiation. The diode current can be expressed as

id = i01

(
eq Vcell+iRs

a1Vt − 1
)
+ i02

(
eq Vcell+iRs

a2Vt − 1
)

(3a)

where id, i01, i02, Rs, Rsh, α1 and α2 are the unknown parameters.

2.3. Trible Diode Model (TDM) [45]

This type of PV model includes an additional diode, which can express the various
elements of PV cells with better curve-fitting accuracy. However, the additional diode
increases the model complexity, which makes its hardware implementation challenging.
The diode current equation can be expressed as follows:

id = i01

(
eq Vcell+iRs

a1Vt − 1
)
+ i02

(
eq Vcell+iRs

a2Vt − 1
)
+ i03

(
eq Vcell+iRs

a3Vt − 1
)

(3b)

where id, i01, i02, i03, Rs, Rsh, α1, α2 and α3 are the unknown parameters.
The classification of these modes is presented in Figure 3.
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3. Lithium-Ion Battery Modeling

There are a number of studies concerning lithium-ion battery modeling in the literature.
These models can be constructed based on specific physical, electrical, and thermal factors
or a combination of these [46]. Concerning the electric models, they attempt to imitate
the electric variables’ behavior, such as the voltage, the current, and the SoC. Thermal
models, on the other hand, try to mimic the temperature distribution on the battery cell
in one, two, or three dimensions. Concerning the aging effect, the related models are
designed to simulate battery degradation, manifested as capacity fading and an increase in
internal impedance. The literature review divides the battery models into four classes [47]:
empirical, equivalent circuit (ECM), electrochemical, and data-driven models. The battery
parameters can be extracted based on the measured data and the considered model. After
contracting the model, the current and/or the SoC data will be used to simulate it and
generate the voltage. The generated voltage will be compared with the measured one,
and the error between them will be used to generate the fitness value for the optimization
algorithm. Based on the fitness value, the optimizer updates the candidate solutions.

3.1. Empirical Models [48]

These are streamlined electrochemical models. They use reduced-order polynomials
or mathematical expressions to reflect the principal nonlinear features of a battery. In this
model, the output voltage is empirically expressed as a function of the SOC and current.
The Shepherd model [49], Unnewehr universal model [50], and Nernst model [51] are the
most common ones. These models have the following generalized equation [52]:

Vbatt = E0 − R · ibatt −
a1

SoC
− a2 · SoC + a3 · ln(SoC) + a4 · ln(1− SoC) (4)

where E0 is the OCV, R expresses the internal resistance, and a1,2,3,4 are model parameters.

3.2. Equivalent Circuit Models [53]

ECM consists of a SOC-related voltage source, an internal ohmic resistor, and resistance–
capacitance (RC) pairs that may represent the inputs (current, temperature, and SOC) and
the output (voltage) relationship. The resistor represents self-discharge. The diffusion
process in the electrolyte, porous electrode charge transfer and double-layer effect in the
electrode is represented by the RC pairs with various time constants. The commonly used
models in this category include the Rint model [54], Thevenin model [55], and General
Nonlinear (GNL) [56]. The architecture of the models is presented in Figure 4.
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3.3. Electrochemical Models [57]

For the objective of representing the internal processes in the battery, electrochemical
models are constructed in accordance with the charge transfer process, including the
electrochemical kinetics. They are constructed as nonlinear partial differential equations
based on several laws, including Ohm’s law, Faraday’s first law, Butler–Volmer equation,
and Fick’s law of diffusion. There are two main types of these models: the single particle
model (SPM) and the pseudo-2D model (P2DM). P2DM is built based on the porous
electrode and the concentrated solution theories [58]. The porous electrode’s structure
expands the surface area in a way that effectively aids the electrochemical processes.
The porous construction has the advantage of allowing the active material to touch the
electrolyte sufficiently. P2DMs view the electrode’s active component as a sphere with
uniformly sized and differently sized particles. SPM is a P2DM simplification that treats
the electrode as a single particle [59]. The reactions in the electrode are the same for various
particles if the concentration of the liquid phase is considered constant, as well as the
electrode voltage. As a result, their electrochemical responses may be regarded as a single
spherical one. SPM makes it considerably easier to describe the motion of lithium ions
within a solid particle compared to P2DM.

3.4. Data-Driven Models [60,61]

Because of the rapid growth of data mining algorithms in the artificial intelligence (AI)
field, the link between the battery variables may be easily created based on preliminary
data. After collecting sufficient training samples, a data-driven model is constructed using
the AI algorithm’s training process. This model automatically updates the input (the
current, temperature, and SOC) and the output (voltage) link. A radial basis function
neural network (RBFNN), support vector machine (SVM), and extreme learning machine
(ELM) are the most commonly used methods for these models.

The classification of the lithium-ion battery models is presented in Figure 5.
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where Pc and Pa express the inlet pressures in the cathode and the anode (atm), Rhc and Rha 

are the vapor humilities in the cathode and anode, i is the generated current (A), A is the 

electrode area (cm2), PH2O is the water vapor saturation pressure(atm). 

The mathematical expression of the activation losses can be formulated as  

( )
498

2

2

1 2 3 O 4

O

O 6

ln(C ) ln( )

5.08 10

T

ActV T T T i

P
C e

   


 
 
 

= − + + +

=


 (9) 

Figure 5. Classification of lithium-ion battery models.
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4. Proton Membrane Exchange Fuel Cell Modeling

Based on its polarization curve, the PEMFC output voltage can be modeled as fol-
lows [26]:

VFC = VNernest −VAct −VOhm −VCon (5)

where VAct is the activation voltage drop, VCon is the concentration voltage drop, VOhm
is the ohmic losses voltage, and VNernest is the Nernst voltage. The Nernst voltage can be
calculated for temperature values <100 ◦C as follows:

VNernest = 1.229− 0.85× 10−3(T− 298.15) + 4.3085× 10−5× T
(

ln(PH2) +
ln(PO2)

2

)
(6)

where PH2 and PO2 are the partial pressures of both hydrogen and oxygen, which can be
calculated as follows:

PH2 =
Rha × PH2O

2

 1
Rha×PH2O

Pa
× e

1.635(i/A)

T1.334

− 1

 (7)

PO2 = Rhc × PH2O

 1
Rhc×PH2O

Pc
× e

4.192(i/A)

T1.334

− 1

 (8)

where Pc and Pa express the inlet pressures in the cathode and the anode (atm), Rhc and Rha
are the vapor humilities in the cathode and anode, i is the generated current (A), A is the
electrode area (cm2), PH2O is the water vapor saturation pressure(atm).

The mathematical expression of the activation losses can be formulated as

VAct = −
(
ζ1 + ζ2T + ζ3T ln(CO∂

) + ζ4T ln(i)
)

CO2 =
PO2

5.08×106 e
( 498

T ) (9)

where ξ1,2,3,4 express the semi-empirical coefficients of the polarization phase; CO2 describes
the concentration of the oxygen (O2) at the cathode’ surface (mol.cm−3).

The mathematical expression of the concentration loses can be formulated as

VCons = −β ln(1− i
ilim

) (10)

where β symbolizes the diffusion constant and ilim symbolize the limiting current value.
The mathematical expression of the ohmic losses can be formulated as

VOhm = i(Rm + Rc) (11)

where Rc denotes the resistance of the connectors, and Rm represents the ohmic membrane
resistance. Rm can be calculated as follows:

Rm = ρm ·l
Am

ρm =
181.6

[
1+0.03 i

Am +0.062 T
303 (

i
Am )

2.5]
[λ−0.634−3 i

Am ]e
4.18 T−303

T

(12)

where Am is the membrane’s surface (cm2), l represents the membrane’s thickness (cm),
and λ is the membrane material water content’s constant.
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5. Parameters Extraction Using Metaheuristic Optimization Algorithm
5.1. Brief Review on Metaheuristic Optimization Algorithms

“Meta” and “heuristic” are Greek terms that mean upper level or beyond for the meta
term, and to find, to know, to lead an investigation, or to discover for the heuristic term [62].
They are strategies created to find (sub-)optimum solutions at a low computing effort
without ensuring feasibility or optimality [30]. Most of these algorithms imitate biological
or physical processes and have a stochastic behavior. Metaheuristic algorithms have been
classified according to five metrics [63]:

• Inspiration sources: nature-inspired and non-nature inspired;
• The number of parallel computing solutions: population-based and single-point

search;
• Objective function nature: dynamic and static objective function;
• Neighborhood structures: single and various neighborhood structures.
• Memory: memory usage and memory-less methods.

Figure 6 summarizes this classification.
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5.2. Deployment of the Metaheuristic Optimization Algorithms in the Identification Process

The identification algorithm provides the model parameters based on the input data,
the used model, and the implemented objective function. The optimizer generates a set
of random parameters limited in the search space. These parameters are used to initialize
the model, and its output will be compared to the used data. Based on this error, the
objective function is calculated, and the candidate solutions will be updated. As illustrated
in Figure 7, the system parameters can be extracted based on the measured data and the
considered model. After establishing the model, input data required by the model will be
used to generate the estimated output data. These generated data will be compared with
the measured one, and the error between them will be used to generate the fitness value for
the optimization algorithm. The optimizer updates the candidate solutions and steps to the
next iteration based on the fitness value.
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Several assessment criteria are used to generate the objective functions required by the
algorithms. The algorithm can successfully achieve the intended outcomes in extracting
various parameters using the appropriate criteria. Table 1 summarizes the typical equations
and characteristics of each criterion. Using absolute value in the computation prevents
negative numbers; however, formulae involving squares can yield more exact answers.

Table 1. Criteria equations and characteristics.

Criteria Equation Characteristics

Root mean square error (RMSE) f (x) =
√

1
M ∑M

k=1 (xdata(k)− xmodel(k))
2 Square value

Normalized RMSE (NRMSE) f (x) =

√
1
M ∑M

k=1 (xdata(k)−xmodel(k))
2√

1
M ∑M

k=1 (xdata(k))
2

Square value

Mean absolute error (MAE) f (x) = 1
M ∑M

k=1|xdata(k)− xmodel(k)| Absolute value
Relative error (RE) f (x) = |xdata(k)−xmodel(k)|

|xdata(k)|
Absolute value

Mean relative error (MRE) f (x) = 1
M ∑M

k=1
|xdata(k)−xmodel(k)|

|xdata(k)|
Absolute value

Sum square error (SSE) f (x) = ∑M
k=1 (xdata(k)− xmodel(k))

2 Square value

5.3. Presentation of Some Metaheuristic Optimization Algorithms
5.3.1. Salp Swarm Algorithm

A meta-heuristic technique called SSA looks for the best solutions to a given issue
within a constrained search area [64]. The search begins at arbitrary locations. The individ-
uals (the salps) will chain together and move in the direction of the best solution. Leaders
and followers are the two categories that make up this chain. The leaders pursue the target
position rapidly. Each follower will evolve his position in line with the location of his prior
agent as they move seamlessly. The leaders can update their positions (PL) at the iteration
(t) as follows:

PL(t) =
{

PT(t) + c1((ub− lb) · r1 + lb)
PT(t)− c1((ub− lb) · r1 + lb)

i f
i f

r2 < 0.5
r2 > 0.5

c1 = 2e−(
4t

Tmax )
2

(13)

where PT is the target position, r1 and r2 are random numbers in [0, 1], and Tmax is the max
number of iterations.

The ith follower can update their positions (PF
i) at the iteration (t) as follows:

PF
i(t) = 0.5(PF

i(t− 1) + PF
i−1(t)) (14)

The evolution of this algorithm can be presented in Figure 8.
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5.3.2. Marine Predator Algorithm

A metaheuristic algorithm called MPA mimics the behavior of aquatic predators in
search of prey [65]. The following are the main steps of this algorithm:

- Phase 1(if t < Tmax/3): based on Brownian motion, the prey updates its position (PPrey)
as follows:

step(t) = RB ⊗
(

PElite(t)− RB ⊗ PPrey(t)
)

PPrey(t + 1) = PPrey(t) + 0.5 · r⊗ step(t)
(15)

where PElite is a set of best positions, r is a random number in [0, 1], RB is the Brownian mo-
tion’s normal distribution vector. The notation ⊗ expresses the entry wise multiplications.

- Phase 2 (if t > Tmax/3 and if t < 2Tmax/3): while the prey utilizes Levy motion, the
predator uses Brownian motion. If n < Npop/2, the updating equation is expressed as
follows:

step(t) = RL ⊗
(

PElite(t)− RL ⊗ PPrey(t)
)

PPrey(t + 1) = PPrey(t) + 0.5 · r⊗ step(t)
(16)

where Npop is the population size, RL is the Levy motion’s normal distribution vector. If
n > Npop/2, the updating equation is expressed as follows:

step(t) = RL ⊗
(

RL ⊗ PElite(t)− PPrey(t)
)

PPrey(t + 1) = PElite(t) + 0.5 · c(t)⊗ step(t)

c(t) = [1− (t/Tmax)]
2t

Tmax

(17)
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- Phase 3 (t > 2Tmax/3): the predator travels utilizing Levy throughout this phase, and
the mathematical model is stated as follows:

step(t) = RL ⊗
(

PElite(t)− RL ⊗ PPrey(t)
)

PPrey(t + 1) = PPrey(t) + 0.5 · r⊗ PPrey(t)
(18)

The main steps of this algorithm can be presented in Figure 9.
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5.3.3. Bald Eagle Search Algorithm

The BES algorithm, which replicates the movement and hunting tactics, is given in [66].
The BES algorithm is divided into three stages:

- Select phase: the eagle discovers the search space and determines the area with the
best food availability. This phase can be expressed as follows:

P(t + 1) = Pprey(t) + α · r · (Pm − P(t)) (19)

where Pprey represents the prey position, α is a constant in [1.5, 2], r represents a random in
[0, 1]. Pm is the mean value of all the current positions.

- Search phase: to speed up its investigation, the eagle moves in different directions
inside a spiral zone while it seeks prey. This phase can be modeled as follows:
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Pi(t + 1) = Pi(t) + yi.(Pi(t)− Pi−1(t)) + xi.(Pi(t)− Pm)

xi = rxi

max(|rx|) ; rxi = ri · sin(θi)

yi = ryi

max(|ry|) ; ryi = ri · cos(θi)

θi = β1 · π · r; ri = θi · R · r

(20)

where β1 is a constant in [5, 10], R is a constant in [0.5, 2], and r is random in [0, 1].

- Swoop phase: the eagle attacked the target from the best position achieved in the
previous phases. This phase can be represented as follows:

P(t + 1) = r.Pprey + x1i.(Pi(t)− r1.Pmean) + y1i.(Pi(t)− r2.Pprey)

x1i = rxi

max(|rx|) ; rxi = ri.sinh(θi)

y1i = ryi

max(|ry|) ; ry(i) = ri.cosh(θi)

θi = β2.π.r; ri = θi

(21)

where r is a random number in [0, 1], r1,2 are random numbers in [1, 2], β2 is a constant in
[5, 10].

The main steps of this algorithm can be presented in Figure 10.
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5.4. Photovoltaic Parameters Extraction

Any PV system requires a PV model for simulation analysis, design optimization,
and problem diagnostics. Furthermore, the model’s capacity to express precise I-V charac-
teristics under all conditions (solar irradiance and temperature) is critical. However, the
precision of the unknown parameters’ determination completely determines how well the
I-V curve is simulated. Manufacturers only supply experimental I-V curves under STC
(1000 W/m2 and 25 ◦C), which the identification algorithms will use. The manufacturer
data of the commonly investigated PV panels and modules are shown in Table 2.

Table 2. The most used cells/modules for PV parameter identification.

Cell/Module Type Pmp (W) Vmp (V) Imp (A) Voc (V) Isc (A) kv (V/◦C) ki (A/◦C) Ns

Sanyo HIT215 [67] Mono-crystalline 215 42 5.13 51.6 5.61 −0.143 1.96 × 10−3 72
KC200 GT [67] Poly-crystalline 200 26.3 7.61 32.9 8.21 −0.123 3.2 × 10−3 54
ST40 PV [67] Thin-film 39.9 16.9 2.36 23.3 2.68 −0.1 3.5 × 10−4 42

RTC France solar cell57
mm [31] Poly-crystalline 0.3101 0.4507 0.688 0.5728 0.7603 NA 0.035 1

SM55 [68] Mono-crystalline 55 17.4 3.15 21.7 3.45 NA 0.04 36
S75 [69] Poly-crystalline 74.976 17.6 4.26 21.6 4.7 −0.0076 2 × 10−3 36

ST40 [69] Thin-film 40 16.6 2.41 23.3 2.68 −0.01 0.35 × 10−3 42
Photowatt PWP201 [70] Poly-crystalline 11.315 12.64 0.912 16.778 1.03 NA NA 36

Canadian Solar
CS6K-280M [34] Mono-crystalline 280 31.5 8.89 38.5 9.34 NA NA 60

PVM752 GaAs Thin-film 0.075 0.8053 0.0937 0.9926 0.0999 NA NA 1

Table 3 presents the most recent MOAs applied in PV parameters extraction published
in Scopus. Figure 11 illustrates their graphical distributions. This table includes the
references, the used MOA, cell/module type, the model type, the used criterion, and the
best obtained results.

Table 3. Recent MOAs used to extract the PV parameters.

Ref Author & Year MOA Cell/Module Model Criterion Best
Results

[31] M. Navarro et al.
2023

Artificial Hummingbird
Algorithm (AHA) RTC France solar cell

SDM
DDM
TDM

RMSE
9.860 × 10−4

6.835 × 10−4

9.855 × 10−4

[34] M. El-Dabah et al.
2023

Northern Goshawk
Optimization (NGO)

Photowatt PWP-201
Kyocera KC200GT

Canadian Solar CS6K-M
TDM Customized

1.346 × 10−5

9.4174 × 10−5

9.4174 × 10−5

[32] F. Ali et al.
2023

Atomic Orbital Search
(AOS) RTC France solar cell

SDM
DDM
TDM

RMSE
7.752 × 10−4

7.606 × 10−4

7.950 × 10−4

[32,71]
F. Ali et al.

2023
A. Beşkirli, I. Dağ

2023

Atomic Orbital Search
(AOS)

Tree Seed Algorithm
(TSA)

PVM752 GaAs
SDM
DDM
TDM

RMSE
RMSE

1.618 × 10−4

1.780 × 10−3

3.904 × 10−4

STM6-40/36 module SDM 2.655 × 10−3

[72] A. M. Shaheen et al.
2022

Supply Demand
Optimizer (SDO) PVM752 GaAs TDM RMSE 1.249 × 10−3

[35] A. Ginidi et al.
2021

Gorilla Troops
Optimizer (GTO) Kyocera KC200GT PV SDM

DDM RMSE 6.367 × 10−4

9.482 × 10−5

[35,73]
A. Ginidi et al.

2021
M. El-Dabah et al.

2022

Gorilla Troops
Optimizer (GTO)

Runge Kutta optimizer
(RKO)

STM6-40/36 PV SDM
DDM RMSE

RMSE

1.333 × 10−17

1.730 × 10−3

RTC France solar cell
Photowatt PWP-201 DDM 9.829 × 10−4

3.139 × 10−3
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Table 3. Cont.

Ref Author & Year MOA Cell/Module Model Criterion Best
Results

[33] A. Bayoumi
et al.2021

Marine Predators
Optimizer (MPA) RTC France solar cell

SDM
DDM
TDM

RMSE
8.438 × 10−4

7.590 × 10−4

7.561 × 10−4

[33,74]
A. Bayoumi

et al.2021
N. F. Nicaire et al.

2021

Marine Predators
Optimizer (MPA)
Bald Eagle Search
Algorithm (BES)

Q6-1380witharea
SDM
DDM
TDM

RMSE
RMSE

1.610 × 10−5

1.460 × 10−5

1.420 × 10−5

RTC France solar cell SDM
DDM

9.860 × 10−4

9.824 × 10−4

[74] N. F. Nicaire et al.
2021

Bald Eagle Search
Algorithm (BES)

Photowatt-PWP201 SDM

RMSE
SAE

2.425 × 10−3

STM6-40/36 SDM 1.729 × 10−3

STP6-120/36 SDM 1.678 × 10−3

[36] MH. Qais et al.
2020

Transient Search
Optimization (TSO)

Kyocera KC200GT PV
MSX-60

CS6K280M
TDM

0
0

1.740 × 10−13

[75] A. Abbassi et al.
2020

Modified Salp Swarm
Algorithm (mSSA) TITAN12-50 solar panel DDM MSE 3.602 × 10−5

[37] A. Diab et al.
2020

Coyote Optimization
Algorithm (COA) RTC France solar cell

SDM
DDM
TDM

RMSE
7.754 × 10−4

7.468 × 10−4

7.597 × 10−4

[37] A. Diab et al.
2020

Coyote Optimization
Algorithm (COA)

Photowatt-PWP201
SDM
DDM
TDM

RMSE

2.949 × 10−3

2.404 × 10−3

2.406 × 10−3

SM55
SDM
DDM
TDM

3.837 × 10−3

3.541 × 10−3

4.403 × 10−3

ST40
SDM
DDM
TDM

43.944 × 10−3

34.562 × 10−3

34.562 × 10−3

Kyocera KC200GT PV
SDM
DDM
TDM

30.185 × 10−3

31.742 × 10−3

30.326 × 10−3
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From this table, the parameter extraction of PV panels has been carried out for various
commercialized types. Concerning the RTC France solar cell, the best result for the SDM has
been provided by the Atomic Orbital Search (AOS) [32] with a fitness value of 7.752 × 10−4.
The DDM’s best result is 6.835 × 10−4, provided by the Artificial Hummingbird Algorithm
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(AHA) [31]. The TDM best result is 7.950 × 10−4 provided by the Atomic Orbital Search
(AOS) [32]. This may confirm that no algorithm can give the best results for all types of
problems. The Kyocera KC200GT model also has been identified in several papers. The
base value of its SDM has been provided by Gorilla Troops Optimizer (GTO) [35] with a
final fitness of 6.367 × 10−4. The same optimizer also offers the best result of the DDM with
an ultimate fitness of 9.482 × 10−5. The TDM best result is recorded by the Transient Search
Optimization (TSO) [36], where the final SAE is near zero. Concerning the Photowatt PWP-
201 model, the best SDM result is offered by the Bald Eagle Search Algorithm (BES) [74]
with an ultimate fitness of 2.425 × 10−3. The DDM best result is 2.404 × 10−3 provided by
Coyote Optimization Algorithm (COA) [37]. The best result of the TDM is provided by the
Northern Goshawk Optimization (NGO) [34] with a final fitness of 1.346 × 10−5.

As shown in this table, the deployment of the MOAs for extracting the PV parame-
ters for the three models (SDM, DDM, and TDM) has become more attractive and more
frequently published in the last two years. This approves the ability of the MOAs to solve
this problem efficiently.

5.5. Lithium-Ion Battery Parameters Extraction

The battery identification strategy deals mainly with the model parameters. Hence, the
identification strategy is built based on the selected model. Table 4 presents the most recent
MOAs applied in Li-ion battery parameters extraction according to the Scopus database.
This table includes the references, the used MOA, and the model type. Figure 12 presents
their yearly distribution.

Table 4. Recent MOAs used to extract the Li-ion battery parameters.

Ref Author & Year MOA Model

[76] R. El-Sehiemy et al. 2022 Supply–demand algorithm (SDA) 2RC-ECM
[77] R. Rizk-Allah et al. 2022 Manta Ray Foraging Optimizer (MRFO) Tremblay
[78] Y. Hao et al. 2022 An improved coyote optimization algorithm (ICOA) FO-ECM
[79] T. Pan et al. 2022 Whale optimization algorithm (WOA) P2D
[80] R. El-Sehiemy et al. 2022 Enhanced sunflower optimization algorithm (ESOA) RC-ECM
[81] J. Hou et al. 2022 Chaotic quantum sparrow search algorithm (CQSSA) FO-ECM
[82] S. Ferahtia et al. 2022 Modified Bald Eagle Search (mBES) Shepherd
[83] A. Fatgi et al. 2022 Bald Eagle Search (BES) Shepherd
[84] S. Ferahtia et al. 2022 Salp Swarm Algorithm (SSA) Shepherd
[85] E. Houssein et al. 2022 Modified Coot algorithm (mCOOT) Shepherd
[86] S. Ferahtia et al. 2022 Artificial eco-system optimization (AEO) Shepherd
[87] A. Shaheen et al. 2021 Equilibrium Optimizer (EO) 3RC-ECM
[88] M. Elmarghichi et al. 2021 Sunflower optimization algorithm (SOA) RC-ECM

[89] S. Zhou et al. 2021 Adaptive particle swarm optimization (APSO)
Thevenin
2RC-ECM
FO-ECM

[90] W. Shuai et al. 2020 Differential evolution (DE) Modified Thevenin
[91] X.Lai et al. 2019 Particle swarm optimization (PSO) PNGV
[38] H. Pang et al. 2019 Genetic Algorithm (GA) SPM
[40] L. Chen 2019 Genetic Algorithm (GA) Simplified SPM

[39] Y. Qi et al. 2017 Genetic Algorithm (GA) SPM
P2D

[92] M. Rahman et al. 2016 Particle swarm optimization (PSO) SPM
[41] A. Jokar et al. 2016 Genetic Algorithms (GA) P2D
[42] J. Li et al. 2016 Genetic Algorithms (GA) P2D
[93] C. Forman et al. 2012 Genetic Algorithm (GA) Doyle–Fuller–Newman
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As shown in this table, the utilization of the MOAs for extracting the lithium-ion
battery parameters for all models (equivalent circuit, empirical, and electrochemical) has
become more attractive for academics in the last ten years. The empirical models such
as Shepherd are noticed as the most used ones to validate the electrical model of the
battery. The RC electrical circuit models are also used to achieve the same objective. The
electrochemical models such as the SPM and P2D are identified to determine the whole
state of the battery and to predict its health and remaining helpful capacity more accurately.
From Figure 12, most of the cited papers are recent and published in 2022.

Using MOAs for other types of electrochemical batteries, such as lead acid, is also
becoming more frequent [94,95]. The battery management system (BMS) improves bat-
tery operation and extends the lifecycle. It is recommended to optimize it using these
optimization algorithms.

5.6. Proton Exchange Membrane Fuel Cell Parameters Extraction

Arbitrary solutions that fall inside the search space restrictions are initialized and
sent to the model as candidate solutions. The model’s output will then be compared with
the collected data after being simulated using these settings. By minimizing the objective
function generated based on the errors between the output voltage of each PEMFC stack
and the voltage estimated by the model, the fitness function definition, on which all the
algorithms are compared, aims to extract the steady-state model parameters. The optimizer
will then choose the top solutions, and the subsequent iteration will provide a new set
of modified solutions. Up to the final iteration, this procedure will be repeated. The
parameters of the most studied PEMFC types are presented in Table 5 where the symbol *
means the rated pressure value.

Table 5. Specifications of the most studied PEM fuel cells for parameter identification [96].

Cell/Module A (cm2) l (µm) P∗H2(atm) P∗O2(atm) T (K) Imax
(mA/cm2) Pout (W) n

NedStack PS6 240 178 0.5 1.0 343 1200 6000 65
BCS 500W 64 178 1.0 0.2 333 469 500 32

AVISTA SR-12 500 W 64 178 1.47628 0.2095 323 672 500 32
250 W stack 27 127 1.5 1.5 328.15 860 250 24

Temasek 1 kW PEMFC 150 51 0.5 0.5 323 1500 1000 20
Horizon H-12 stack 8.1 0 0.4 0.55 328.15 246.9 100 13

Horizon 500-W PEMFC 52 25 0.55 1 323 446 500 36
Ballard 5 kW Mark V FC 50.6 178 1 1 343 1500 35

Ballard 1.2-kW Nexa 50 400 5 5 333.15 1200 47
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Table 6 shows the recent Scopus papers that explain the utilization of the MOAs
in PEMFC parameters extraction. This table includes the references, the used MOA, FC
module, the used criterion, and the best obtained results.

Table 6. Recent MOAs used to extract the PV parameters.

Ref Author & Year MOA FC Module Criterion Best
Results

[97] M. Abd Elaziz et al.
2023

Gorilla Troops Optimizer
(GTO)

BCS 500 W
NedStack PS6
250 W stack

SSE
0.0118
0.3378
1.38

[98] R. Hegazy et al. 2022 Bald Eagle Search (BES) BCS 500 W
NedStack PS6 SSE 2.07974

0.01136

[99] R. Hegazy et al. 2022 Gradient-based Optimizer
(GBO)

250 W stack RMSE
SSE

0.00684
0.0557

BCS 500 W RMSE
SSE

0.00234
0.01129

SR-12 500 W RMSE
SSE

0.05546
0.49883

[100] E. Houssein et al.
2021

modified artificial electric
field

algorithm (mAEFA)

NedStack PS6 RMSE
SSE

2.07974
0.13164

SR-12 500 W RMSE
SSE

0.56067
0.05637

[96] M. Özdemir. 2021
Chaos embedded particle

swarm optimization (CEPSO)

250 W Stack
RMSE
ASE

MASE

0.6112
19.834
0.6402

BCS-500 W
RMSE
ASE
SSE

0.01151
2.22845
0.01219

Nedstack PS6
RMSE
ASE
SSE

2.680
649.41

2.18067

[101] M. Abdel-Basset et al.
2021

Improved Heap-based
Optimizer (IHBO)

BCS 500 W
NedStack PS6

H-12 stack
SR-12 500 W

SSE

0.01170
2.14570
0.11802
0.00014

[102] R. Rizk-Allah et al.
2020

Improved Artificial
Eeco-system Optimizer

(AEO)

NedStack PS6
BCS 500 W
250 W stack

SSE
2.14590
0.01160
1.1510

[103] J. Jiang et al. 2020 Sine Tree-Seed Algorithm
(STSA) NedStack PS6 SSE 2.14576

[104] M. Sultan et al. 2020 Improved salp swarm
algorithm (ISSA)

BCS 500 W
SR-12 500 W
250 W stack

Temasek-1 kW

SSE

0.01160
0.79157
0.64340
0.79268

[105] A.Diab et al. 2020 Political optimizer (PO)
BCS 500 W

SR-12 500 W
250 W stack

SSE
0.01155
1.05662
0.64421

[105,106] A. Diab et al. 2020
M. Fawzi et al. 2019

Marin predator algorithm
(MPA)

BCS 500 W
SR-12 500 W
250 W stack SSE

SSE

0.01155
1.05662
0.59405

Neural network optimizer
(NNO) Ballard Mark V 5 kW 0.85361

[106,107]
M. Fawzi et al. 2019
A. El-Fergany. 2018

Neural network optimizer
(NNO)

Salp swarm algorithm (SSA)

BCS 500 W BCS stack
Nedstack PS6 SSE

SSE

0.011698
2.14487

NedStack PS6
BCS 500 W

2.18067
0.01219
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Extracting the parameters of the BCS 500 W types has been widely investigated in
the literature review. The gradient-based optimizer (GBO) provides the best result with
an RMSE of 0.00234 [99]. Concerning the NedStack PS6, the best result has been reported
by the Bald Eagle Search (BES) with a final SSE of 0.01136 [98]. The best result for the 250
W stack is 0.00684, provided by the gradient-based optimizer (GBO) [99]. The best result
for the SR-12 500 W is provided by the improved heap-based optimizer (IHBO) with an
ultimate SSE of 0.00014 [101].

The provided information in this table approves the benefit of deployment of the
MOAs for extracting the PEMFC parameters. This topic has been more frequently published
in high-impact factor journals in the last few years. This confirms their contribution to
solving this problem efficiently. In addition, these algorithms can be used to extract the
parameters of other FC types, such as solid oxide FCs (SOFCs). The promising results when
developing these algorithms for these applications can lead to enhancing the operation for
a longer lifecycle and better efficiency. It is recommended to optimize their operation using
these algorithms.

6. Future Research Directions

As mentioned in the previous sections, metaheuristic optimization algorithms have
been increasingly used in the parameter extraction of PV cells, Li-ion batteries, and PEMFCs.
These algorithms are used to extract the parameters of other systems, such as motors.
The recent algorithms may provide better performance in such applications or may not.
According to the no free lunch (NFL) theory, no optimizer can provide consistent and
superior performance for all optimization problems. This encourages academics to develop
more recent optimization algorithms that may provide better performance. The revolution
in artificial intelligence may be used by coupling the metaheuristic optimization algorithms
with the learning features of the AI. This may significantly increase their performance.

7. Conclusions

This paper has contributed to the discussion on using a metaheuristic optimization al-
gorithm to solve parameter extraction problems related to photovoltaic generators, lithium-
ion batteries, and PEM fuel cells. Starting with the problematic definition mainly imposed
by the degradation phenomenon will certainly change the model parameters. Hence, the
model’s accuracy of each system should be updated. A brief review of the models of the
photovoltaic generators, the lithium-ion batteries, and the PEM fuel cells has been provided
in this study. The principles of the metaheuristic optimization algorithms have also been
presented. The deployment manner of these algorithms within the problem is also provided
and discussed. A summary of recently published papers in the Scopus database for each
system has been provided, starting with published papers that identify the single, the
double, and the terrible diode models. Then, a set of new papers identifying the lithium-ion
models, including the empirical, the equivalent circuits, and the electrochemical models,
were listed. Finally, the recently published papers that introduced the employment of
the metaheuristic algorithm in extracting the parameters of a PEMFC were regrouped.
From this report, it can be noticed that the deployment of these optimization algorithms is
becoming more frequently used in parameter extraction. For the case of PV parameters
extraction, the identification error for all models, including the TDM that has a higher
complexity, has been reduced for various commercialized PV panels. Various metaheuristic
optimization algorithms have been deployed to extract the parameters of the Li-ion battery
for different types of models. The parameters of different types and prototypes of PEMFC
are successfully extracted using various metaheuristic optimization algorithms. Most of
these works have been published recently, which is linked to the recent surge in interest in
these algorithms for this kind of application. To conclude, the main purpose of this paper
is to investigate the effect of the metaheuristic optimization algorithm on the parameter
extraction of several vital energy systems. Their contribution has been reported, and they
are expected to be employed in many other applications related to power systems.
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