
Citation: Fathy, A.; Yousri, D.;

Alharbi, A.G.; Abdelkareem, M.A. A

New Hybrid White Shark and Whale

Optimization Approach for

Estimating the Li-Ion Battery Model

Parameters. Sustainability 2023, 15,

5667. https://doi.org/10.3390/

su15075667

Academic Editor: Lin Hu

Received: 23 February 2023

Revised: 15 March 2023

Accepted: 21 March 2023

Published: 23 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

A New Hybrid White Shark and Whale Optimization Approach
for Estimating the Li-Ion Battery Model Parameters
Ahmed Fathy 1,* , Dalia Yousri 2 , Abdullah G. Alharbi 1 and Mohammad Ali Abdelkareem 3,4,5

1 Department of Electrical Engineering, Faculty of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
2 Electrical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum 63514, Egypt
3 Department of Sustainable and Renewable Energy Engineering, University of Sharjah,

Sharjah 27272, United Arab Emirates
4 Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah,

Sharjah 27272, United Arab Emirates
5 Chemical Engineering Department, Minia University, Elminia 61111, Egypt
* Correspondence: afali@ju.edu.sa

Abstract: Constructing a reliable equivalent circuit of Li-Ion batteries using real operating conditions
by estimating optimal parameters is mandatory for many engineering applications, as it controls
the energy management of the battery in a hybrid system. However, model parameters can vary
according to the electrochemical nature of the battery, so improving the accuracy of the battery
model parameters is essential to obtain reliable and accurate equivalent circuits. Therefore, this paper
proposes a new efficient hybrid optimization approach for determining the proper parameters of
Li-ion battery Shepherd model equivalent circuits. The proposed algorithm comprises a white shark
optimizer (WSO) and the whale optimization approach (WOA) for modifying the stochastic behavior
of the WSO while searching for food sources. Minimizing the root mean square error between the
estimated and measured battery voltages is the objective function considered in this work. The
hybrid variant of the WSO (HWSO) was examined with two different types of batteries. Moreover,
the proposed HWSO was validated versus a set of recent meta-heuristic approaches including the
sea horse optimizer (SHO), artificial gorilla troops optimizer (GTO), coyote optimization algorithm
(COA), and the basic version of the WSO. Furthermore, statistical analyses, mean convergence, and
fitting curves were conducted for the comparisons. The proposed HWSO succeeded in achieving the
least fitness values of 2.6172 × 10−4 and 5.6118 × 10−5 with standard deviations of 9.3861 × 10−5

and 3.2854 × 10−4 for battery 1 and battery 2, respectively. On the other hand, the worst fitness
values were 6.5230 × 10−2 and 6.6197 × 10−5 via SHO and WSO for both considered batteries. The
proposed HWSO results prove the efficiency of the proposed approach in providing highly accurate
battery model parameters with high consistency and a unique convergence curve compared to the
other methods.

Keywords: battery model; parameter estimation; white shark optimizer

1. Introduction

Recently, energy storage systems (ESSs) have played an essential part in enabling the
presence of various renewable energy sources (RESs) such as solar energy, wind, and fuel
in the electric power grids. Integration of such systems to the grid makes it more flexible
and reliable as they enhance the system management via acting as backup to unstable
RESs. One of the most popular ESSs is the electrochemical battery. Constructing a reliable
model for the battery represents a challenge due to the nonlinear nature of its operation.
Identifying the most accurate model for the battery is still an abundant area of research. The
parameters of the battery model can be identified with the aid of experimental data. Many
works have been conducted in estimating the optimal parameters of the battery model.
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Ferahtia et al. [1] identified the optimal parameters of lithium-ion batteries using an ar-
tificial ecosystem optimizer (AEO), the authors used the Shepherd model, and comparison
in terms of convergence speed, efficiency, and identification accuracy was presented with
other algorithms. The considered target was the root mean square error (RMSE) between
the experimental and estimated battery data. In [2], the authors built a reduced model of
a lithium polymer battery using state-space representation. Furthermore, the parameters
of a constructed circuit were identified using three steps. In the first one, the battery state
of charge (SOC) was estimated using nonlinear characteristics including the current and
initial SOC. Then, the battery open circuit voltage was calculated based on the evaluated
SOC in the first step, and the equilibrium algorithm (EA) was applied in the third step
to identify the battery’s optimal parameters. Kim et al. [3] determined the parameters of
a battery equivalent circuit via a Bayesian neural network with the aid of experimental
data of battery voltage and current. A Li-ion battery equivalent circuit was formulated
using a gradient-based algorithm employed to determine the equilibrium and dynamical
parameters of the battery [4]. A complete review of different estimation methodologies
employed in constructing battery equivalent circuits was presented in [5]. The authors
categorized the battery model into mathematical, physical, and circuit-based models. A
Wiener structure-based approach was introduced by Naseri et al. [6] to strengthen the
battery classic equivalent circuit model via considering the nonlinearities of Li-ion batteries.
Moreover, an extended-kernel iterative recursive least square approach was used for esti-
mating the Wiener model parameters. In [7], the parameters of an electrochemical model of
a Li-ion battery operated at different conditions were estimated using a particle swarm op-
timizer (PSO). The four parameters evaluated were the diffusion coefficients at anode and
cathode as well as the intercalation and de-intercalation reaction rates at anode and cathode.
The authors in [8] presented an estimation methodology to evaluate the parameters of
a battery, SOC, and open circuit voltage. A hybrid Li-ion battery-supercapacitor energy
storage system used in electric vehicles was modeled through identifying its parameters via
experimental tests [9]. In [10], a Li-ion battery was modeled as a fractional-order equivalent
circuit with its parameters estimated using a mixed swarm cooperative PSO with the aid of
experimental data. A model of a Li-ion polymer battery was constructed using Simscape
and Simulink/Matlab software, and its parameters were identified using an optimization
toolbox in the used software [11]. Moreover, sum squared error (SSE) between the mea-
sured and calculated data was considered the fitness function to be minimized. In [12], a
lead-acid battery equivalent circuit was built and the optimal parameters were identified
experimentally. Additionally, the constructed model was validated via Matlab/Simulink.
The authors in [13] used a resistance–capacitance equivalent circuit to simulate the dynamic
behavior of a Li-polymer battery; additionally, the nonlinear relationship between the bat-
tery SOC and open circuit voltage was described using piecewise linear approximation with
a variable coefficient. Moreover, the circuit parameters were evaluated using the moving
window method to mitigate the least square error between the experimental and simulated
data. In [14], an adaptive identification approach to find the battery circuit parameters was
presented and the dynamics of the battery were simulated using a second-order equivalent
circuit. The extended Kalman filter was used to identify the parameters in slow dynamics,
while the recursive least square approach was used for fast dynamics. Different equivalent
circuits of Li-ion batteries and several identification methods were reviewed in [15]; the
authors classified the models into one-time constant, two-time constants, internal resistance,
Thevenin, and others. Houssein et al. [16] presented a modified Coot algorithm (mCoot)
to evaluate the optimal parameters of a Li-ion battery equivalent circuit and minimize
the RMSE between the measured and estimated data. Du et al. [17] presented an on-line
method of battery circuit parameter identification based on the Cramer–Rao lower bound;
the authors validated the constructed model via comparing the obtained outputs with
experimental data. The authors in [18] compared nine optimization algorithms employed
to evaluate the optimal parameters of nine different battery models. The coevolutionary
PSO-based methodology was used to evaluate the optimal parameters of a battery equiva-
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lent circuit with the aid of a parameter identification window in [19]. El-Sehiemy et al. [20]
used the enhanced sunflower optimizer (ESFO) to identify the optimal parameters and SOC
of a lithium-ion battery; a reduced state-space representation model was used to describe
the operation of the battery. Single and multi-objective problems have been formulated con-
sidering either battery voltage or battery SOC or both as the targets. A Cuckoo search-based
approach was employed to solve a multi-objective problem aimed at evaluating the optimal
parameters of a Li-ion battery electrochemical model in [21]. The battery current and
voltage were fed to the approach while the voltage error and the electrodes’ capacity error
were the targets to be minimized. In [22], three different parameter identification methods
were evaluated in constructing a battery Thevenin equivalent circuit. The methods were the
PSO, extended Kalman filter, and recursive least square approach. Furthermore, the battery
SOC was estimated via the model with identified parameters either at static or dynamic
operations. Liu et al. [23] studied the electrochemical–thermal model of a Li-ion battery and
sensitivity of parameter identification methods. Additionally, different design optimization
methods under various operating conditions were analyzed. The battery surface and
ambient temperatures were considered in an improved equivalent circuit of a Li-ion battery
presented in [24]. A second-order RC equivalent circuit was considered, and its parameters
were identified using an exponential function fitting method. Moreover, the battery SOC
was estimated using the extended Kalman filter algorithm. Chun et al. [25] selected a deep
learning algorithm of a convolutional neural network to evaluate the optimal parameters
of a Li-ion battery equivalent circuit. In [26], a first-order equivalent circuit model of a
Li-ion battery was experimentally constructed and its parameters were identified using the
Cramer–Rao lower bound. A second-order RC model of a li-ion battery was established
using the recursive least square approach in [27]. Shi et al. [28] estimated the Li-ion battery
SOC using an adaptive extended Kalman filter, while the recursive least square approach
with a forgetting factor was employed to estimate the optimal parameters of the battery
equivalent circuit. Duan et al. [29] used the first-order RC model with parameters identified
via the least square method of an extended Kalman filter to simulate the battery equivalent
circuit. Moreover, a multi-time scale prediction model of an adaptive unscented Kalman
filter was introduced to estimate the battery SOC. A methodology combining a neural
network and a genetic algorithm (GA) was used to estimate the optimal parameters of a
Li-ion battery circuit in [30]. A modified Thevenin model of a Li-ion battery was established
and the model parameters were identified via a differential evolution algorithm in [31].
The parameter identification problem of a lead-acid battery Shepherd model was solved
using a bald eagle search (BES) algorithm, such that the RMSE between the estimated and
measured voltages was minimized in [32]. Some remarks of reported approaches employed
in estimating the parameters of a battery equivalent circuit are given in Table 1. There are
some shortcomings of the reported methods, which can be clarified as follows:

• Some of the reported meta-heuristic optimization approaches suffer from premature
and slow convergence rates; this defect causes trapping in local optima;

• Large computational times and efforts are other defects included in some other re-
ported approaches in addition to excessive data that are required for training the
neural network-based technique;

• Many researchers used algorithms that had less desirable optimal characteristics,
while others ignored some important parameters such as battery temperature and
hysteresis voltage.
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Table 1. Remarks of some reported works employed for constructing the battery circuit model.

Author Year Target Method Meta-
heuristic

Battery
Model Limitations

Ferahtia et al. [1] 2021 RMSE Artificial ecosystem
optimizer

√ Shepherd
model

The algorithm is easy to
trap in local optima

Shaheen et al. [2] 2021 RMSE Equilibrium
algorithm

√
nRC-model

The algorithm has
premature and slow

convergence

Kim et al. [3] 2019 RMSE Bayesian neural
network × Pseudo-two-

dimensional
Excessive data are required
to train the neural network

Park et al. [4] 2018 Least square
error

Gradient-based
algorithm

√ Doyle fuller
Newman

model

The approach can go in the
wrong direction because of

frequent updates

Naseri et al. [6] 2021 MSE

Extended-kernel
iterative recursive

least square
approach

× Second-order
RC

The least square approach
has less desirable

optimality characteristics

Rahman et al. [7] 2016

Sum square
error

Particle swarm
optimizer

√ Reduced
partial

differential

PSO has low convergence
rate and easy to fall in local

optima

Kwak et al. [8] 2019 Least square
approach × First-order

RC

The least square approach
has less desirable

optimality characteristics

Hu et al. [10] 2018 RMSE Mixed swarm
cooperative PSO

√ Fractional
order

The presented approach
required excessive

computational efforts

Miniguano et al.
[11] 2019 Sum square

error

Matlab
optimization

toolbox
× Five models

Nonlinear least square has
less desirable optimality

characteristics

Rahimi-Eichi et al.
[13] 2013 Least square

error
Least square

approach × First-order
RC

The least square approach
has less desirable

optimality characteristics

Dai et al. [14] 2016 RMSE

Extended Kalman
filtering and

recursive least
square

× Second-order
RC

The least square approach
has less desirable

optimality characteristics

Houssein et al. [16] 2022 RMSE Modified Coot
algorithm

√ Shepherd
model

The modified algorithm
required large

computational time

Du et al. [17] 2021 Absolute error Cramer–Rao lower
bound × Thevenin

circuit
The algorithm is suitable

for simple scenarios

Yu et al. [19] 2017 Sum absolute
error

Co-evolutionary
PSO

√ Third-order
RC

The algorithm is complex,
and the model hysteresis

voltage is ignored
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Table 1. Cont.

Author Year Target Method Meta-
heuristic

Battery
Model Limitations

El-Sehiemy et al.
[20] 2020 Sum square

error

Enhanced
sunflower
optimizer

√ First-order
RC

The modified algorithm
required large

computational time

Li et al. [21] 2022
Voltage error

and electrodes’
capacity error

Cuckoo search
√ Pseudo-two-

dimensional

Cuckoo search has slow
speed and low

convergence accuracy

Zhang et al. [22] 2021 Absolute error

PSO, extended
Kalman filter, and

recursive least
square

√ Thevenin
circuit

PSO has low convergence
rate and easy to fall in local
optima. Further, the least
square approach has less

desirable optimality
characteristics.

Liu et al. [23] 2020 RMSE
Parameter

sensitivity division
approach

× Pseudo-two-
dimensional

The optimization approach
is unclear

Huo et al. [24] 2020 Mean absolute
error and RMSE

Exponential
function fitting

method
× Second-order

RC

The presented model
ignored the temperature

effects

Chun et al. [25] 2019

Least error

Convolutional
neural network × Pseudo-two-

dimensional
Excessive data are required
to train the neural network

Song et al. [26] 2018 Cramer–Rao lower
bound × First-order

RC
The algorithm is suitable

for simple scenarios

Ren et al. [27] 2020 Sum square
error Recursive least

square approach ×

Second-order
RC

The method is very
sensitive to start values

assigned by the user
Shi et al. [28] 2022 Mean absolute

error and RMSE
Thevenin

circuit

Duan et al. [29] 2020 RMSE
Adaptive double

Kalman filter
approach

× First-order
RC

The authors ignored the
battery charge and

discharge rates in the
handled problem

Kim et al. [30] 2022 Least square
error

Neural network
and genetic
algorithm

√ Pseudo-two-
dimensional

Excessive data are required
to train the neural

network.

Shuai et al. [31] 2020 Absolute
relative error

Differential
evolution
algorithm

√ Thevenin
circuit

Differential evolution has
slow convergence rate

Rezk et al. [32] 2022 RMSE Bald eagle search
algorithm

√ Shepherd
model

The algorithm lacks
adequate search efficiency
and traps in local optima

These limitations are considered in this work via introducing an efficient, robust,
and reliable hybrid approach comprising the white shark optimizer (WSO) and the whale
optimization approach (WOA) to modify the stochastic behavior of the original WSO while
searching for food sources.

The contributions of this work are given as:

• Proposing an efficient hybrid variant of the white shark optimizer for identifying the
model parameters of two different Li-ion batteries with the Shepherd model;

• Using the spiral updating position strategy inspired by the whale optimization algo-
rithm for enhancing the exploitation stage of the basic WSO;

• The proposed HWSO is validated versus SHO, GTO, COA, and WSO;
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• Sets of statistical analyses, mean convergence, and fitting curves are conducted for
the comparisons;

• The competence of the proposed HWSO is proved via the fetched results;
• Table 2 shows a comparison between the proposed approach and other methods in

terms of complexity, required data, convergence rate, and trapping in local optima.
The comparison clarifies the preference of the proposed methodology over the others;

• The rest of this paper is organized as follows: Section 2 handles the model of a Li-ion
battery, Section 3 explains the main aspects of the WSO, Section 4 introduces the
proposed hybrid WSO-based methodology, Section 5 shows the fetched results and
discussions, and conclusions are given in Section 6.

Table 2. Comparison between the proposed HWSO and others.

Ref. Required Data Complexity Convergence Rate Trap in Local Optima?

[1] Few Low Fast
√

[2] Moderate High Slow
√

[3] Large Moderate Fast ×
[4] Moderate High NA

√

[6] Few Low Slow NA
[7] Moderate Low Slow

√

[8] Few High Slow
√

[10] Few High Fast ×
[11] Moderate Low Slow

√

[13] Large Moderate Slow
√

[14] Large High Fast NA
[16] Few High Fast ×
[19] Moderate High Fast

√

[20] Moderate High NA NA
[21] Large Moderate Slow

√

[25] Large Moderate Slow NA
[27] Large High Fast

√

[28] Large High Fast
√

[30] Large High Slow
√

[31] Large Moderate Slow
√

[32] Few Large Fast
√

This work Few Low Fast ×

2. The Li-Ion Battery Model

In this work, the considered battery is a Li-ion type with the Shepherd model given
in [33], this model is selected as it needs little data from the datasheet given by the man-
ufacturer and the discharge curve of the battery. The used model can easily reflect the
characteristics of macro-level batteries for both voltage and current, which represents an
important level of simulation. The equivalent circuit of the Shepherd model is given in
Figure 1; it comprises a controlled voltage source and internal resistance. The value of the
controlled voltage source depends on two formulas of battery charge and discharge modes.
The terminal voltage of the battery can be expressed as follows [34]:

Vb = E0 − K
(

Q
Q− it

)
i− R·i + A·e−B·it, (1)

where E0 denotes the battery open circuit voltage at full capacity, K is the polarization
coefficient, Q denotes the capacity of the battery, it is the removed actual charge (it =

∫
idt),

i is the current of the battery, R is the battery’s internal resistance, A is the amplitude of the
exponential zone, and B represents the inverse time constant of the exponential zone. The
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modified Shepherd model given in [33] used polarization resistance effect and polarization
voltage term in the discharge model as follows:

Vb = E0 − K
(

Q
Q− it

)
i∗ − K

(
Q

Q− it

)
it− R·i + A·e−B·it, (2)

where i∗ denotes the filtered current.
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Figure 1. Li-ion battery model.

In the charging mode, the battery voltage can be written as [33]:

Vb = E0 − K
(

Q
it− 0.1·Q

)
i∗ − K

(
Q

Q− it

)
it− R·i + A·e−B·it. (3)

Additionally, the battery SOC of the battery can be calculated as follows [33]:

SOC(t) = SOC0 −
1
Q

∫
idt, (4)

where SOC0 represents the initial state of charge. Figure 2 shows the typical discharge
characteristic of a Li-ion battery; Vfull, Vexp, and Vnom are the battery voltages at maxi-
mum capacity, at capacity during the end of the exponential zone, and at normal operation
capacity, respectively.
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In the manufacturer datasheet, there are some missing data, but they can be deter-
mined with the aid of a meta-heuristic approach and experimental data. In this work, the
parameter identification process is simulated as an optimization problem with a fitness
function of minimizing the RMSE between the estimated and measured battery voltages
as follows:

Minimize J(k) =

√
1
n

n

∑
k=1

(Vbe(k)−Vbm(k))
2, (5)

where n is the number of data points, Vbe(k) denotes the battery’s estimated voltage
at instant k, and Vbm(k) represents the battery’s measured voltage at instant k. Seven
parameters to be identified are E0, R, Q, K, A, B, and τ.

The search space is identified via the following constraints [1]:

Emin
0 ≤ E0 < Emax

0
Rmin ≤ R < Rmax

Qmin ≤ Q < Qmax

Amin ≤ A < Amax

Bmin ≤ B < Bmax

τmin ≤ τ < τmax,

(6)

where min and max denote the minimum and maximum limits, respectively.

3. White Shark Optimizer (WSO)

One of the most recent meta-heuristic approaches is the white shark optimizer (WSO),
which has been proposed by Braik et al. [35]. The authors drew their inspiration for the
algorithm from great white sharks’ dynamic behaviors, which include outstanding hearing
senses and smell during navigating and foraging. The white sharks are highly adapted
and magnificent hunters that have armed strong muscles and hunt dolphins, small whales,
shellfish, seabirds, and seals, which represent their prey. The hunting strategy followed by
great white sharks in catching their prey starts by rushing their prey via surprise tactics
whereupon massive fatal strikes are generated.

Devouring the prey (food source) requires three behaviors, which are: the movement
towards the prey using the waves’ hesitations produced via the prey’s movement, random
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search for food sources in the ocean depths, and locating nearby prey. These steps help the
great white sharks in updating their positions to reach the best solutions. The WSO can be
modeled via initializing a population matrix of initial solutions. I initial population matrix
has a size of N × d, where N denotes the population size while d is the problem dimension,
as follows [35]:

w =


w1

1 w1
2 . . . w1

d
w2

1 w2
2 . . . w2

d
...

...
...

...
wn

1 wn
2 . . . wn

d

, (7)

where wi
j represents the ith white shark location in the jth dimension. It can be calculated

based on the lower (lbj) and upper (ubj) bounds of the search space in the jth dimension
as [35]:

wi
j = lbj + rand×

(
ubj − lbj

)
, (8)

where rand is a random number within a range [0, 1]. The initial fitness values are calculated
for the initial solutions given in Equation (7) and then an updating process is placed in case
the new position is better than the previous one. When the great white shark observes the
prey location via its wave hesitancy, it moves toward its prey in undulating movements
with a velocity given as [35]:

vi
k+1 = µ

(
vi

k + p1

[
wgbestk

− wi
k

]
× c1 + p2

[
w

vi
k

best − wi
k

]
× c2

)
, (9)

where vi
k+1 and vi

k are the updated and current velocities of the ith white shark in iterations
k + 1 and k, respectively; wgbestk

denotes the global best location during the kth iteration;
wi

k is the position of the ith white shark in iteration k; c1 and c2 are random numbers within

a range [0, 1]; w
vi

k
best represents the ith best known location to the swarm during iteration k;

and vi
k is the index vector number i for the great white sharks obtaining the best location,

and it can be defined as follows [35]:

v = [n× rand(1, n)] + 1. (10)

The parameters p1 and p2 are the great white sharks’ forces that control the wgbestk
and

w
vi

k
best effects on wi

k; they can be computed as follows [35]:

p1 = pmax + (pmax − pmin)× e−(
4k
K )

2
, (11)

p2 = pmin + (pmax − pmin)× e−(
4k
K )

2
, (12)

where pmin and pmax are the initial and inferior velocities to obtain better motion for the
great white sharks, pmin = 0.5 and pmax = 1.5, and K denotes the maximum iteration. The
term µ in Equation (9) is the correction factor; it is used to analyze the convergence rate of
the WSO via the following expression [35]:

µ =
2∣∣∣2− t−
√

t2 − 4t
∣∣∣ , (13)

where t is the acceleration factor of the algorithm.
As stated before, the great white sharks spend most of time looking for valuable prey.

Consequently, their positions change as they move toward their prey either by hearing the
waves generated via prey movements or by smelling their prey’s scents. In this situation,
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the great white sharks move to random positions searching for the prey, this can be modeled
as follows [35]:

wi
k+1 =

{
wi

k•¬ ⊕ wo + ub•a + lb•b i f rand < mv

wi
k +

vi
k
f i f rand ≥ mv

, (14)

where ¬ is the operator of negation, a and b are binary vectors defined by Equations (15)
and (16), wo represents logical vector computed via Equation (17), f is the frequency of
great white shark wavy motions and it can be calculated based on Equation (18) [35]:

a = sgn
(

wi
k − ub

)
> 0 (15)

b = sgn
(

wi
k − lb

)
< 0 (16)

wo = ⊕(a, b) (17)

f = fmin +
fmax − fmin
fmax + fmin

, (18)

where fmax and fmin are the maximum and minimum undulating frequencies of the great
white shark’s undulating motions, respectively. The parameter mv denotes the great white
shark’s movement force; it is increased via the iterative process as follows [35]:

mv =
1

a0 + e(
0.5K−5

a1
)
, (19)

where a0 and a1 are two parameters used to manage the exploration/exploitation behaviors.
The term mv helps in accelerating the search speed and then strengthens the features of
the exploration and exploitation behaviors of the WSO. This merit encouraged the author
to apply such an algorithm in solving the handled problem. The motion towards the best
great white shark that converges to the prey can be simulated as follows [35]:

ẃi
k+1 = wgbestk

+ r1
→
Dw × sgn(r2 − 0.5) i f r3 < Ss, (20)

where ẃi
k+1 represents the ith great white shark new position with regard to its prey; the

term sgn(r2 − 0.5) is responsible for changing the search direction as it gives either 1 or −1;

r1, r2, and r3 are random numbers within a range [0, 1]; and
→
Dw represents the distance

between the white shark and its prey as follows [35]:

→
Dw =

∣∣∣rand×
(

wgbestk
− wi

k

)∣∣∣. (21)

The parameter Ss in Equation (20) is employed to describe the strength of the great
white shark’s visual and olfactory senses when following its prey closely; it can be calculated
as follows [35]:

Ss =

∣∣∣∣1− e
−a2k

K

∣∣∣∣, (22)

where a2 is a parameter used to control the exploration/exploitation behaviors. A flowchart
of the WSO is shown in Figure 3.
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4. The Proposed Hybrid WSO-Based Methodology

In the basic version of the WSO, the great white sharks follow one strategy while
moving towards its prey location, which may cause the algorithm to be blinded to other
optimal points around this location. Accordingly, another approach based on a spiral-
shaped path has been integrated with the WSO in this work to enhance the exploitation
behavior of the basic WSO. The implementation of the spiral-shaped path was inspired by
whales’ behavior when swimming to prey locations, as reported in the whale optimization
algorithm (WOA). The following relationship models the spiral path between the great
white shark and its prey location:

Wi
t+1 =

→
D·ehl ·cos(2 πl) + W∗t (23)

→
D =

∣∣∣∣ →W∗ − →W∣∣∣∣, (24)

where
→
D is the distance between the prey and the great white shark, h is a constant

for defining the shape of the logarithmic spiral, and l is a random number in a range
[−1, 1]. Using the spiral equation, the great white shark’s motion towards its prey, as in
Equation (20), can be modified to be as follows:

wi
k+1 =

 wgbestk
+ r1

→
Dw × sgn(r2 − 0.5) i f r3 < Ss

→
D·ebl ·cos(2 πl) + w∗t i f r3 < Ss

. (25)

The following pseudo code (see Algorithm 1) summarizes the main structure of the
proposed HWSO when implemented for the battery model parameter estimation and
optimization problem. In the first step, the lower and upper boundaries of the model
parameters are assigned for generating the initial random set of solutions. Then, the
corresponding initial objective function values in Equation (5) are calculated. Throughout
the iteration numbers, the initial solution set is updated based on the main structure of the
HWSO. Finally, the best determined parameters have been displayed after the termination
criteria have been met.

Algorithm 1 A pseudo code summarizing the main structure of the proposed HWSO

1: Set the lower and upper limits of the battery model parameters
2: Determine the HWSO population size (n) and maximum number of iterations (K)
3: Generate the initial solutions (battery model parameters) set of WSO
4: Calculate the initial objective function of Equation (5) corresponding to the initial solutions
5: while (k < K) do
6: Update the HWSO parameters using Equations (10)–(19)
7: for i = 1 to n do
8: Calculate the velocity using Equation (9).
9: end for
10: Ior i = 1 to n do
11: if rand < mv then
12: Update the white shark’s location using Equation (14) first line
13: else
14: Update the white shark’s location using Equation (14) second line
15: end if
16: end for
17: for i = 1 to n do
18: if rand ≤ Ss then
19: Calculate the distance between the white shark the prey using Equation (19)
20: Update the white shark location using Equation (25) first line
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Algorithm 1 Cont.

21: else
22: Update the white shark location using Equation (25) second line
23: end if
24: end for
25: Evaluate and update the new battery model parameters
26: k = k + 1
27: end while
28: Display the optimal battery model parameters obtained so far

5. Numerical Results and Discussions

The efficiency of the proposed HWSO in determining highly accurate battery model
parameters was investigated using two sets of data for two different rates of lithium-ion
batteries: The considered batteries’ nominal voltages (V) were 24 and 220, and the rated
capacity (Ah) are 30 and 120, respectively. Furthermore, the battery model was simulated at
an initial SOC of 100%, and the temperature effect was ignored in this work. The simulation
time was selected as 10,000 s. The real data of both considered batteries are given in Table 3.

Table 3. Actual parameters of the considered batteries.

E0 (V) R (Ω) Q (Ah) K A (V) B (Ah−1) τ (s)

Battery 1 26.0246 0.08 30 0.0045161 2.0154 2.0354 30
Battery 2 238.559 0.01833 120 0.01374 18.475 0.509 20

The HWSO was executed for 10 independent runs with a population size and iteration
numbers of 25 and 150, respectively. Additionally, the simulated model of the battery was
implemented for 3 s. For providing a comprehensive investigation of the HWO perfor-
mance, it was compared with a set of recent optimizers including the sea horse optimizer
(SHO), artificial gorilla troops optimizer (GTO), coyote optimization algorithm (COA), and
the basic version of the WSO. All the algorithms were performed in the same settings for
unbiased comparisons and statistical analyses were conducted. The mean convergence
curves fetched by the proposed HWSO, basic WSO, and the other comparable techniques
are depicted in Figure 4 in cases of determining the model parameters of batteries 1 and 2.
The curves show that the proposed HWSO can escape from local solutions and converge
to minimal objective function values versus the SHO and COA that are trapped to the
objective function’s local values. Moreover, the proposed HWSO performances reveal
remarkable behavior compared to the GTO and WSO as the spiral-motion path helps the al-
gorithm discover better optimal values of the objective function. However, the convergence
curves of the GTO and WSO illustrate the convergence of the algorithms after the first
130 iterations without updating that divulges their lacks in the efficient balancing between
the exploration and exploitation cores.

The identified parameters of the battery model for the two studied types of batteries
are reported in Tables 4 and 5. It is worth noting that the estimated parameters with
HWSO of Tables 4 and 5 minimally deviate from the actual parameters in Table 3 of the two
batteries studied. For evaluating the performance of the HWO statistically, Tables 4 and 5
present the best, worst, mean, and standard deviation (SD) of the objective function. As
per the reported data in the Tables, the proposed HWSO shows its superiority in achieving
the least objective function values, 2.6172 × 10−4 and 5.6118 × 10−5, with high consistency
compared to the other algorithms. Meanwhile, the SHO and COA performance affirm their
disability in handling the battery modeling optimization problem. The WSO and GTO
occupy the second and third ranks after the HWSO by reaching for objective functions of
(2.9707 × 10−4, 5.8478 × 10−4) and (6.6197 × 10−5, 6.0177 × 10−4) regarding the two types
of batteries, respectively. On the other hand, the work given in [1] achieved an objective
function of 0.00900 with a standard deviation of 0.004595. For the second battery, the
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proposed algorithm outperformed the methodology given in [1]. Furthermore, the SD
values prove the significant impact of integrating the spiral-motion path in enhancing the
exploitation core of the optimizer; accordingly it realizes the optimal objective function
value at each separate run.
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Table 4. The identified parameters of the battery model and objective function values in the case of
battery 1 using HWSO, WSO, and other comparable algorithms.

Model Parameters/Algorithm

Battery 1 COA GTO SHO WSO HWSO

E0 (V) 26.110 26.107 26.236 26.155 26.213

R (Ω) 0.0829 0.0824 0.0790 0.0800 0.0827

Q (Ah) 29.579 29.941 29.500 29.754 29.977

K 0.0050 0.0049 0.0044 0.0055 0.0055

A (V) 2.1373 2.1397 2 2.0846 2.0337

B (Ah−1) 2.1090 2.1129 2 2.0720 2.0557

τ (s) 29.830 29.874 29.800 29.941 29.838

Best obj 3.6683 × 10−3 5.8478 × 10−4 6.5230 × 10−2 2.9707 × 10−4 2.6172 × 10−4

Worst 7.6792 × 10−3 6.8215 × 10−4 1.7342 × 10−1 6.0980 × 10−4 4.7305 × 10−4

Mean 6.6620 × 10−3 6.2419 × 10−4 1.2503 × 10−1 4.3774 × 10−4 3.9241 × 10−4

SD 1.9959 × 10−3 4.7959 × 10−5 5.6641 × 10−2 1.4213 × 10−4 9.3861 × 10−5

Computational
time (s) 3912.605 4663.27 2567.456 919.074 1744.59
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Table 5. The identified parameters of the battery model and objective function values in the case of
battery 2 using HWSO, WSO, and other comparable algorithms.

Model Parameters/Algorithm

Battery
2 SSA [1] COA GTO SHO WSO HWSO

E0 (V) 238.556 238.009 238.859 238.890 238.682 238.568

R (Ω) 19.1245 0.01548 0.01449 0.01278 0.01730 0.01918

Q
(Ah) 120.708 120.147 122.460 118 121.666 121.637

K 0.01374 0.01218 0.01293 0.01000 0.01250 0.01352

A (V) 18.7152 18.9502 18.0755 18 18.3235 18.4857

B
(Ah−1) 0.50969 0.52409 0.53904 0.50000 0.52951 0.51050

τ (s) 19.9555 18.2464 19.7351 18 18.9890 19.5263

Best
obj 0.00900 5.1578 × 10−2 6.0177 × 10−4 3.4100 × 10−1 6.6197 × 10−5 5.6118 × 10−4

Worst 0.019864 1.8692 × 10−1 7.2259 × 10−2 2.1958 9.7378 × 10−4 6.6383 × 10−4

Mean 0.009998 1.0384 × 10−1 1.8926 × 10−2 8.7029 × 10−1 5.1000 × 10−4 3.7127 × 10−4

SD 0.004595 5.9825 × 10−2 3.5557 × 10−2 8.8994 × 10−1 3.9079 × 10−4 3.2854 × 10−4

Additionally, the computational time is measured and tabulated in Table 4. the
proposed HWSO consumed 1744.59 s, and thus it does not come in the first rank; however,
the most important issue is achieving the least fitness value. On the other hand, the slowest
approach is the GTO as it consumed 4663.27 s. To comprehensively evaluate the algorithms’
results, the notched boxplot based on an ANOVA test is plotted in Figure 5 to illustrate
the variance in the objective function values over the set of independent runs. Moreover,
the ANOVA tables are presented in Tables 6 and 7 for the two batteries. The boxplots of
Figure 5 provide evidence of the consistency of the HWSO as the variance between the
objective function values throughout a set of independent runs is minimal in contrast to
the SHO that shows a high difference between the minim, maximum, and median values
(red mark in the middle of the box) of the objective function as illustrated for its boxplot.
Moreover, the data of the ANOVA tables affirm the existence of a significant difference
between the algorithms.

Table 6. ANOVA table in the case of battery 1.

Source SS df MS F Prob > F

Column 0.04853 4 0.01213 18.89 1.01157 × 10−5

Error 0.00964 15 0.00064
Total 0.05817 19

Table 7. ANOVA table in the case of battery 2.

Source SS df MS F Prob > F

Column 2.28387 4 0.57097 3.58 0.0305
Error 2.39051 15 0.15937
Total 4.67438 19
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comparable techniques in the cases of (a) battery 1 and (b) battery 2 throughout the set of indepen-
dent runs.

For testing the accuracy and efficiency of the identified parameters in representing the
batteries’ behavior, the simulated model was implemented over a time horizon longer than
that used in the optimization stage. The considered time of the simulation was 10,000 s.
The fitted curves based on the identified parameters by HWSO and other techniques for
the two batteries are depicted in Figure 6. The curves illustrate the high accuracy in the
fitting while using the identified parameters of the HWSO that affirm its superiority in
providing the highest quality solutions.
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In order to validate the proposed HWSO, the current pattern shown in Figure 7
is applied on both considered batteries. The actual data given in Table 3 were used to
collect the measured data. The measured and estimated SOC and terminal voltage via the
proposed approach of battery 1 are shown in Figure 8; the results clarify that both data are
closely matched. Furthermore, the measured and estimated data for battery 2 are given
in Figure 9, and both curves converge. The obtained curves confirmed the preference of
the proposed HWSO in constructing a reliable circuit of a Li-ion battery under a variable
current pattern.
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The obtained results affirmed the superiority of the proposed HWSO in constructing a
reliable model of different Li-ion batteries.

6. Conclusions

This work aimed at solving the problem of the parameter identification of a Li-ion battery
equivalent circuit with the aid of practical data. The goal was to obtain a model of the battery
that simulates reality. This was achieved via proposing a new hybrid meta-heuristic approach
comprising a white shark optimizer (WSO) and the whale optimization approach (WOA) for
solving the problem of battery parameter estimation. The WSO stochastic behavior when
searching for food was enhanced by incorporating the WOA. The importance of the proposed
method lies in the fact that it overcame many of the problems encountered in previous
methods, the most important of which being that of trapping in local optima. The Shepherd
model of a Li-ion battery was constructed in Simulink/Matlab and the proposed HWSO
was employed to determine the unknown parameters. The process was formulated as an
optimization problem with an objective function to be mitigated of root mean square error
between the measured and estimated voltages. Two types of Li-ion batteries with different
capacities were analyzed and solved with the proposed HWSO. Furthermore, the approach
was assessed by conducting excessive comparison with other optimizers, including the sea
horse optimizer (SHO), artificial gorilla troops optimizer (GTO), coyote optimization algorithm
(COA), and the basic version of the WSO. Moreover, statistical analyses, mean convergence,
and fitting curves were conducted to assess the proposed HWSO. The fetched results revealed
that the proposed approach outperformed all others with fitness values of 2.6172 × 10−4 and
5.6118e × 10−5 with standard deviations of 9.3861 × 10−5 and 3.2854 × 10−4 for battery 1
and battery 2, respectively, while the SHO and WSO were the worst optimizers with RMSE
values of 6.5230 × 10−2 and 6.6197 × 10−5, respectively. Moreover, the proposed HWSO
outperformed the previous reported SSA approach that achieved an objective function of
0.00900 with a standard deviation of 0.004595. Furthermore, the statistical analyses confirmed
the consistency of the HWSO, while the data of the ANOVA tables affirmed a significant
difference between the comparable algorithms. The results proved the efficiency of the HWSO
in establishing a highly accurate equivalent circuit for the Li-ion battery by identifying its
optimal parameters. Future work will focus on applying the proposed method to construct
equivalent circuits for several different batteries under different operating conditions. In
addition, the battery charge and discharge rates will be considered in future works.
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Nomenclature
µ Correction factor
E0 Battery open circuit voltage at full capacity
K Polarization coefficient
Q Capacity of battery
it Removed actual charge
i Current of battery
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R Battery internal resistance
A Amplitude of exponential zone
B inverse time constant of exponential zone
i∗ Filtered current
SOC0 Initial state of charge
Vfull Battery voltages at maximum capacity
Vexp Battery voltages at capacity during the end of exponential zone
Vnom Battery voltages at normal operation capacity
n Number of data
Vbm(k) Battery measured voltage at instant k
min Minimum limit
max Maximum limit
N Population size
d Problem dimension
wi

j ith white shark location in jth dimension
lbj Lower bound
ubj Upper bound
rand Random number in range [0, 1]
vi

k+1 Updated and current velocities of ith white shark in iterations k + 1
wgbestk

Global best location during kth iteration
wi

k Position of ith white shark in iteration k
c1 and c2 random numbers in range [0, 1]

wvi
k

best ith best known location to the swarm during iteration k
vi

k Index vector number i for the white sharks getting the best location
p1 and p2 White sharks’ forces
pmin and pmax Initial and inferior velocities
t Acceleration factor
¬ Operator of negation
a and b Binary vectors
wo Logical vector
f Frequency of white shark wavy motion
fmax and fmin Maximum and minimum undulating frequencies
mv white shark’s movement force
a0, a1, and a2 Parameters to manage the exploration/exploitation behaviors
ẃi

k+1 ith white shark new position with regard to the prey
r1, r2, and r3 Random numbers in range [0, 1]
→
Dw Distance between the white shark and the prey
h Constant to define the shape of the logarithmic spiral
l Random number in [−1, 1]
Vbe(k) Battery estimated voltage at instant k
WSO White shark optimizer
WOA Whale optimization approach
HWSO Hybrid variant of the WSO
SHO Sea horse optimizer
GTO Gorilla troops optimizer
COA Coyote optimization algorithm
ESSs Energy storage systems
RESs Renewable energy sources
AEO Artificial ecosystem optimizer
RMSE Root mean square error
SOC State of charge
EA Equilibrium algorithm
PSO Particle swarm optimizer
mCoot Modified Coot algorithm
ESFO Enhanced sunflower optimizer
GA Genetic algorithm
BES Bald eagle search
RMSE Root mean square error
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