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Abstract: This paper focuses on modeling mixed traffic flow that comprises human-driven vehicles
(HV), adaptive cruise control (ACC) vehicles, and cooperative adaptive cruise control (CACC)
vehicles in the off-ramp diverging area. The car-following behaviors of HVs, ACC vehicles, and
CACC vehicles are modeled using an intelligent driver model (IDM), ACC car-following model, and
CACC car-following model, respectively. The lane-changing behaviors of different types of vehicles
in off-ramp diverging areas are modeled using the anticipatory lane change (ALC) model and the
mandatory lane change (MLC) model. These models are important for describing the interaction
among different types of vehicles in mixed traffic. The safety and efficiency of mixed traffic flow are
analyzed by integrating the developed car-following models and lane-changing models in numerical
simulation. A one-way, two-lane scenario is established for the simulation. The results reveal that
when the proportion of CACC vehicles is about 0.6, the safety and general operating efficiency of
mixed traffic flow in the off-ramp area deteriorate significantly. Increasing the conservative MLC
zone length can improve the average speed of traffic flow. Guiding drivers in changing lanes is one
way to improve the efficiency of traffic flow.

Keywords: mixed traffic flow; cooperative adaptive cruise control; car-following; lane-changing;
off-ramp diverging areas

1. Introduction

In recent years, a series of advanced sensors, controllers, and solutions have facilitated
the birth of connected autonomous vehicles. Connected and automated driving technology
has great potential in terms of traffic safety [1,2], road capacity [3,4], fuel consumption [5–7],
driving experience [8], etc.

The off-ramp is a bottleneck section that affects the mainline traffic of the freeway and
is a zone that is prone to accidents and congestion. Alleviating the traffic congestion in the
bottleneck section of the off-ramp can effectively improve the general operating efficiency
and driving safety of the transportation system. In research related to the modeling of
off-ramp traffic flow, Dong et al. [9] introduced a risk factor into the discretionary lane-
change model and designed a five-step mandatory lane-change decision-making model
for connected autonomous vehicles when exiting the off-ramp. Zhang et al. [10] analyzed
the influence of lane-changing strategy on three traffic parameters from the perspective of
combining traffic control and variable speed limits.

Cooperative adaptive cruise control (CACC) and adaptive cruise control (ACC) are
widely used in vehicles with high driving automation levels [11,12] to control the longi-
tudinal motion of vehicles. CACC vehicles obtain the speed, position, and other driving
information that is actively transmitted by surrounding vehicles through the vehicle-to-
vehicle communication system. ACC vehicles observe the information from surrounding
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vehicles through onboard units, radar, and other detection equipment. Research on traffic
flow utilizes microscopic modeling and operation characteristics and is the primary focus
of the traffic engineering field. In research applying the car-following model, the full-speed
difference model [13] and the intelligent driver model [14] are widely used to simulate the
car-following behavior of manually operated vehicles. The CACC model and ACC model
proposed by the PATH laboratory of the University of California, Berkeley, USA from real
vehicle tests are often used as the basic model to describe the lane-changing behavior of
connected autonomous vehicles [15–17]. To develop this approach, Hidas [18] divided
lane-changing behavior into three types: random lane change, anticipatory lane change
(ALC), and mandatory lane change (MLC). In the case of random lane change, Yang [19]
analyzed the impact of its implementation on the following and preceding vehicles. The
lane-changing model thus constructed can better reflect the impact on traffic flow of the
interference process between vehicles. Zheng et al. [20] divided the transition induced by
lane-changing into an anticipation component and a relaxation component. Compared
with random lane changing, mandatory lane changing mostly exists near intersections
and on-ramp and off-ramp systems [21], which very easily cause bottlenecks in the traffic
system. Presently, the research suggests that the closer the vehicle is to the exit point, the
higher the probability of the driver implementing a mandatory lane change. However, the
existing methods do not take into account the differences between CACC vehicles and HVs
in terms of data acquisition, information processing, and decision-making actions and lack
a description of the horizontal interaction between the two types of vehicles.

There is little research into the off-ramp lane change model of connected autonomous
vehicles in the existing literature. On the one hand, the freeway has heavy traffic flow
and fast speeds. The off-ramp diverging area is the area where the mainline vehicles
and the off-ramp vehicles are intertwined. There are right-of-way conflicts and the traffic
organization is relatively chaotic, which makes traffic accidents more likely. The complex
road environment determines the complexity of the research object. On the other hand,
most of the existing lane change models are only applicable to human-driven vehicles (HV),
not to mixed traffic flow, and the lane change model of the off-ramp diverging area is more
complex than that of the basic road section. These issues lead to insufficient research into
the modeling of mixed traffic flow in the off-ramp area.

The main objective of this study is to model the car-following and lane-change be-
haviors of CACC vehicles, ACC vehicles, and HVs in off-ramp areas and their impacts on
traffic safety and efficiency. The remainder of this paper is structured as follows: Section 2
introduces related works in the literature, while Sections 3 and 4 present the car-following
model and the lane-changing model, respectively. In Section 5, the simulation scheme and
analysis index are described in detail. Traffic safety and the efficiency of mixed traffic flow
are analyzed via simulation in Section 6. Our concluding remarks and a discussion of
future work are given in Section 7.

2. Related Works

Research on traffic flow via microscopic modeling and operation characteristics is
the focus of traffic engineering. The car-following model is the basis for explaining the
evolution of traffic flow at the micro-level. In the traditional car-following model, the
stimulus–response model is represented by the GM model [22] and the Newell model [23].
A car-following model based on cognitive psychology is represented by the physiological–
psychological car-following model established by Wiedemann, which has become the core
model of many famous micro-simulation software programs, such as VISSIM. Traffic engi-
neering models can effectively reflect the impact of the subjective judgment and operation
of the driver in terms of vehicle-following. It focuses on accurately fitting the measured
driving data at the micro-level. Models developed on the basis of cellular automata theory,
such as Rule 184 and its extended NaSch model, can better explain the essence of traffic
element dispersion [24]. The time, space, and vehicle speed are all discretized by integers.
The discrete and finite cells can accurately simulate the evolution law of a complex system
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in the two dimensions of time and space. With the development of connected autonomous
vehicles, a new generation of connected autonomous assisted driving systems based on
constant-speed cruise control systems, such as ACC and CACC, has emerged [25,26]. The
PATH laboratory of the University of California, Berkeley, USA, conducted long-term
research on the ACC/CACC system and calibrated the parameters of the ACC/CACC
car-following model through real vehicle testing. Therefore, the traffic flow theoretical
research based on such models can objectively describe the impact of ACC/CACC vehicles
on the traffic flow characteristics [15]. The intelligent driver model (IDM) constructed by
Treiber et al. [14] describes typical car-following behavior, taking into account the expected
speed, car-following distance, and the asymmetric behavior of the acceleration and decel-
eration processes caused by the habits of the driver or vehicle acceleration/deceleration
performance differences. IDM reflects the accurate perception and operation of the con-
nected autonomous auxiliary equipment. The optimized improved model has become a
typical representative of the ACC/CACC vehicle car-following behavior model and has
been widely used.

As the most basic driving behavior, lane changing is an important part of traffic flow
theory. The different motivations for lane changes can be divided into anticipatory lane
changes and mandatory lane changes. From the perspective of lane-change behavior model-
ing, most of the models are based on the modeling research proposed by Ahmed et al. [27],
in which the lane-change process is divided into four discrete processes: motivation gen-
eration, lane selection, gap selection, and lane change execution. There are few studies
on the comprehensive strategy modeling of mandatory lane change and anticipatory lane
change in the off-ramp area of urban roads or expressways. In their study [28], Zhang
et al. used the Shanghai natural driving research (SH-NDS) data to study the lane-change
characteristics of the off-ramp area of the expressway under different traffic conditions.
A discrete selection framework is adopted in lane-change decisions, and utility functions
that are weighted by different parameters are constructed. The concept of utility is used to
measure the satisfaction of changing to the target lane under specific traffic conditions and
driving routes. The research results show that the lane-change behavior of exiting vehicles
is the result of a balance between path planning (mandatory incentive) and the expectation
of improving driving conditions (discretionary incentive). To some extent, it reveals the
mechanism of lane-change behavior in the off-ramp area, the factors that affect lane-change
behavior under different traffic conditions, and the preference of the driver. The decision
model used in this study is an instant decision model based on the current traffic scenario.
In one previous study [9], the modified comfortable driving car-following rule and the
PATH car-following model are used to simulate the longitudinal movement of vehicles.
Based on the characteristics of human-driven vehicles and connected autonomous vehicles,
parameters such as the vehicle perception range, lane-change control area, and lane-change
risk factor are introduced to establish anticipatory lane-change and mandatory lane-change
models that control the lateral movement of vehicles. Through numerical simulation, the
influence of the generation probability of mainline vehicles, the proportion of off-ramp
vehicles, the CACC vehicle penetration rate, the vehicle perception range, the length of
the lane-change area, and the risk degree of lane changes on the traffic flow is explored.
The research shows that the larger the vehicle perception range, the longer the lane-change
area length, and the greater the risk of lane change; it is possible to improve the operation
efficiency of the mixed traffic system, which has a positive effect on delaying the generation
of congestion and accelerating the dissipation of congestion.

Mandatory lane changes in the off-ramp area often seriously affect traffic capacity and
stability, so it is necessary to alleviate traffic congestion. In their study of suggestions for
alleviating traffic congestion, Nafi et al. [29] proposed a predictive road traffic management
system (PRTMS) based on a vehicular ad hoc network (VANET) architecture. The proposed
PRTMS uses a new communication scheme to estimate the future traffic intensity at different
intersections based on the improved linear prediction algorithm. The simulation is con-
ducted using the comprehensive OPNET model. The scheme has a significant performance
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improvement in the total travel time and waiting time of vehicles. Zambrano-Martinez
et al. [30] proposed a centralized traffic manager that can deal with all the traffic in the city
and balance the traffic flow by considering current and future traffic congestion conditions.
This simulation study was performed using real traffic congestion data from Valencia,
Spain. The experimental results show that the proposed traffic prediction equation can
achieve a significant improvement in the average travel speed and travel time.

In general, the current research results on traffic flow characteristics focus on describing
a traffic environment composed of a single driver-type scenario, such as pure manual
driving traffic flow, pure ACC/CACC traffic flow, or pure connected autonomous vehicle
traffic flow; there are few studies on the comprehensive strategy modeling of mandatory
lane changes and free lane changes in the off-ramp areas of freeways. Unlike previous
studies based on the driving characteristics of vehicles in the bottleneck section of the
off-ramp, our research has established a mixed car-following rule and lane change rule for a
variety of driver types. On this basis, we have analyzed the characteristics of heterogeneous
traffic flow and explored traffic flow operation in the bottleneck section under the influence
of different factors.

3. Car-Following Model for Mixed Traffic Flow

The off-ramp area of the freeway consists of the mainline, the off-ramp, and the
connecting area. Freeways are generally multi-laned in the same direction. When vehicles
drive in the left or right lane, the target lane is only generated in the current lane and the
middle lane. When the vehicle is located in the middle lane, there are three options for
changing lanes. Although the number of lanes available for vehicles in the above two cases
is different, for vehicles changing lanes, there are only two options: continue to drive in the
current lane or change lanes to the adjacent lanes. Therefore, for convenience, the road in
the freeway scenario is simplified into two lanes running in the same direction, as shown
in Figure 1. Vehicles in the mainline segment perform both following and lane-changing
behaviors. Vehicles with the intention to exit the freeway gradually change lanes to the
right until they leave the mainline segment.
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3.1. Car-Following Model for HVs

Research into car-following models of human-driven vehicles is relatively mature, and
most of the studies have been calibrated using measured traffic data. Since the object of
this study is high-grade roads, the IDM model [14,31] has been selected to describe the
car-following characteristics of human-driven vehicles. The formula for this is shown in
Equations (1) and (2), while the definitions of symbols appearing in the IDM model are
shown in Table 1.

.
vn(t) = a

[
1−

(
vn(t)

v0

)4
−
(

s∗(vn(t), ∆vn(t))
hn − l

)2
]

(1)

s∗(vn(t), ∆vn(t)) = s0 + vn(t)·T −
vn(t)·∆vn(t)

2
√

ab
(2)
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Table 1. List of symbols in the IDM model.

Parameter Definition

a starting acceleration (m/s2)
b comfortable deceleration value (m/s2)

vn(t) vehicle speed (m/s)
v0 free flow speed (m/s)

s∗(·) desired spacing (m)
s0 safe stopping distance (m)
T safety headway (m)

∆vn(t) speed difference between the subject vehicle and preceding vehicle (m/s)
hn distance between the subject vehicle and preceding vehicle (m)
l vehicle length (m)

The model parameters have previously been calibrated in [32]. The calibration values
of the IDM model parameters are shown in Table 2.

Table 2. IDM model parameter calibration values.

Parameter Value

a (m/s2) 1
b (m/s2) 2

v0 (km/h) 120
s0 (m) 2
T (s) 1.5
l (m) 5

3.2. Car-Following Model for ACC Vehicles

We adopted the model proposed and verified by the PATH Laboratory of the Uni-
versity of California, Berkeley as the car-following model [15]. This adopts the constant
headway strategy and has been verified by real vehicle experiments, which can better
reflect the car-following characteristics of ACC vehicles. The ACC car-following model is
shown in Equation (3):

.
vn(t) = k1[xn−1(t)− xn(t)− tavn(t)− l − s0] + k2[vn−1(t)− vn(t)] (3)

where
.
vn(t) is the acceleration of vehicle n at time t, and xn(t) and xn−1(t) are the displace-

ments of vehicle n and n− 1 at time t. vn(t) and vn−1(t) are the speeds of vehicle n and
n− 1 at time t. l is the vehicle length. s0 is the safe stopping distance. ta is the expected
time headway of ACC. k1 and k2 are the control coefficients. According to a previously
reported vehicle experiment [17], their values are 0.23 and 0.07, respectively.

3.3. Car-Following Model for CACC Vehicles

For CACC vehicles, the CACC model proposed by the PATH laboratory is used to
describe their car-following behavior. The vehicle speed is continuously adjusted by the
error term of the actual and expected spacing. The car-following model of AV is given by
Equations (4) and (5) [16]:

vn(t) = vp + kpen(t) + kd
.
en(t) (4)

en(t) = ∆xn(t)− s0 − l − tcvn(t) (5)

where vp is the speed of the last control period. en(t) is the error between the actual vehicle
spacing and the expected vehicle spacing.

.
en(t) is the derivative of e and tc is the expected

time headway of CACC. kp and kd are the control coefficients. According to the vehicle
experiment in [17], their values are 0.45 and 0.25, respectively.
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The velocity in the above formula is derived using Equation (6):

.
vn(t) =

kp(∆x− s0 − l)− kptcvn(t) + kd∆vn(t)
kdtc + t1

(6)

where the values of each parameter are as follows: tc = 0.6 s, kp = 0.45, kd = 0.25, and t1 =
0.01 s [15,17,33].

4. Lane-Changing Model for Mixed Traffic Flow

We established the lane-change decision flow chart (Figure 2) based on the lane-change
process proposed by Hidas [18].
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Depending on the different lane-change motivations, the lane-changing mode is
divided into two types: ALC and MLC. In the case of MLCs in the diverging area, the
decision-making behavior of the driver can be divided into two stages: the conservative
stage and the aggressive stage. The main purpose of an ALC is to obtain a speed advantage
or better driving conditions. The main purpose of an MLC is to reach the destination.

The zone division for exiting vehicles is shown in Figure 3. All vehicles implement a
stable car-following model in the upstream area of zone 1. Vehicles in zone 1 implement
an ALC behavior. If the lane-change motivation is greater than the expected lane-change
threshold, finding the gap between adjacent right lanes and implementing a lane-change
maneuver occurs if the gap is acceptable. The vehicle will perform an MLC if the lane
change has not been completed in zone 1. The time when the MLC produces motivation
also has a certain impact on driving efficiency. Vehicles in zone 2 perform conservative
MLCs. Vehicles changing lanes at this stage will not affect the vehicles following them.
Generally, the vehicle at the front turns to the second stage of MLC in zone 3, when the
distance between it and the exit is equal to the shortest distance required for changing lanes.
However, in practice, 96% [34] of diverging vehicles begin to change lanes in the middle
of the deceleration lane, but only for the two-lane diversion area. For multiple lanes, this
psychological feature is most obvious in the left lane. The starting position of MLC (the
distance from the exit) dynamically changes within a certain range, due to the perception
of distance and the intensity of demand of the driver.
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As shown in Figure 2, lane-change behavior can be divided into three stages: the
generation of lane-change motivation, safety judgments, and the implementation of lane-
changing behavior. The following sections will quantify the lane-change behavior process
into a specific formula expression, to more accurately simulate the lane changes of automatic
driving vehicles on the off-ramp.

4.1. Anticipatory Lane Change

When the current speed of the vehicle is less than the desired speed, driver dissatisfac-
tion comes from the gap between the current speed and the desired speed. The cumulative
degree model of speed dissatisfaction is used to measure driver dissatisfaction. The speed
dissatisfaction accumulation describes the cumulative amount of the difference between
the desired speed and the actual speed over time. The larger the gap between the desired
speed and the current speed, the greater the dissatisfaction value. This means that the
driver is more psychologically dissatisfied with the driving speed. This model is expressed
by Equation (7):

Vn(t) = Vn(t− 1) +
vdes − vn(t)

vdes
∆t (7)

where Vn(t) is the cumulative degree of speed dissatisfaction of the vehicle n at time t. ∆t is
the sample time. When Vn(t) is greater than the set threshold, the vehicle will be triggered
to change lanes.

It is only when the speed dissatisfaction accumulation exceeds the set dissatisfaction
accumulation threshold, Vthr (Equation (8)) that the vehicle has the intention of changing
lanes. In the case of HV, when the vehicle speed dissatisfaction accumulation exceeds the
dissatisfaction accumulation threshold, the vehicle generates a lane-changing motivation
with a probability of PALC. The probability value is generated by a random function. For
ACC/CACC vehicles, the control system will change lanes when the lane change conditions
are met, so the lane change probability is 1.

vn(t) < Vthr (8)

It is necessary to judge whether the vehicle can complete the lane-change maneuver
safely and without collision after the intention of a lane change is generated. The driver
evaluates the gap in the target lane to judge whether the lane-change maneuver can be
performed. When the safety distance conditions in Equations (9)–(11) are satisfied, the
vehicle performs the desired lane change:

dp,n(t) > dn(t) (9)

dp,n(t) > dp,safe (10)

d f ,n(t) > d f ,safe (11)

where dp,n(t) is the distance between vehicle n and the preceding vehicle on the adjacent
lane at time t. d f ,n(t) is the distance between vehicle n and the following vehicle on the
adjacent lane at time t. dn(t) is the distance between vehicle n and the preceding vehicle
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in the current lane at time t. dsafe is the safe distance, that is, the distance between the
following vehicle and the preceding vehicle after emergency braking. dsafe is calculated
using Equation (12):

dsafe = (vn(t)treaction +
v2

n−1(t)
2an

)− (
v2

n−1(t)
2an−1

− l) (12)

where an is the maximum deceleration of the vehicle n. l is the vehicle length. treaction is the
reaction time. In this study, the reaction time is taken to be 1.5 s for human-driven vehicles,
0.6 s for CACC vehicles, and 1.0 s for ACC vehicles.

4.2. Mandatory Lane Change

For a conservative MLC, the generation of motivation only considers the distance from
the vehicle to the end of the off-ramp. The probability of aggressive MLC motivation is 1.
The generation of MLC motivation is shown in Equations (13) and (14):

PMLC,c = 1−
(

d− E3

E2 − E3

)
(E3 < d ≤ E2) (13)

PMLC,a = 1(d ≤ E3) (14)

where E2 and E3 are the length from the starting point of zone 2 to the end of the off-ramp
and the length from the starting point of zone 3 to the end of the off-ramp, respectively.

After the MLC motivation is generated, the vehicle will assess whether the safety
condition for a lane change is satisfied (Equations (10) and (11)). If it is, the vehicle will
perform the lane-changing maneuver. When the lane-changing condition in the adjacent
lanes is still not satisfied, the subject vehicle moves the following target from the preceding
vehicle of this lane change to the preceding vehicle of the target lane. At the same time,
the vehicle following in the target lane changes its target to the subject vehicle to assist
it in completing a lane-changing maneuver. CACC vehicles are more active than HVs
in assisting other vehicles in changing lanes. They have a stronger willingness to adopt
cooperative lane changing, that is, actively slowing down to create a gap for an MLC
maneuver.

The car-following strategy is calculated according to the different car-following models
selected by the preceding vehicle as the HV, ACC vehicle, or CACC vehicle. When changing
lanes, the maneuver will be conducted when the safety conditions are satisfied.

5. Simulation Scheme

For our experimentation, we used the simulation software SUMO-1.8.0 to construct
simulation scenarios. SUMO (simulation of urban mobility) is a highly portable micro-
traffic simulation package developed and open-sourced by the Institute of Transportation
Systems of the German Aerospace Center [31]. SUMO offers the characteristics of open-
source software, an intuitive visual interface, good platform adaptability, and excellent
flexibility. SUMO is gradually becoming the preference of many researchers and has been
chosen here as the simulation software for studying automatic driving.

SUMO provides an external connection interface called the traffic control interface;
this experiment used Python-3.6.1 for secondary development on its framework. In SUMO,
after establishing the road network model, it is necessary to edit the traffic flow file to
establish a completely heterogeneous traffic flow simulation scene. The readable traffic flow
files in SUMO include the design traffic parameters, vehicle parameters, traffic flow models,
and other information. According to the following values of the traffic vehicle and route
parameters, utilizing the open-source nature of SUMO simulation software, a program was
written using the Python platform to call the car-following model and lane-changing model
of connected autonomous vehicles and human-driven vehicles, respectively, to control each
vehicle individually.
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The simulation scenario was established as shown in Figure 3. The length of the
mainline was set at 3 km. The initial lengths of zone 1, zone 2, and zone 3 were set to
1000 m, 500 m, and 150 m, respectively. The maximum speed of the two lanes of the
mainline was limited to 100 km/h and 80 km/h from the inside out. The initial traffic
volume of the main freeway was set at 2000 vehicles per hour, and the proportion of
vehicles leaving the freeway was 0.1. The simulation lasted 3600 s, and each simulation
step was 0.1 s.

We conducted three simulation experiments in parallel under the same conditions
and took the average value as the result. The simulation model parameters are shown in
Table 3.

Table 3. The simulation model’s parameters.

Parameter
Value

HVs CACC Vehicles ACC Vehicles

maximal speed (m/s2) 33.3 33.3 33.3
maximum acceleration (m/s2) 2.5 3 3
minimum acceleration (m/s2) 4.0 4.5 4.5

reaction time (s) 1.5 0.6 1.0

Traffic safety and traffic efficiency were selected as the analysis indicators of the
dynamic characteristics of mixed driving traffic flow.

Time to collision (TTC) is the time taken for the subject vehicle and preceding vehicle
to collide when maintaining the current speed difference. TTC is widely used in the field of
traffic flow safety evaluation, including a traffic flow environment that is mixed with AV.
The TTC of a vehicle is calculated by Equation (15) if the speed of the vehicle n− 1 is lower
than the speed of n. Otherwise, TTC equals infinity.

TTCn(t) =
∆xn(t)− l

∆vn(t)
, ∀vn(t) > vn−1(t) (15)

The collision risk of each vehicle is different, so TET (time of exposed TTC) is often
used for safety evaluation. TET is the total time exposed to dangerous conditions. It is an
expanded evaluation index based on TTC and can be described by Equation (16):

TET =
N

∑
n=1

M

∑
t=1

δn(t)∆t (16)

where N is the total number of vehicles in the traffic flow. M is the total simulation time.
When the TTC of the vehicle n is greater than 0 and less than or equal to the collision
time threshold, TTC∗, δn(t) is equal to 1. Otherwise, δn(t) is equal to 0. The collision time
threshold indicates the acceptable degree of rear-end collision risk. The greater the value of
TET, the higher the collision risk. TTC∗ is usually taken as 1~3 s. In this research, we take
3 s as the threshold.

6. Discussion

When the initial traffic volume and the proportion of off-ramp vehicles are unchanged,
this makes the CACC market penetration change from 0.1 to 1. We counted the correspond-
ing TET distribution under the low off-ramp vehicle ratio and high off-ramp vehicle ratio,
where α = 0.1 and α = 0.5. As shown in Figure 4, the TET value first increased and then
decreased. When the CACC market penetration was 0.5, TET reached its peak and then
began to decline. This shows that when the CACC market penetration is low, the safety
problem of mixed traffic flow in the off-ramp area is more serious than the homogeneous
traffic flow formed by human-driven vehicles. When the penetration is close to 100%, the
value of TET decreases sharply.
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The reason for this is that there are differences in the car-following and lane-changing
behaviors of different types of vehicles. When fewer CACC vehicles are distributed in the
traffic flow, the degradation phenomenon is serious. In this scenario, either the preceding
vehicles of CACC vehicles are human-driven vehicles, or the following vehicles of human-
driven vehicles are CACC vehicles. The behavior of vehicles in the off-ramp area is complex,
and this phenomenon increases the insecurity of traffic flow. However, when the CACC
market penetration increases to a certain extent, the mixing rate of ACC and HV decreases,
and CACC vehicles become the main component of the traffic flow. CACC vehicles can
better perceive the states of the vehicles in front through the sensing system, and the
following time headway and reaction time are short, so they can maintain a relatively stable
distance and speed with the preceding vehicle, avoiding dangerous situations. Therefore,
the TET value decreases significantly when CACC market penetration increases.

Figure 4 also compares the TET values under different off-ramp vehicle ratio conditions.
The results show that TET in a high CACC market-penetration range changes sharply with
a high off-ramp vehicle ratio. Compared with the simulation results of a low off-ramp
vehicle ratio, when the permeability is greater than 0.5, the TET increases rapidly, indicating
that vehicles spend more time exposed to danger. When off-ramp vehicles increase, the
number of implemented lane-changing maneuvers increases. In this scenario, fewer HVs
are distributed in the CACC flow and cause greater interference. At the same time, the
headway between CACC vehicles is much smaller than with HV. Frequent lane-changing
behavior leads to an increase in the total time of cumulative exposure to dangers. When
CACC penetration is at 100%, the traffic flow is completely stable, and TET has fallen to a
very low level.

The change in average speed with CACC market penetration also goes through
a process of first decreasing and then increasing, as shown in Figure 5. When CACC
penetration is very small or very large, the traffic flow can be stabilized at a higher average
speed. When CACC penetration changes from 0.2 to 0.8, the heterogeneity of traffic flow
makes the average speed low, and it reaches its lowest level when the penetration is about
0.4. When the proportion of CACC is higher than 0.8, the average speed of traffic flow has
been significantly improved. The characteristics of short headway and the fast response of
CACC vehicles have been transformed into a higher average running speed.

Figure 5 also compares the average speed under different off-ramp vehicle ratios. The
simulation results show that the average speed is not very sensitive to the off-ramp vehicle
ratio, while the changing trend of the average speed is basically the same. At low and
high CACC penetration values, the average speed of the vehicles shows little difference.
In the range of 0.2 to 0.8, the average speed difference between the two ratios is about
1 m/s2. Because the length of the lane-change area is fixed, an increase in the total number
of lane changes must be accompanied by an increase in the number of MLC maneuvers.
The forced insertion of vehicles will slow down the following vehicles and reduce general
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traffic efficiency. However, this result shows that under this traffic density, the off-ramp
vehicle ratio will not have a dramatic impact on traffic efficiency.
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Berrazouane et al. [35] leveraged calibrated SUMO traffic simulation models to analyze
the effects of the penetration rate of automated vehicles on the safety and efficiency of
mixed traffic flow. The conclusion drawn in their study is that when the permeability
changes from 0% to 100%, the operation of traffic flow will gradually deteriorate along
with the increase in the penetration of connected autonomous vehicles. This is different
from the results obtained in the current study because of the different modeling control
logic. Their research did not collect the flow data for the off-ramp, so the results could
not accurately reflect the traffic flow operation near the ramp. The research in this paper
redevelops the lane-change model according to the operation of off-ramp traffic flow so it
can better reflect the behavior of different types of vehicles in a certain area of the off-ramp.

Lane-change maneuvers in the off-ramp diversion area are the main cause of traffic
disturbance. The timing of MLC motivation also has an impact on traffic flow characteristics.
Therefore, we also tested the traffic efficiency of the conservative MLC area when the length
of zone 2 changed. Figure 6 shows the simulation results of the average speed of traffic
flow as it changes with the CACC penetration rate and the off-ramp ratio. The abscissa
represents the off-ramp ratio, the ordinate represents the CACC penetration rate, and the
color bar changes gradually from blue to red, indicating that the average speed of traffic flow
gradually increases from low to high. First of all, on the whole, the red color is concentrated
in places where the CACC penetration rate is particularly low or high, indicating that the
traffic flow has a high and stable average speed level in this scenario. When the length of
zone 2 increases from 250 m to 750 m, the red color deepens, and the range of the red area
extends. Especially in areas with a CACC% penetration rate of 0.3–0.7 and a low off-ramp
vehicle ratio, the average speed level has been significantly improved. However, in the
case of a high off-ramp vehicle ratio, increasing the length of the Zone 2 area does not
improve traffic flow operation. This phenomenon can be observed in the right-hand area
of each sub-graph, where the average speed has always been maintained at a low level.
The closer the distance from the start of the MLC to the ramp, the higher the proportion of
times that vehicles implement MLC maneuvers when approaching the off-ramp, and the
greater the negative impact on the general traffic-flow operation. When the location of the
MLC motivation is set to be further away from the off-ramp, the vehicles can change lanes
ahead of time and avoid changing lanes near the off-ramp, which can effectively relieve
the pressure of centralized lane changes and improve the overall operational efficiency
of traffic flow. However, when the demand for the off-ramp increases, a large number of
vehicles need to change lanes within a certain length of the area. This situation has an
impact on traffic operation beyond the range that can be adjusted by early warnings of
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lane change and may even cause congestion. In addition, as seen in Figure 6c,d, there is
no obvious change in the color of the picture; that is, the length of the forced lane change
area has increased from 750 m to 1000 m, which makes no contribution to the improvement
of the average speed of traffic flow. This shows that for a certain proportion of off-ramp
vehicles, a sufficiently long mandatory lane-change reminder area is sufficient to allow
vehicles to change lanes in advance, and it is meaningless to extend the length at this time.

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 15 
 

improved. However, in the case of a high off-ramp vehicle ratio, increasing the length of 
the Zone 2 area does not improve traffic flow operation. This phenomenon can be 
observed in the right-hand area of each sub-graph, where the average speed has always 
been maintained at a low level. The closer the distance from the start of the MLC to the 
ramp, the higher the proportion of times that vehicles implement MLC maneuvers when 
approaching the off-ramp, and the greater the negative impact on the general traffic-flow 
operation. When the location of the MLC motivation is set to be further away from the off-
ramp, the vehicles can change lanes ahead of time and avoid changing lanes near the off-
ramp, which can effectively relieve the pressure of centralized lane changes and improve 
the overall operational efficiency of traffic flow. However, when the demand for the off-
ramp increases, a large number of vehicles need to change lanes within a certain length of 
the area. This situation has an impact on traffic operation beyond the range that can be 
adjusted by early warnings of lane change and may even cause congestion. In addition, 
as seen in Figure 6c,d, there is no obvious change in the color of the picture; that is, the 
length of the forced lane change area has increased from 750 m to 1000 m, which makes 
no contribution to the improvement of the average speed of traffic flow. This shows that 
for a certain proportion of off-ramp vehicles, a sufficiently long mandatory lane-change 
reminder area is sufficient to allow vehicles to change lanes in advance, and it is 
meaningless to extend the length at this time. 

  
(a) (b) 

  
(c) (d) 

Figure 6. Heat map of the average speed vs. CACC market penetration and off-ramp vehicle ratios 
under different zone 2 lengths: (a) 250 m; (b) 500 m; (c) 750 m; (d) 1000 m. 

  

Figure 6. Heat map of the average speed vs. CACC market penetration and off-ramp vehicle ratios
under different zone 2 lengths: (a) 250 m; (b) 500 m; (c) 750 m; (d) 1000 m.

7. Conclusions and Future Work

Due to the limitations of the traditional microscopic car-following model theory, the
research on traffic flow always utilizes the same car-following rule and lane change rule.
However, mixed traffic flow is, in fact, composed of different drivers who follow different
driving rules. Compared with human-driven vehicles, connected autonomous vehicles
demonstrate better performance in terms of information perception and decision-making
judgments. In this paper, a car-following and lane-changing model suitable for describing
different types of vehicles in the off-ramp area is established, and simulation experiments
are accomplished. The authors used the IDM model and the PATH vehicle experimental
car-following model to simulate the longitudinal movement of vehicles and establish the
ALC and MLC models, based on the operating characteristics of off-ramp vehicles. Through
simulation experiments, we explored the effects of different CACC vehicle penetration
rates, off-ramp vehicle ratios, and conservative MLC zone lengths on traffic flow, and the
following conclusions were drawn:

(1) In the off-ramp area of the freeway, CACC vehicle penetration has a significant impact
on the safety of mixed traffic flow. When CACC penetration is low, degradation
occurs, which increases system instability, including a decline in safety and general
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operating efficiency. The traffic flow operation improved significantly when CACC
vehicle penetration was close to 1.

(2) Increasing the conservative MLC zone length can improve the average speed of traffic
flow, to a certain extent. When the length of the area is 750 m, the operation of traffic
flow shows the best performance. However, the improvement of indicators is not
obvious in too-long regions. This has a certain reference value in terms of regulating
the congestion of the road traffic system; guiding drivers to change lanes is one way
to improve the efficiency of traffic flow.

Our research also has certain limitations. The model established in this paper and
the setting of conditions in the simulation experiment are within a reasonable range, but
there is a certain randomness, such as the input of flow, the proportion of off-ramp vehicles,
and the length of the MLC zone. In addition, the research object explored in this paper
is a freeway. When the vehicle is driving near the off-ramp of an urban road, changes to
the above factors should also be considered. In our analysis of the simulation results, it
has been mentioned that the operation efficiency of the traffic flow can be improved to a
certain extent by extending the length of the mandatory lane change area, but when the
adjustment ability of this method is exceeded, traffic management can be considered in
terms of combining a traffic prediction algorithm, a variable speed limit, and other means
of control.

In addition, with the further development of automatic driving technology, a sensing
system equipped with more advanced sensors will make the information interaction
between the vehicle and road environment more rapid, and the data sources will be more
abundant. The algorithms for car-following and changing lanes will then incorporate more
factors. For example, the lane-change decisions of vehicles will involve interaction with
surrounding vehicles, coordinated lane changes between connected autonomous vehicles,
and the coordinated lane changes of connected autonomous vehicle platoons. These factors
will be considered in the future modeling of mixed traffic scenarios addressing the off-ramp
diversion area.
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