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Abstract: Among issues facing the transportation sector today is the limited autonomy of electric
vehicles, which are highly reliant upon energy storage systems. Considering this issue as the
current research gap, researchers seek to prolong vehicle dependability through renewable-free and
sustainable energy that tackles negative environmental impacts. This research exploits the electric
vehicle’s kinetic energy to improve its performance and reliability. It uses fuel-cell resources and
supercapacitors hybridized with lithium-ion batteries, in addition to DC generators connected to front
wheels that convert their rotations into energy contributing to the vehicle’s overall power balance.
A state machine-based energy management strategy computes fuel-cell setpoint power, while a
dual-loop structure uses a super-twisting controller for DC bus voltage regulation and recovery,
in addition to tracking banks’ setpoint currents. A speed controller-based artificial intelligence is
proposed to reduce power losses and enable accurate tracking of running trajectory to improve
vehicle mechanisms. The simulation results using Matlab Simulink software proved the proposed
vehicle’s feasibility by adopting the free kinetic energy of additional DC generators that provided
28% of its total power requirements, resulting in superior supply efficiency reaching 98%. Thus, the
stress on FC and battery was minimized by 21% and 10%, respectively, in addition to reducing fuel
consumption by 39%, so the vehicle autonomy was extended, and its reliability was enhanced and
supported, as targeted.

Keywords: fuel cell; hybrid electric vehicle; energy management

1. Introduction

Nowadays, the problem of EV autonomy is among the biggest challenges in the world,
especially with the emergence of COVID-19, which prompted researchers to develop energy
systems for energy independence and improved systems autonomy, as well as improved
efficiency related to reducing the stress on the primary and vital resources.

The diversity of sources remains an important matter to ensure the independence of the
electric vehicle, which depends mainly on smooth control, whether in energy management,
control of converters, and even control of the mechanical part of the electric vehicle, which
has been studied in this paper.
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Due to rising research and development, HEVs are becoming increasingly popular
worldwide [1,2]. At the moment, hybridization technology has reached a more mature
stage, and incorporating a wide variety of environmentally green resources into autos
has attracted much interest from both the commercial world and the academic world to
maximize EV autonomy [3,4].

Traditional research hybrid electric vehicles that were content to use conventional
resources such as batteries, fuel cells, and supercapacitors all suffered from the same
problem: limited efficiency and autonomy [5,6]. The stress on resources remains a problem
parallel to hybrid energy systems, where the only solution for the flow of resources and
energy distribution is energy management systems [5–7].

Improving fuel consumption while adjusting the efficiency of the system is among the
most complicated matters on the level of electric cars, especially since the field of energy
hybridization requires high-precision controllers, neither in terms of energy control nor in
terms of mechanical control, which in turn plays an essential role in this field [8,9].

HEVs fueled by FC are now among the EVs that may be found on the road today.
Since it consumes fuel yet produces no pollution, FC is one of the many environmental
sources [10]. In addition to the FC, incorporating a BESS into the HEV system can be used
to maintain energy balance [11,12].

The purpose of the BESS is to keep the DC bus voltage stable at a predetermined
level [13], combined with the SC, an auxiliary ESS utilized to regulate the power changes
caused by transients. It comes before the BESS intervention to preserve the power balance
between resources [14].

Through the principle of clean energy in the world, the authors decided to ex-
ploit the kinetic energy of the EV by adding generators that convert kinetic energy into
electrical energy.

Green energy resources reduce carbon emissions and pollution from traditional energy
industries. Generating electricity from this source is very suitable for various applications
in the field of transportation, especially with the addition of a robust controller for electrical
converters such as model predictive control [15,16] and super-twisting [17,18].

The problem statements associated with this research topic are centered on the re-
stricted autonomy of EVs, the sources of stress, fuel consumption, the stability system, and
efficiency, considering the adverse effects on the environment (pollution).

In addition to exploiting the EV’s kinetic energy, the primary objectives of the research’s
topic include improving EV’s behavior through the extension of EV’s autonomy while main-
taining high system efficiency and reducing stress applied to the primary sources [17,19].

The original contribution of this study is to examine the behavior of HEVs while
exploiting their kinetic energy concerning the sources’ stress, the system’s efficiency, and
EV autonomy using a robust controller.

The remaining portions of this paper are organized and described as follows. The
study’s focus on HEVs is covered in Section 1, wherein their respective models are described.
The fundamental concepts and subsystems of the HEV are outlined in Section 2. The most
important objectives of this study are deliberated in Section 3. The revealed results and
debates are included in Section 4, including the results of suggested topologies and control
techniques. Lastly, this research’s conclusions and potential future directions are presented
in Section 5.

2. Hybrid Electric Vehicle Configuration

Figure 1 shows the power train configuration of the hybrid electric vehicle model used
in this study. The traction part is ensured by AC motors in the rear (2WD), with developed
performances and high efficiency. These motors are connected to a DC-AC inverter and are
controlled by a robust algorithm speed (ANFIS-DTC-SVM).

The power part contains FC, SC, and BESS connected with special converters; each
converter is controlled by a super-twisting-based sliding mode control (ST-SMC). The
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freedom of front wheels has allowed the addition of DC generators to exploit the EV’s
kinetic energy as an additional power source.
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Figure 1. The proposed EV model under study. The term wr
* denotes the reference speed value of the EV.

The generators are linked with a gearbox, where the output of DC generators is
connected to a boost converter controlled by MPPT to secure the same DC bus voltage. A
classic EMS has been determined to track the HEV’s behavior and determine the study’s
positive points.

Table 1 represents the main HEV parameters used in this study:

Table 1. Vehicle system specification.

Type Parameters Value

Vehicle

fr 0.0135

rt (m) 0.31

cd 0.32

ρair (kg/m3) 1.108

A (m2) 2.63

Motors power (kW) 30

Fuel cell

Voltage (v) 200

MOP and NOP (A, V) 150,200 and 40,200

Number of cells 285

Supply pressure h2 (bar) 1.5

Efficiency (%) 55

Composition: H2O, H2, O2 (%) 1, 99.95, 21

DC generator

Armature resistance Ra (Ω) 0.8727

Power (kW) 3

La (H) 0.001882

Tem (N.m) 4.2

Battery pack

Capacity (Ah) 20

Nominal voltage (V) 200

Fully charged (V) 230

SC bank

Rated voltage 200

Internal resistance (Ω) 2.10−4

Rated capacitance (F) 14.6
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Equation (1) describes the EV power demand PLoad using longitudinal vehicle dynamics [7].

PLoad = V0((m·g·f·cos(θ) +
1
2
ρair ×V0

2 ×A× cd) + (m·g·sin(θ) + m·δdv
dt

)) (1)

where V0 is the EV velocity, m is the EV weight, g is gravitational acceleration, A is frontal
area, f is the rolling coefficient, θ is road slope, Cd is air coefficient, ρair is air density.

3. Modelling of the Proposed HEV

HEV consists of several essential components that work to maintain coordination in
performance by adjusting the control system with converters and sources. Each subsystem
is explained in the following parts to explain the HEV accurately.

3.1. Modelling of the HESS
3.1.1. Li-Ion Battery Model

Batteries are considered one of the most critical energy storage systems due to their
electrochemical nature in charging and discharging [20]. The limitations of traditional
batteries such as lead-acid, NIMH, and others prompted the researchers to produce so-
called lithium-ion batteries. The high energy density and efficiency of Li-ion batteries has
made them more attractive for traction systems in recent years [21].

The mathematical battery model included under the SPS is based on a modified
Shepherd curve fitting model, which is also based on voltage polarization. It is added to
the mathematical expression of the battery discharge voltage to clearly show the battery’s
SOC’s impact on its performance [22].

Additionally, the polarization resistance is considered using a filtered battery current
rather than the actual battery current to maintain simulation stability [23].

It has been included as a diagram to simplify the mathematical model of the BESS, as
shown in Figure 2 [17,18].
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Figure 2. BESS mathematical model. Where E0 is the BCV, K is polarization constant V/(Ah), Q is
battery capacity (Ah), i* battery filtered current, Ab is exponential zone amplitude, B is exponential
zone time constant inverse, Rb is battery internal resistance, and Polres is Polarization resistance, it is
the actual battery charge (Ah).

3.1.2. Supercapacitor Model

SCs are among the essential fast-intervention energy storage devices in transitional
regimes. Two porous carbon electrodes submerged in an electrolyte are the main com-
ponents of the SC [24]. The electrolyte’s negative ions move to the positive electrode,
whereas the positive ions move to the negative electrode when a voltage is applied across
the electrodes of SC [25]. The SC gets the name of a double-layer capacitor when the layer
of charge of each electrode is created. It helps attain a high capacitance because of the
electrode’s porosity and the proximity of the charges [26].
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The mathematical model of SC is presented as a diagram illustrated in Figure 3 [18].
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Figure 3. The descriptive model of SC. Where Ne is the number of electrode layers, ε & ε0 are the
permittivities (F/m) of the electrolyte material and free space, Ai is the interfacial area (m2), D is the
Helmholtz layer length (m), Qc is the cell electric charge (C), C is the molar concentration (mol m−3).
Np, NS, Ne cells number, QT is the total electric charge (C), is supercapacitor module resistance (Ω),
and iSC is supercapacitor module current (A).

3.2. Modeling of the FC

The fuel cell resource is one of the most important clean energy sources. It has been
a significant development in traction systems, where it is a renewable source that converts
chemical power into electrical energy. Respecting the first principle of thermodynamics, the FC
produces energy by oxidizing hydrogen without a mechanical handle [27,28]. Figure 4 explains
the principle of cell work by including the most important mathematical equations [7,17,27].
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Figure 4. The descriptive model of FC. Where Vfc is fuel cell output voltage, I0 is the exchange current
(A), Ufh2, Ufo2 are hydrogen and oxygen utilization, Pfuel, Pair are supply pressures of fuel and air (atm),
x and y are percentages of hydrogen and oxygen, Vfc and Vair are fuel and air-flow rates (l/min), ifc is
cell current (A), Ph2 and Po2 are hydrogen and oxygen partial pressures (atm), T is operating temperature
(K), F is Faraday constant (A s/mol), R is ideal gas constant (J/mol K), K is voltage constant, E0 is cell
open circuit voltage, En is thermodynamic voltage, Ku is voltage undershoots. Ufo2n is nominal oxygen
utilization (%), N is the number of cells, Td is cell settling time to a current step, α is the charge transfer
coefficient, ∆G is activation energy barrier (J), K is Boltzmann constant (J/K), h is Planck constant (J s).
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3.3. Exploiting of EV’s Kinetic Energy
3.3.1. DC Generator

PMDCGs are generators that use permanent magnets rather than rotor windings
to convert mechanical energy into direct current. These generators can be connected to
turbines, diesel, and hybrid cars without requiring a separate DC supply, slip rings, or
contact brushes. These machines can be used in machines that generate energy from wind
and water and do not call for special working conditions. Wind energy is the primary
concept behind using the PMDCG in the EV kinetic energy [17,29–32].

Figure 5 represents the EV front wheel connected to the DC generator.
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voltage and current, Pa is PMDCG output current, and E is electromotive force.

3.3.2. Exploiting of EV’s Kinetic Energy Using DC and AC Generators

Exploiting the kinetic energy of electric vehicles allows for the production of DC
energy by adding PMDC generators. It is also possible to produce AC energy using AC
generators [17]. It is sufficient to connect the DC-DC boost converter to each generator,
which transmits the same DC bus voltage to maintain the same DC bus voltage when using
DC generators. In contrast, in the case of using AC generators, it is necessary to use the
AC-DC converter in addition to the DC-DC boost converter, which may affect the system’s
efficiency [33]. Regarding weight, DC generators are somewhat heavier than AC generators.
DC generators are more expensive than AC generators [32].

3.4. Design and Control of Power Converters
3.4.1. Bi-Directional and Boost DC-DC Converters

The KCL and KVL laws can be used to determine the expressions of converter dy-
namics. The input/output voltage and current conversion percentages in the bidirectional
converter are VHigh = VLow/(1−D

)
and ILow = IHigh/(1−D). The general BDC’s TF is

obtained by converting the time mode signal to the S mode signal to get the close-loop
design (control performances) [18], where D is the duty cycle.

The primary condition for tuning the smooth DLC controller considers the external
loop controls DC voltage by generating the reference current to the inner loop [25]. To the
dynamic of the BDC, the outer loop is slower than the inner loop.

For fast responses, it necessary to ensure that the inner loop bandwidth is three
times the outer loop bandwidth, and the SC current loop must be greater than the battery
current loop. The input/output voltage conversion percentage in the boost converter is
VLow = VHight.(1−D).

As shown in Figure 6, the BESS and SC ESS are connected to a bidirectional DC-DC
converter; it has been reformulated in a detailed diagram of the used DC/DC converters
with their control structures [18].
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Figure 6. Circuits and control structures of the HESS batteries: (a) DC-DC converters, (b) bidirectional
control unit based on ST-SMC. where: VDC is dc voltage, isc is supercapacitor current, I HESS is total
system current, I BESS battery current, Vsc is supercapacitor voltage, VBESS battery voltage, e is for
errors, (*) reference value and (s1, s2, . . . .s4) are switches control.

3.4.2. LPF Control

FBC divides the load current into HF parts handled by the switching controller during
transients and LF parts flattened by the battery at steady states, and it is also due to the
slower charge/discharge compared to the faster charge/discharge of the supercapacitor
due to BESS and supercapacitor’s different internal characteristics.



Sustainability 2023, 15, 5657 8 of 21

Additionally, ST-SMC is the hybrid system’s controller (non-linear). It regulates and
recovers the bus voltage and tracks battery setpoint currents, while the HCC regulates the
SC’s current flowing [18].

3.4.3. The Super-Twisting Controller

The chattering impact is the resilience cost of control signals, generating reliability
control challenges. One of the advantages of SMC is its superior resistance to matching
disruptions, but this comes at the expense of the system’s overall resilience. According to
that, the chattering phenomena can be mitigated in a few different ways [18,34–38]:
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The first solution is less resistant to interruptions, the switching gain estimation
for the second solution may climb monotonically owing to the lack of perfect sliding
motion in actual practice, and the third solution’s gain stability calculations may be
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To perform the control process, the second-order sliding mode controller (SO-SMC),
such as the ST-SMC specified in Figure 7, needs just feedback information on the sliding
variable “S”. The experimental variable that determines how quickly a response is given is
denoted by the letter K.
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Figure 7. The standard structure of the super-twisting controller.

Setting K = 1 is the first step in the tuning process; if the system reacts slowly, it
will progressively increase, and if it responds quickly, it will gradually decrease. This
process will continue until accurate convergence. Intended responses are achieved. The
trial-and-error tuning approach determines the ideal gains (K1, K2) that keep the current
and duty cycle around 0.9 and 1.1 of their setpoints to discover the optimal gains that will
be utilized to tune the system [18,34–38].

3.5. The ANFIS DTC-SVM Speed Controller

The ANFIS controller is considered one of the most robust controllers based on artificial
intelligence techniques (neural with fuzzy), which depends on its performance on a pre-
defined database. The ANFIS controller can learn the distinguish mapping that contains
the inputs and output of the system’s signals. The adaptive neuro-fuzzy inference strategy
is not based directly on the arithmetical description of the system; instead, it is based on
the database (output/input) and the membership selected [39].
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The definition of the (inputs)/output database, defined by (the speed error and its
derivative)/torque, specifies the ANFIS controller’s general structure. The error is handled
by the fuzzy controller’s memberships, which allows the generation of outputs as the
neural controller [40].

Based on the SVM method, the traditional DTC-SVM algorithm consists of three
PI controllers that produce reference values for ensuring smooth switch control. Our
proposal to create a torque reference in this study is to replace the speed PI controller with
the ANFIS controller for the control bladder and avoid losses as much as possible. The
references [17,37,41,42] contain a detailed explanation of the ANFIS-DTC SVM.

Figure 8 shows the control technique of the EV’s rear wheels based on the ANFIS-
DTC-SVM, where Figure 8a represents the general control technique of each wheel, and
Figure 8b represents the ANFIS controller structure with the used membership.
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3.5.1. SVM Unit

By modulating the components of the obtained reference voltage using the SVM
approach, the command states for the inverter are created. The three vectors that encircle
each sector are depicted in Figure 6. Calculations of vectors are used to determine the
amount of time required to apply each vector, and the remaining time is spent applying the
null vector. The vector durations T1 and T2 can be found using Equation (2) [17,19].{

T1 = Ts
2.vDC

(√
6vβs

∗ −
√

2vαs
∗
)

T2 =
√

2 Ts
vDC

vαs
∗ (2)
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Vαs and Vβs are reference voltage vectors, T1 and T2 are the corresponding vector
durations, Ts is the sampling time, and vDC is the DC bus voltage. The calculation of duty
cycles based on the SVM algorithm for the first sector is expressed in Equation (3). Ta =

Ts−T1−T2
2

Tb = Ta + T1
Tc = Tb + T2

(3)

Figure 9 represents the space vector voltage and duty cycle diagram for sector 1.
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Table 2 shows the command state of each switch generated from the SVM algorithm.

Table 2. Cycles of SVM outputs.

Sector 1 2 3 4 5 6

Sa Tb Ta Ta Tc Tb Tc
Sb Ta Tc Tb Tb Tc Ta
Sc Tc Tb Tc Ta Ta Tb

3.5.2. ANFIS Controller

ANFIS is a form of artificial intelligence that operates based on a neural network
and is compatible with the Takagi–Sugeno fuzzy inference method, as seen in Figure 8b.
This method uses an existing observation database to construct the fuzzy inference system
(input and output) [43]. The structure has one output and two inputs (error and derivative).
Moreover, it has layers of the ANN structure (control signal u). The if–then rules can be
obtained by utilizing the Equation (4) [40,43,44].

Rn = If M1n (e) and M2n (e), then f =Pn e(t) +qn ∆e(t) + rn (4)

The terms ‘n’ represents the rule number, M1n and M2n are membership functions of
fuzzy, and Pn, qn, and rn are the parameters of the nth rule.

Calculating the degrees of membership functions based on the input variable, also
known as basic fuzzification, is an important part of the process. Equation (5) is used to
calculate each layer node, while an, bn, and cn are parameters that are predetermined values.
Layer 2 is the inference layer, and Equation (6) determines the wn values, representing the
second layer’s outputs using the error and its derivative (e and ∆e). The third layer is the
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normalization layer, and its height may be determined using the weights of the two layers
that came before it, as shown in Equation (7).

M1n =
1

1 +
[

x−cn
an

]bn (5)

wn = M1n(e)×M2n(∆e) (6)
∼
ωn =

wn

∑n wn
(7)

Equation (8) can describe the nodes that comprise the fourth layer, where P, q, and r
represent a different set of parameters, and the term u stands for the control signal.

∼
ωnu =

∼
ωn(Pne(t) + qn∆e(t) + rn) (8)

Layer 5 is the final layer (output layer), and it calcules the sum of output signals from
the nodes in the preceding layers to obtain the next part of the rules [45].

∑
n

∼
(ωnu) = ∑n wnu

∑n wn
(9)

3.5.3. Flux and Torque Estimators

Equation (10) illustrates the calculation of the flux components (ϕαs ϕβs) [19,46].{
ϕαs =

∫ t
0 (Vαs − Rsiαs)dt

ϕβs =
∫ t

0

(
Vβs − Rsiβs

)
dt

(10)

The stator flux ϕs and electromagnetic torque can be computed as [19,42].{
‖ ϕs ‖=

√
ϕαs2 + ϕβs

2

Tem = P
(

ϕαs.iβs − ϕβs.iαs
) (11)

Tem and P are the electromagnetic torque and the number of pole pairs.

3.6. The Proposed Energy Management Strategy

SM is an essential technique for managing energy based on specific conditions and
rules. Each rule or state of an EMS is defined following heuristics or prior empirical
information. A rule-based solution that is both basic and widely used is utilizing state
machine control. Due to this, this method’s efficiency depends on the designer’s expertise
with the operation of each component that goes into making up the system.

Figure 10 provides a more detailed explanation of this method and illustrates its
algorithm applied to a hydrogen fuel cell hybrid electric vehicle (HEV). The fuel reference
power is determined by applying the conditions to the calculation (battery state of charge
and powers of load and generators).

The fuel cell is capable of operating in either the load-following mode (also abbreviated
as LF) or the load-leveling mode (also abbreviated as LL) [7,17,47].

The conditions of this SM-EMS respected the balance between fuel consumption and
the battery’s SOC [10–90] (%) to conserve the battery’s cycles by avoiding floating or
bulk charging [7,17,47].
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3.7. Autonomy and Stress Analyses

As represented in the literature, the autonomy of the electric system is one of many
problems in their applications, especially in electric vehicle applications. Each EV’s au-
tonomy depends on the quantity of energy in its sources, where EVs can work without
refueling or recharging ESSs by external sources that are addressed [48].

For the case of HEV, the specified EV autonomy is as follows. At first, the HEV’s
sources are thought about with the prospect of securing the typical distance while main-
taining its nominal function.

After that, the proposed topologies (software and hardware) are considered, and the
feasibility of their use in a specified hybrid system, considering their benefits, are evaluated
(cost, difficulty, and realizations). After establishing that there is a chance of embodiment
taking place, the system’s autonomy is established by:

Determining the added distance gained through autonomy improvement applications,
determining the amount of fuel saved by improvement applications, and the impact of this
improvement on the system’s stability and the source’s function [49–52].

Reducing the stress on the sources is one of the most significant improvements needed
in the hybrid system, as it improves the system’s autonomy, ensuring the sources work for
a more extended period and thus increasing the system’s efficiency [52–54].

Figure 11 represents an explanation schematic of relationship between the autonomy
and sources of stress studied in our work.
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Figure 11. Explanation schematic of the relationship between autonomy and stress. The EV goes the
distance of D (km) with significant stress on the sources in basic topology. In contrast, the same EV
goes after improving the distance of D + d (km), reducing stress on the sources, thus improving the
studied system’s independence.
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3.8. The Supply Efficiency

The assembly of many sources helps to increase the efficiency of the hybrid electrical
system by providing the necessary energy and ensuring a smooth balance of power within
the hybrid system [49,50].

Efficiency improvement processes in hybrid systems include two main points: the
efficiency of improvement-based software and improvement-based hardware [55]. Software
technique improvement is applying robust energy management strategies and improving
innovative methods [17,18].

Efficiency can also be improved by optimizing the converters’ control and the traction
system control of the electric vehicle. The second part (hardware) improves efficiency
by adding many sources with quick responses, respecting the nominal conditions of the
system function, and avoiding pressure that causes significant losses [56–58].

4. Results and Discussion

After accurate modeling of the HEV, this part describes and discusses the main ob-
tained results. The analysis of the scenario’s results highlights the impact of the robust
controller and the EV kinetic energy using DC generators, improving the HEV’s dynamic.

The results are presented, respectively, and include the mechanical responses of
HEV’s motors (speed, torque, current, and flux), the power balances system, BESS and FC
behaviors in each topology, the bus voltage stability, and finally, efficiencies and the errors
of controllable variables based on ST-SMC controller. Table 3 presents the running scenario
of HEV for simulation tests.

Table 3. The running scenario of HEV for simulation tests.

State Period Explanation

1 [0, 40] The HEV’s reference speed is 90 km/h using a ramp of (11◦) [20–30] (s).
2 [40, 70] The HEV’s speed is 60 km/h.
3 [70, 90] The HEV runs at 100 km/h, applying the slope of 12◦ from 80 to 90 (s).
4 [90, 135] The HEV’s speed dropped to 60 km/h, detoured 30◦ on the left.
5 [135, 140] The vehicle stopped during this period.

Figure 12a displays the HEV’s wheels’ speed and electromagnetic torque responses
regulated by the ANFIS-DTC-SVM algorithm, where the predicted speed and reference
speed are the same, in addition to the response of the electromagnetic torque, which shows
the vehicle control reliability in [20–30] second, and [80–90] seconds (s).

The EV went along its pathways with speed values, ramps, and detours, controlled by
the robust ANFIS controller (the ED creates the wheels’ setpoint speed).

Figure 12b shows the stator current of EV’s motor without waves, where the beginning
current was 138 (A) with simultaneous response with the load. Figure 12c shows the
flux form by managing the nominal flux value and the smooth circular shape of the flux
compound ring with a diameter of 0.8 (web) without being impacted by load variation.
Further, all topologies have the same speed, torque, and currents.

Figure 13 shows the proposed HEV power balance profiles based on SM-EMS. Besides
DC generators, the supplied energies from FC, battery, and SC highlight the influence of
kinetic energy on the HEV’s stability.

HEV relies heavily on the BESS as the primary ESS, which works in parallel with the
rest of the sources (FC and supercapacitor) to secure the EV’s supply. The battery and SC
are considered energy storage units. The battery contributes to the permanent systems for
energy balance, and the capacitor takes care of the transitional systems due to the physical
properties of batteries. In the basic scenario (without generators), the battery and FC secure
the needed power for the EV in [0–40] (s), where the FC contributed by 8.5 (kW) and the
battery contributed by 5 (kW).
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The installation of generators reduced the BESS and FC powers to 5.5 (kW) and
3.5 (kW), respectively. Exploiting kinetic energy reduces BESS power in [40–70] (s) com-
pared to the basic topology. The DC generator’s power reduced the FC generated power
in [70–90] (s). During [90–140] (s), HEV kinetic energy helped to reduce the generated
BESS’s power.

In general, exploiting EV’s kinetic energy contributed to 28 (%) of EV’s power using DC
generators, in addition to reducing the battery and FC power production. This contribution
will decrease the amount of power produced by the BESS and the FC and will be reflected
in subsequent results regarding the discussion of stress and the amount of fuel consumed.

Figure 14 represents BESS and FC operating behavior under the proposed topologies.
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power, (c) BESS stress, (d) FC stress, (e) BESS’s state of charge, and (f) fuel consumption.

The first Figure 14a shows the BESS energy production during each topology. As
illustrated in the basic topology (without generators), it is clear that the power generated
from the BESS in the proposed topology is less than the BESS-delivered power in the basic
topology in all periods of the scenario, where the depreciation of the BESS power in the
average of 35 (%).

The second Figure 14b represents FC-generated power during each topology, where
the use of EV kinetic energy contributed to reducing the FC-generated power to 53 (%) in
[0–40] (s) and [70–90] (s).

The lack of generated power reduces sources of stress, as shown in Figure 14c,d. The
EV kinetic energy reduced the BESS and FC stress by 23 (%) and 10 (%), respectively,
compared with the basic topology.

Figure 14e represents the BESS SOC behavior of each topology, where the EV kinetic
energy contributed to reducing the discharge state of the BESS, allowing for extending the
life of the BESS and the EV autonomy.

Finally, Figure 14f shows the fuel consumption in each topology. The basic topol-
ogy estimated the fuel consumption at an average of 24.78 (SI). The proposed topology
contributed to reducing fuel consumption by 39 (%) (from 24.78 (SI) to 15.07 (SI)).

The stability of the HEV is depicted in Figure 15, where Figure 15a depicts the DC
bus voltage during the proposed scenarios, where the HEV was stable without exceeding
international standard thresholds ±5 (%) of the setpoint voltage of 400 (V).

Both topologies’ voltage response times are within acceptable 0.05 (s) limits. Figure 15a
and zoom ones show that the ripple in the DC bus voltage while employing EV kinetic
energy was much more smoothness than in the basic design, which had a value of roughly
0.03 (V). The max overtaking is less than 2 (V).

The immediate deformations are shown at 70 and 90 s (highlights 1 and 2), and others
result from fast variation speed and implementation changes. Due to these deforma-
tions, the supercapacitor forced the system to act, as seen in Figure 15c. This immediate
intervention ensured the required energy and the DC bus voltage stability.

When the EV speed rises to 70 (s), the SC intervention power in the basic topology is
0.8 (kW). However, the energy in the topology with a DC generator is only 0.2 kW. The end
of the ramp is coordinated with a drop in speed at 90 (s), prompting the SC intervention
by 0.8 (Kw) in both topologies with an increase of additional retrieval pulse in the basic
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topology. As a result, the HEV system remained stable for the entirety of the simulation in
each topology.

Sustainability 2023, 15, x FOR PEER REVIEW 17 of 23 
 

 

Figure 14e represents the BESS SOC behavior of each topology, where the EV kinetic 

energy contributed to reducing the discharge state of the BESS, allowing for extending the 

life of the BESS and the EV autonomy. 

Finally, Figure 14f shows the fuel consumption in each topology. The basic topology 

estimated the fuel consumption at an average of 24.78 (SI). The proposed topology con-

tributed to reducing fuel consumption by 39 (%) (from 24.78 (SI) to 15.07 (SI)). 

The stability of the HEV is depicted in Figure 15, where Figure 15a depicts the DC 

bus voltage during the proposed scenarios, where the HEV was stable without exceeding 

international standard thresholds ±5 (%) of the setpoint voltage of 400 (V). 

 

Figure 15. HEV voltage stability during transient and steady-state proposed scenarios: (a) DC bus 

voltage of each topology, (b) power losses of each topology, and (c) SC behavior of each topology. 

Both topologies’ voltage response times are within acceptable 0.05 (s) limits. Figure 

15a and zoom ones show that the ripple in the DC bus voltage while employing EV kinetic 

energy was much more smoothness than in the basic design, which had a value of roughly 

0.03 (V). The max overtaking is less than 2 (V). 

The immediate deformations are shown at 70 and 90 s (highlights 1 and 2), and others 

result from fast variation speed and implementation changes. Due to these deformations, 

the supercapacitor forced the system to act, as seen in Figure 15c. This immediate inter-

vention ensured the required energy and the DC bus voltage stability. 

When the EV speed rises to 70 (s), the SC intervention power in the basic topology is 

0.8 (kW). However, the energy in the topology with a DC generator is only 0.2 kW. The 

end of the ramp is coordinated with a drop in speed at 90 (s), prompting the SC interven-

tion by 0.8 (Kw) in both topologies with an increase of additional retrieval pulse in the 

basic topology. As a result, the HEV system remained stable for the entirety of the simu-

lation in each topology. 

Power deliberation naturally resulted in some power losses per the rule of power 

conservation. It is possible to trace it back to the energy losses of the analyzed model (as 

seen in the second subfigure). Due to the addition of sources, the system lost negligible 

energy losses compared to the quantity of energy obtained. Adding further power creates 

a loss proportional to the total amount of energy, which may be seen as a negative conse-

quence of adding energy. 

As shown in Figure 16, the power controller has demonstrated superior robustness 

in keeping the system tight and stable. Figure 16 illustrates how the controller handles 

Figure 15. HEV voltage stability during transient and steady-state proposed scenarios: (a) DC bus
voltage of each topology, (b) power losses of each topology, and (c) SC behavior of each topology.

Power deliberation naturally resulted in some power losses per the rule of power
conservation. It is possible to trace it back to the energy losses of the analyzed model (as seen
in the second subfigure). Due to the addition of sources, the system lost negligible energy
losses compared to the quantity of energy obtained. Adding further power creates a loss
proportional to the total amount of energy, which may be seen as a negative consequence
of adding energy.

As shown in Figure 16, the power controller has demonstrated superior robustness in
keeping the system tight and stable. Figure 16 illustrates how the controller handles errors
brought about by the reference and measured values of the common converters used across
the two topologies. This figure also demonstrates the global system’s efficiency.

These results included the DC bus voltage error, the control error of DC-DC BDC
(current loop error), the FC control error, and the control error of SC’s BDC.

The results of the voltage control were the same (≈0.0013%), where the EV kinetic en-
ergy based on a robust controller (ST-SMC) increased the system’s performance. Compared
to the basic topology, the strength of the current control increased by 53%, while the control
of the FC boost converter was enhanced by 8%. As demonstrated in the same figure, the
error control of the SC’s BDC has been improved by 60 (%).

Part c represents the efficiencies of the proposed topology and the basic topology.
The EV kinetic energy improved the system’s efficiency due to the decrease in stress on
the converters, which decreased losses and improved efficiency by 1 (%) compared to the
efficiency of the basic topology.

Table 4 summarizes the results of improving the performance of the electric vehicle
compared to the primary method. Comparison points include response time, efficiency,
fuel consumption, and SOC with mechanical and energy control errors (RMSE, MAE),
where the results show significant superiority of the proposed topology in most points.
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Figure 16. The HEV performance evaluation using KPIs indexes: (A) errors control in the basic
topology (without generators), (B) errors control using DC generators and (C) efficiency of the system
in the proposed topologies.

Table 4. Comparison of the HEV performance using the proposed topologies.

Criteria
HEV Scenarios

with DC Generators Basic HEV

Response time (s) 0.05 0.05
Efficiency (%) 98 97

SOC (%) 60.1–59.7 60.1–59.52
Fuel consumption (SI) 15.07 24.78

Stress (%)
BESS 41 62

FC 29 38
DC bus voltage (V)

RMSE (%) 0.0013 0.0014
MAE (%) 0.00005 0.0047

Battery current control error (A)
RMSE (%) 0.038 0.17
MAE (%) 0.025 0.01

FC current control error (%)
RMSE (%) 0.15 0.164
MAE (%) 0.141 0.144

SC current control error (A)
RMSE (%) 0.004 0.075
MAE (%) 0.0037 0.055

HEV speed control error (%)
RMSE (%) 0.4 0.4
MAE (%) 0.17 0.17

HEV torque control error (%)
RMSE (%) 0.59 0.59
MAE (%) 0.24 0.24
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5. Conclusions

Within the scope of this research, the enhancement of electric vehicle performances
using DC generators and robust controllers was investigated. The proposed topologies have
been investigated by simulating a 30-kW two-wheel drive electric vehicle while maintaining
the same environmental and electrical management systems (EMS). The improved efficacy
and robustness of the controllers can be seen in the stable behavior exhibited by the hybrid
system across all possible topologies. The controllers have been refined. The suggested
topology contributed to the exploitation of free energy by lowering the stress on the FC
and BESS, which helped to maintain the useful life of the resources for an extended period.
As a result of the HEV’s contribution to the reduction of fuel consumption, which in turn
allowed for the saving of hydrogen as an economic consideration, the EV’s autonomy and
running duration were extended by the HEV’s kinetic energy.

Finally, considering future prospects, the outstanding findings of kinetic energy ex-
ploitation employing robust controllers (speed controller and converters controller) are
incentives for the experimental validation of the proposed HEV, besides applying EV’s
kinetic energy in the optimization algorithms.
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Abbreviations

EMSs Energy management strategies
HEV Hybrid electric vehicle
FC Fuel cell
DC Direct current
AC Alternative current
PI Proportional-integral
SM State Machine
ANFIS Adaptative neural fuzzy inference system
ANN Artificial neural network
SC Supercapacitor
2WD Two-wheel drive
ESS Energy storage system technology
PMDCG Permanent magnetic DC generator
Kp Proportional gain
Ki Integral gain
DTC Direct torque control
Pev Electric vehicles power
Psc Supercapacitor power
Pbat Battery power
Pfc Fuel cell power
PDCg DC generators power
SVM Space vector modulation
HESS Hybrid energy storage system
HS Hybrid system
BCV Battery constant voltage
DCG Direct current generator
BESS Battery energy storage system
KVL Kirchhoff voltage law



Sustainability 2023, 15, 5657 19 of 21

KCL Kirchhoff current law
BDC Bidirectional converter
TF Transfer function
FBC Filtration-based control
HF High-frequency
LF Low-frequency
NOP Nominal operating point
NOP Nominal operating point
BDC Bidirectional converter
SPS Simulink sim-power systems
MPPT Max power point tracker
NIMH Nickel–metal hydride
SOC State of charge
HCC Hybrid current control
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