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Abstract: Desertification has become a major problem in the field, affecting both the global ecological
environment and economy. The effective monitoring of desertified land is an important prerequisite
for land desertification protection and governance. With the aim of addressing the problems of
spectral confusion as well as the salt and pepper phenomenon concerning the successful extraction of
desertification information by utilizing the pixel-based method in the studies, Landsat remote sensing
images obtained from the year 2001 to 2021 were selected in this study as the data source, and then,
the object-oriented random forest classification method was improved by using different optimal
segmentation scale selection techniques and combining multi-thematic index characteristics for
measuring the extent of land desertification. Finally, the improved method was applied to study the
dynamic changes in desertification in the Mu Us Sandy Land Ecological Function Reserve. The results
show that the optimal scale determined by different optimal segmentation scale selection methods is
not entirely consistent, and a minor scale should be selected as the optimal scale. Compared with the
pixel-based classification method, the overall accuracy of object-oriented classification based on the
optimal segmentation scale was improved by 8.06%, the Kappa coefficient increased by 0.1114, and
the salt and pepper phenomenon was significantly reduced. From 2001 to 2021, the area of desertified
land decreased by 587.12 km2 and the area of severely desertified land decreased by 4115.92 km2,
indicating that the control effect was remarkable. This study can provide effective decision-making
evidence and support for the successful governance of desertification.

Keywords: desertification; optimal segmentation scale; object oriented; random forest classification;
Mu Us Desert

1. Introduction

Desertification refers to the phenomenon that land in arid and semi-arid areas, or even
some semi-humid areas, gradually degenerates into a desert due to the combined effects of
human activities and natural factors, such as drought, low rainfall, overgrazing, soil and
water loss, and vegetation destruction [1]. As one of the global ecological–social–economic
problems experienced by the international community, it is attracting extensive scientific
attention all over the world. Desertification leads to negative changes occurring in the
properties of vegetation (such as biomass, density, vegetation cover), loss of biodiversity
and soil fertility, and changes in landscape patterns in dry regions at different geographical
scales [2]. It is also increasingly damaging the local natural, ecological environment and
is rapidly becoming one of the greatest obstacles to the sustainable development of both
society and the economy. Therefore, it is critical to dynamically monitor desertification
processes and quantitatively analyze the spatiotemporal distribution characteristics, which
can provide a scientific basis for environmental protection and sustainable development
practices [3].
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At present, there are numerous methods used for acquiring desertification information,
which focus on field investigations and remote sensing. Among them, the field investi-
gations method mainly relies on taking the measurements of sample grids in small areas,
which is a time-consuming practice and requires a considerable effort when employed
at the city level. Compared with field investigations, remote sensing methods have been
widely used in the field to monitor the spatiotemporal information relating to desertifi-
cation because of their large spatial coverage, easy accessibility, and reasonable costs [4].
The primary monitoring method is dependent on manual visual interpretation. Although
this method provides good mapping results for desertified land, it has high labor costs
and its accuracy is dependent on its interpreters [5]. Thus, this method is not optimal for
desertification monitoring, especially for large regions. Furthermore, the monitoring results
are affected by the interpretations and professional qualities of the individual personnel.
With the ongoing development of remote sensing and computer technologies, numerous
evaluation indexes have been proposed in the research to assess the degree of desertification
in certain areas [6]. Some relevant studies have tried to extract desertification information
through thematic indices, such as the normalized difference vegetation index (NDVI),
fractional vegetation cover (FVC), modified soil-adjustment vegetation index (MSAVI), and
enhanced vegetation index (EVI) [7–10]. However, since the relevant vegetation index is
greatly affected by precipitation fluctuations and soil background characteristics, especially
in open vegetation environments, the use of a single vegetation index cannot entirely and
accurately reflect the desertification information in semi-arid areas [11]. Therefore, the
method of combining multiple indexes and constructing a desertification degree index
was proposed to better extract the necessary desertification information [12–15]. Based
on the combination of NDVI–Albedo, MSAVI–Albedo, etc., feature space models were
constructed to evaluate the desertification degree and study the spatial distribution in the
region [16–18]. The abovementioned methods can be used to extract the required desertifi-
cation information; however, all these methods are based on the spectral characteristics of
individual pixels, rarely considering the texture, geometric characteristics, or additional
information of the land’s surface, which are difficult to use when attempting to distinguish
areas of the same objects with different spectra or different objects with the same spectra.
The results make it easy to generate the salt and pepper phenomenon, that is, due to the
spectral differences of the same object, the original complete and uniform land-types are
classified into different categories, usually presenting as discrete pixels [19]. In addition,
the environment of interaction among pixels is ignored in the studies, which can easily
cause misclassifications in land desertification monitoring practices and can also affect the
classification results [20].

In recent years, the object-oriented multi-scale segmentation method has been exten-
sively used in remote sensing image interpretation practices. Multi-scale segmentation can
segment an image into geographical units with multiple similar attributes that are classified
according to their spectral characteristics, texture characteristics, and additional informa-
tion, effectively overcoming problems, such as spectral confusion or the salt and pepper
phenomenon [21]. Image segmentation is deemed to be a critical prerequisite for object-
oriented classification because its quality considerably affects the final result of geo-object
recognition activity. Understanding how to effectively determine the optimal segmentation
scale is crucial to the improvement of segmentation quality in this field of research [22].
Therefore, a variety of quantitative evaluation methods for selecting optimal segmentation
scales was proposed, such as the maximum area method, objective function method, mean
variance method, and homogeneity and heterogeneity index model [23–25]. Quantitative
evaluation approaches can achieve a wide range of segmentation results. If the segmenta-
tion scale is larger than the classified target object, under-segmentation occurs, whereas if
the segmentation scale is smaller than the classified target object, over-segmentation occurs.
As a result, it is challenging to understand how to successfully obtain the optimal segmen-
tation scale for a certain class of objects. In terms of land cover classification methods [26],
vegetation information extraction [27,28], and farmland identification practices [29], the
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optimal segmentation scale has been thoroughly studied in the literature and improved
classification accuracy has been achieved by using the object-oriented classification method
based on optimal segmentation. However, few studies focus on optimal segmentation scale
selection in terms of the monitoring and mapping of land desertification behavior.

China is one of the countries with the largest desert areas and the fastest speed of
desertification in the world. Sandstorm disasters frequently occur and land desertification
causes considerable economic losses [30]. The Mu Us Sandy Land is one of the four major
sandy-land areas in China, which is located at the junction of arid and semi-arid areas. It is
a typical agricultural–pastoral ecotone formed by both the natural environment and human
activities. To a certain extent, the desertification process occurring in the Mu Us Sandy
Land Ecological Function Reserve represents the desertification characteristics of arid and
semi-arid areas [31]. Following years of management, the Mu Us Sandy Land Ecological
Function Reserve has experienced significant improvements, and the desertification area
has also been considerably reduced. However, the ecological environment in this region
remains fragile and sensitive, and the results of governance are still unstable. In order to
prevent the phenomenon of desertification from recurring, the effective monitoring and
assessment of land desertification processes needs to be continuously conducted.

In order to solve the problems of spectral confusion and the salt and pepper phe-
nomenon by using the pixel classification method, to assess different types of land desertifi-
cation, this paper addresses the Mu Us Sandy Land Ecological Function Reserve located in
northwest China as the main study area to explore the effects of using the object-oriented
method to successfully extract the appropriate desertification information. An improved
method for desertified land classification is developed by incorporating spectral and spa-
tial features as well as thematic index information with the object-oriented technique to
improve the efficiency and accuracy of identifying the degree of desertification that occurs
in the selected site. Based on these methods, we monitor and analyze the spatiotemporal
changes in land desertification activity from the year 2001 to 2021. The results presented in
this study provide a scientific basis for the prevention and control of desertification in the
Mu Us region in the future.

2. Study Area and Data Sources
2.1. Study Area

This study was conducted at the Mu Us Sandy Land Ecological Function Reserve,
which is located at the coordinates of 37◦30′ N~39◦25′ N, 107◦20′ E~110◦30′ E, across the
southern part of Ordos City in the Inner Mongolia Autonomous Region and the northern
part of Yulin District in Shaanxi Province (Figure 1). The altitude of the study area is
between 920 and 1600 m, with an average altitude level of approximately 1200 m, and the
overall trend decreases from the northwest to the southeast of the region. The climate type
is temperate continental Monsoon, with an average annual temperature of approximately
8 ◦C, the coldest month has an average temperature as low as −9.5 ◦C, and the warmest
month has an average temperature of 24 ◦C. The average annual precipitation ranges from
240 to 400 mm and the average annual evapotranspiration level is 2200 mm. Precipitation
mainly occurs in the summer with the maximum daily precipitation level reaching 200 mm,
and the precipitation gradually decreases from east to west directions [32]. Due to the
area’s climate, the vegetation zone in the Mu Us Sandy Land Ecological Function Reserve
is transitional in nature, gradually changing from the desert grassland belt located in the
west to the dry grassland–forest grassland transition zone, and the vegetation types present
are mainly shrubs and meadows, such as Artemisia ordosica, Sabina vulgaris, Salix cheilophila,
and Leymus secalinus [33].
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Figure 1. Elevation of the study area.

2.2. Data Collection and Pre-Processing Steps

Landsat series data have the advantages of their multi-temporal, wide-area coverage,
and convenient access characteristics, which are suitable for large-scale desertification mon-
itoring practices. Landsat 8 OLI and Landsat 5 TM remote sensing data were downloaded
from the United States Geological Survey (https://earthexplorer.usgs.gov, accessed on
15 January 2022). In order to avoid the influence of winter snow and the weak spectral
information of vegetation in the spring and autumn seasons, images taken during summer
were selected to extract the necessary desertification information. Table 1 presents detailed
information concerning the selected images. All images were pre-processed using radiation
calibration, atmospheric correction, mosaic, and clipping, using ENVI 5.3 software.

Table 1. Landsat 8 OLI and Landsat 5 TM image information.

Sensor Type Path/Row Date Cloud Cover

Langsat-8 OLI

127/33 2021/08/02 0.07%
127/34 2021/08/02 2.22%
128/33 2021/08/09 0.02%
128/34 2021/08/09 1.17%

Langsat-8 OLI

127/33 2015/07/01 0.01%
127/34 2015/07/01 0.00%
128/33 2016/08/27 1.98%
128/34 2016/08/27 0.00%

Langsat-5 TM

127/33 2011/08/07 3.00%
127/34 2011/08/07 9.00%
128/33 2010/08/27 0.00%
128/34 2010/08/27 6.00%

Langsat-5 TM

127/33 2006/09/10 0.00%
127/34 2006/09/10 0.00%
128/33 2007/08/03 1.00%
128/34 2007/08/03 0.00%

Langsat-5 TM

127/33 2002/08/30 0.00%
127/34 2002/08/30 3.00%
128/33 2000/08/31 0.00%
128/34 2000/08/31 16.00%

https://earthexplorer.usgs.gov
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Google Earth image data. A total of 1485 samples were selected by a visual interpre-
tation of the high-resolution images based on Google Earth, of which 60% were used as
training area samples and 40% were used for accuracy verification, including non, mild,
moderate, and severe desertification. The samples were selected according to the principle
of random sampling and evenly distributed throughout the study area (Figure 2).
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3. Methods

Object-oriented image classification comprehensively considers the spatial, spectral,
textural, and additional features of an image. The adjacent pixels presenting the same
characteristics are divided into an image object, and then classified according to the features
of each object. The basic processing unit is no longer a single pixel, but a polygon object
with homogeneity. Object-oriented classification mainly includes two basic steps: image
segmentation (object generation) and image classification (feature extraction) [34]. Image
segmentation is the basis of the object-oriented information extraction method. Based on
the minimum heterogeneity rule, adjacent pixels presenting similar eigenvalues (shape,
brightness, texture, etc.) were grouped and segmented into different objects. Image
classification was based on the feature extraction of the segmented objects. Additionally,
the objects with different features were then classified, and therefore, the segmentation
effect directly affects the accuracy of the image classification.

3.1. Interpretations of the Signs of Desertification

According to the General Principles of the Regional Environmental Geological Survey
of the China Geological Survey and the previous research results presented in the litera-
ture [35–37], desertification is divided into four categories: non, mild, moderate, and severe
desertification. Our interpretations of the signs of desertification are presented in Table 2.
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Table 2. Classification criteria for desertified land.

Types of Desertification Vegetation Coverage Feature Description Image Display

Non desertification >60%

There is basically no wind erosion activity. It is
mainly a large area of cultivated land with

obvious morphological characteristics. The area
of bare sand is small, and the image presents

dark-or light-green colors.

Sustainability 2023, 15, x FOR PEER REVIEW 6 of 22 
 

3.1. Interpretations of the Signs of Desertification 
According to the General Principles of the Regional Environmental Geological Sur-

vey of the China Geological Survey and the previous research results presented in the 
literature [35–37], desertification is divided into four categories: non, mild, moderate, and 
severe desertification. Our interpretations of the signs of desertification are presented in 
Table 2. 

Table 2. Classification criteria for desertified land. 

Types of 
Desertification 

Vegetation 
Coverage 

Feature Description Image Display 

Non desertification ＞60% 

There is basically no wind erosion activity. It is 
mainly a large area of cultivated land with obvious 

morphological characteristics. The area of bare 
sand is small, and the image presents dark-or light-

green colors. 

 

 
 

Mild desertification 30%~60% 

Wind erosion activity is decreased. The dune mor-
phology gradually disappears. There is a phenome-
non of drifting sand accumulation. The vegetation 
increases and is presented as continuous, and the 

image presents brown and green colors. 

 

 
 

Moderate desertifica-
tion 10%~30% 

Wind erosion activity is frequent. The dunes are 
striped or irregular patches, interspersed with 

sparse vegetation, and the images presents reddish-
brown and green colors. 

 

 
 

Severe desertification ＜10% 

Wind erosion activity is violent. The dune presents 
clear morphological characteristics and an obvious 
wavy pattern. The image presents bright reddish-

brown or even white colors. There is almost no 
vegetation. 

 

 
 

3.2. Segmentation Algorithms 
The object-oriented multi-scale segmentation algorithm is a region merging tech-

nique that starts with any single pixel and merges adjacent pixels with similar character-
istics into polygon objects from the bottom up. If the segmentation is small, the same 
ground class is divided into multiple objects, which easily results in over-segmentation. If 
the segmentation scale is too large, different classes with similar spectra are divided into 
one object, resulting in the occurrence of under-segmentation. When the segmentation 
scale is optimal, the segmented polygon object is similar to the actual target shape, and 
the internal spectral variation in the object is minor; therefore, the key to multi-scale seg-
mentation is the selection of an appropriate segmentation scale [38]. In this study, the 

Mild desertification 30%~60%

Wind erosion activity is decreased. The dune
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3.2. Segmentation Algorithms

The object-oriented multi-scale segmentation algorithm is a region merging technique
that starts with any single pixel and merges adjacent pixels with similar characteristics
into polygon objects from the bottom up. If the segmentation is small, the same ground
class is divided into multiple objects, which easily results in over-segmentation. If the
segmentation scale is too large, different classes with similar spectra are divided into
one object, resulting in the occurrence of under-segmentation. When the segmentation
scale is optimal, the segmented polygon object is similar to the actual target shape, and
the internal spectral variation in the object is minor; therefore, the key to multi-scale
segmentation is the selection of an appropriate segmentation scale [38]. In this study, the
multi-scale segmentation algorithm of eCognition software was used to determine the
optimal segmentation scale by using the mean variance and maximum area methods.

3.2.1. Mean Variance Method

The mean refers to the average brightness of all pixels in an object following the
image’s segmentation, and the variance of the average brightness value of all object pixels
in the entire image is the mean variance. If the pure object following image segmentation
increases, its spectral heterogeneity with the adjacent object also increases, and the mean
variance of the object at this scale also increases; conversely, if the number of mixed objects
following segmentation increases, the spectral variation between the mean variance of
the objects decreases. When the mean variance reaches a maximum value, the spectral



Sustainability 2023, 15, 5619 7 of 20

heterogeneity between the objects is the best, and the segmentation scale at this stage is the
optimal partition scale [39]. The calculation formula of the mean variance is as follows:

Ct =
1
m
·

m

∑
i=1

Cti (1)

Ct =
1
n
·

n

∑
i=1

Ct (2)

S2 =
1
n
·

n

∑
i=1

(Ct−Ct)
2 (3)

where Cti is the brightness value of the ith pixel in the object in the t-band, m is the number
of pixels in the object, Ct is the average brightness value of a single object in band t, Ct is
the average brightness value of all objects in band t, n is the number of objects in the entire
image, and S2 is the mean variance of all objects.

3.2.2. Maximum Area Method

Previous studies have indicated that [40,41], with the increase in the segmentation
scale, the maximum area of the image object does not always increase, but rises in a step-
like manner, that is, the maximum area of the object remains unchanged within a certain
scale range, and the scale range at this stage is the optimal segmentation scale interval.
According to the characteristic values of multi-scale segmentation, the maximum area
of objects under different segmentation scales is counted, and the change curve evident
between the segmentation scale and maximum area is established, so as to determine the
optimal segmentation scale.

3.3. Characteristic Variables

The second step of object-oriented classification is feature extraction. Through the anal-
ysis of the spectral reflection curves and image characteristics of various types of desertified
land in the analyzed study area, it was observed that the spectral reflection patterns be-
tween severe- and moderate-desertification areas, and moderate- and mild-desertification
areas were similar, and it was difficult to distinguish the degree of desertification by relying
on spectral characteristics alone, which is also one of the difficulties presented in the remote
sensing monitoring of desertified land. Therefore, relevant evaluation indexes, which are
the topsoil particle size index (GSI), Fe2O3, normalized difference vegetation index (NDVI),
and Albedo, were introduced to the information extraction process, which caused the image
objects to present clearer features concerning the degree of desertification and improve the
overall classification accuracy [42,43].

In this study, the feature extraction tool of eCognition software was used to optimize
the feature space according to the training data, and the group that could best characterize
the land class information (Table 3) was extracted as the classification basis, which can
reduce the complexity of data calculation and improve the classification accuracy result.
The feature set included not only the spectral and geometric features of the images, but
also the thematic exponential features presented by the calculation performed.
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Table 3. Description of characteristic variables.

Variable Categories Variable Name Description of Features

Spectral characteristics Band Mean Brightness values for Landsat 8 OLI band 1–7
Band Standard Deviation Spectral standard deviation of Landsat 8 OLI band 1–7

Geometric features

Area The number of pixels that compose the image objects

Shape Index The ratio of the boundary length of the image to the square
root of four times the area

Compactness The ratio of the perimeter of an object to the square root of
its area

Roundness The ratio of the perimeter of the object to the perimeter of
the minimum outer rectangle

Thematic indices

NDVI NDVI = ρNIR − ρR
ρNIR + ρR

Albedo Albedo = 0.356 · ρB + 0.130 · ρR + 0.373 · ρNIR+
0.085 · ρSWIR1 + 0.072 · ρSWIR2 − 0.0018

GSI GSI = ρR − ρB
ρR + ρB + ρG

Fe2O3 IFe2O3 =
ρR
ρB

3.4. Random Forest Classification

The random forest algorithm is a machine learning algorithm proposed by Breiman [44]
that integrates multiple decision trees. The smallest working unit based on object-oriented
random forest classification changes from a single pixel to a polygon object with scale
segmentation, which can effectively reduce the occurrence of the salt and pepper phe-
nomenon and retain the advantages of the high stability and accuracy of the random forest
classification method. It randomly selects several sample subsets from the original dataset
and puts them back before next selecting, building a decision tree for each sample subsets,
then predicting the samples, processing the classification results of each decision tree by
voting, and finally determining the data category, namely:

H(x) = argmax
Y

k

∑
i=1

I(hi(x) = Y) (4)

where x is the training sample, k is the number of decision trees, Y is the output variable, I
is the indicative function, hi(x) is the classification result of a single decision tree, and H(x)
is the final classification result [45].

3.5. Accuracy Evaluation

In this study, the overall accuracy and Kappa coefficient were used to evaluate the
accuracy of the final classification results. The classification results were evaluated using a
confusion matrix to determine the accuracy and reliability of the classification. Using the
overall accuracy and Kappa coefficient as the selected evaluation factors, the calculation
formula is as follows:

pc =
q

∑
k=1

pkk/p (5)

where pc is the overall classification accuracy,
q
∑

k=1
pkk is the sum of correctly classified pixels,

and p is the total number of pixels.

Kappa =

N
r
∑

j=1
xjj −

r
∑

i=1
(xj+x+j)

N2 −
r
∑

j=1
(xj+x+j)

(6)
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where r is the total number of columns in the error matrix (the total number of categories),
xjj is the total number of pixels in row j and column j in the error matrix (the number of
correct classifications), xj+ and x+j are the total number of pixels in row j and column j,
respectively, and N is the total number of pixels used to perform the accuracy assessment.

4. Results and Analysis
4.1. Optimal Segmentation Scale

The optimal segmentation scale used to perform land desertification classifications
was determined by using an optimal segmentation scale model based on Landsat 8 images
obtained in the year 2021. When the scale was less than 80, the image was over-segmented
and one real geo-object was fragmented by more than one resulting segment. When the
scale was greater than 300, the image was under-segmented and the adjacent ground objects
were divided into larger objects, which were not clearly distinguished. The mean variance
and maximum area of each scale were calculated as the segmentation scale increased from
80 to 300 with a step size of 20. The variation curves of statistics with segmentation scales
in different methods are presented as Figure 3.
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(b) Maximum area method.

Generally, the mean variance increases with the increase of the segmentation scale.
However, two peaks appear in the curve graph (Figure 3a) and these peaks correspond
to the segmentation scale values of 140 and 200. According to Figure 3b, the maximum
area of the object also increases along with the increase in the segmentation scale. Plateaus
appear in the curve at 140–160 and 180–200. Each plateau can be deemed as a range for
extracting the optimal segmentation scale of the class. The mean variance method allowed
us to obtain two maximum-value-points optimal segmentation scales, while the maximum
area method obtained two-range optimal segmentation scales. However, the two maximum
value points were located on the two plateaus.

The segmentation scale values determined by the use of the mean variance method
were 140 and 200, and the unchanged area of the object obtained using the maximum area
method is evident from 140 to 160 and 180 to 200. Combining the results obtained for
the two methods, 140 and 200 segmentation scales were preliminarily set and analyzed
to evaluate the over-segmentation and under-segmentation of the land desertification
information. The segmentation effect and quality of two different segmentation scales
are presented in Figure 4 (the red circles are the areas with differences between scales 140
and 200). When the segmentation scale is 140, the image object is complete and uniform,
and there is no under-segmentation or over-segmentation phenomenon present in any
category (Figure 4a). When the segmentation scale is 200, part of the original, complete,
and uniform land class (the red circle in the figure) is segmented into the same object
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as the surrounding land class, such as non- and mild-desertification areas, or even the
area presenting moderate- or severe-desertification levels. Obvious under-segmentation
is present in the image (Figure 4b), and the classification result is expected to present
considerable errors. Considering that under-segmentation may result in greater errors
than over-segmentation for the image classification stage, good segmentation can present
minor over-segmentation but should not result in under-segmentation [46]. Therefore, the
segmentation quality of the two scales were evaluated by qualitative visual analysis. The
best segmentation effect was produced when the segmentation scale equaled 140.
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4.2. Analysis of Classification Results

Random forest is a powerful machine learning classifier that has high classification
accuracy [47]. Object-oriented classification was contrasted with pixel-based classification
by using the random forest method based on the optimal segmented and pre-processed
images we obtained in our study. Land desertification maps of the study area were also
produced (Figure 5). The land-cover types were divided into four categories: non, mild,
moderate, and severe desertification. Four zones (red-box areas) with different types of
desertification were selected and magnified to investigate the advantages of the object-
oriented method, and they are presented in Figure 5.

Four magnified zones presented in the pixel-based classification result presented a
high number of small-landmass areas (Figure 5a, Zone i: moderate desertification, Zone ii:
severe desertification, Zone iii: mild desertification, Zone iv: non-desertification), represent-
ing the salt and pepper effect. Additionally, the commission and omission phenomenon
also occurred. The number of small-landmass pixels was less than four. However, accord-
ing to “The Fourth National Technical Provisions on Desertification and Desertification
Monitoring”, the smallest area of the map should be controlled at approximately 4000 m2

on a regional scale when using remote sensing images to monitor the presence of sandy or
desertified lands with a broken landmass-type of land and presenting artificial measure-
ments. Therefore, the number of smallest-landmass pixels was higher than four when using
remote sensing image data with a spatial resolution of 30 m for desertification information
extraction purposes. There was no landmass less than five pixels evident in four magnified
zones, as can be observed from the object-oriented classification result (Figure 5b). The salt
and pepper effect was also evidently obviously reduced.

By performing a qualitative visual analysis, we determined that the extraction result
for land desertification analysis using the object-oriented method was better than that
of the pixel-based method. Compared with the pixel-based method, the object-oriented
method utilizes the data obtained from the spectral features, spatial features, and thematic
index information of each image object [20], which prevents a high salt and pepper effect
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during the pixel-based classification method [48]. Therefore, the object-oriented classifi-
cation approach is more suitable for mapping when extracting the land desertification
information required.
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4.3. Validation of Desertification Classification Results

An accuracy assessment using the same verification sampling method selected from
Google Earth high-resolution images was conducted to quantitatively evaluate the infor-
mation extraction accuracy of the object-oriented and pixel-based methods used in the
study. The producer accuracy (PA), user accuracy (UA), overall accuracy (OA), and Kappa
coefficients were estimated using the confusion matrix presented in Table 4.
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Table 4. Classification accuracy evaluation confusion matrix based on pixel.

Types of
Desertification Non Mild Moderate Severe PA (%) UA (%)

Non 4436 13 33 4 83.13 98.89
Mild 632 4861 1693 0 83.25 67.65

Moderate 247 963 9209 1123 82.14 79.79
Severe 21 2 276 6328 84.88 95.49
OA (%) 83.22

Kappa coefficient 0.7686
Notes: Non, non-desertification; Mild, mild desertification; Moderate, moderate desertification; Severe, severe
desertification; PA, producer accuracy; UA, user accuracy; OA, overall accuracy.

The overall accuracy of the pixel-based method was 83.22%, and the Kappa coefficient
was 0.7686 (Table 4). The overall accuracy of the object-oriented method was 91.28%, of
which the Kappa coefficient was 0.8800 (Table 5). This indicated that the land desertifica-
tion classification accuracy of the object-oriented method was much higher than that of
the pixel-based method. The producer accuracy of the pixel-based method was between
82.14% and 84.88%, while the user accuracy was between 67.65% and 98.89% (Table 4).
The accuracy assessment indicated that the adjacent degree of the desertification type
(severe and moderate desertification, moderate and mild desertification, mild and non-
desertification) were easily incorrectly classified when using the pixel-based method. The
producer accuracy of the object-oriented method was between 90.37% and 93.39%, and
the user accuracy was between 83.06% and 97.85% (Table 5). However, the user accuracy
of the mild desertification of the object-oriented method was 83.06%; as a result, some
non- and moderate-desertification land-types were incorrectly classified as a mild deser-
tification land-type. Generally, the misclassification and omission of different land-types
significantly decreased. The use of the object-oriented classification method exhibited high
accuracy when effectively classifying the land desertification types, and it could achieve
the requirements of the research.

Table 5. Classification accuracy evaluation confusion matrix based on object.

Types of
Desertification Non Mild Moderate Severe PA (%) UA (%)

Non 4877 103 0 4 91.40 97.85
Mild 189 5453 923 0 93.39 83.06

Moderate 270 283 10,131 672 90.37 89.21
Severe 0 0 157 6779 90.93 97.74
OA (%) 91.28

Kappa coefficient 0.8800
Notes: Non, non-desertification; Mild, mild desertification; Moderate, moderate desertification; Severe, severe
desertification; PA, producer accuracy; UA, user accuracy; OA, overall accuracy.

4.4. Spatial Distribution of Land Desertification Areas in Mu Us from 2001 to 2021

The object-oriented classification method was used to extract the land desertification
information of the Mu Us area from 2001 to 2021. As illustrated in Table 6, it is clear that
the desertification land area occupies more than 85% of the total area and most of the
study area presented moderate desertification. Desertification maps were generated for
five years (Figure 6), and the individual class area and change statistics for the five years
are summarized in Table 6. The desertified areas in 2001 were moderate, severe, mild, and
not desertified, in descending order. By the year 2021, the overall desertification status
improved, and the desertified area decreased; in turn, it changed to moderate-, mild-, severe-
, and non-desertification areas. From 2001 to 2021, the desertified area decreased from
26,910.36 to 26,323.24 km2 by approximately 587.12 km2, while the severe-desertification
area decreased from 26.50% to 13.01% by 4115.92 km2, indicating a marked improvement.
The mild-desertification area is increasing annually. The moderate-desertification area
presented an expanding trend from 2001 to 2011 and gradually decreased in the last decade,
while the non-desertification area showed the opposite trend.
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According to the spatial distribution of desertified land (Figure 6), the overall area in
the study location showed a trend of expanding first and then decreasing. Moderate deser-
tification covers the most extensive areas. From 2001 to 2021, the eastern and southeastern
regions of the Mu Us Desert, which are close to the water, have significantly decreased
in terms of desertification, and the non- and mild-desertification areas have remarkably
increased, while there still remain some moderate- and severe-desertification areas located
in the western Gobi Desert.
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Table 6. Statistics of land desertification area from 2001 to 2021.

Year Type Non Mild Moderate Severe Other

2001
Area (km2) 2683.38 7284.62 11,543.73 8082.01 899.36
Percent (%) 8.80 23.89 37.86 26.50 2.95

2006
Area (km2) 2174.90 7761.82 12,895.72 6865.10 795.57
Percent (%) 7.13 25.45 42.29 22.52 2.61

2011
Area (km2) 1800.03 8103.14 14,437.98 5295.36 856.59
Percent (%) 5.90 26.57 47.35 17.37 2.81

2016
Area (km2) 3353.87 8628.09 13,161.23 4516.51 833.40
Percent (%) 11.00 28.30 43.16 14.81 2.73

2021
Area (km2) 3466.31 9823.17 12,533.98 3966.09 703.54
Percent (%) 11.37 32.21 41.10 13.01 2.31

Notes: Non, non–desertification; Mild, mild desertification; Moderate, moderate desertification; Severe, severe
desertification; Other, Water and buildings.

4.5. Dynamic Changes in Desertification in Mu Us Desert from 2001 to 2021

To further evaluate the results for the desertification conversions we obtained in this
study, the changes occurring in desertified areas from 2001 to 2021 are summarized in
Table 7. These results indicate that the area of restored, desertified land is larger than that
of degraded land, and the area presenting stability is the largest, accounting for over 58%.
From 2001 to 2016, the degraded areas decreased annually, while the stable and restored
areas presented a fluctuating trend. By the year 2016, the degraded area was 3799.43 km2,
accounting for 12.46% of the land, and the restored area was 6936.35 km2, accounting
for 22.75%, showing the most significant improvement. From 2016 to 2021, the degraded
area accounted for 18.77%, with a year-on-year increase of 6.31%, and the restored area
accounted for 22.72%, showing little change. In the past five years, the overall recovery
trend of land desertification in the Mu Us Desert has been relatively stable, while land
degradation has occurred in the western Gobi Desert (Figure 7), indicating that the stability
water-scarce areas was poor and the desertification process was repeated. Therefore, it
is necessary to strengthen the governance of these areas by improving the availability of
water resources.

Sustainability 2023, 15, x FOR PEER REVIEW 16 of 22 
 

4.5. Dynamic Changes in Desertification in Mu Us Desert from 2001 to 2021 
To further evaluate the results for the desertification conversions we obtained in this 

study, the changes occurring in desertified areas from 2001 to 2021 are summarized in 
Table 7. These results indicate that the area of restored, desertified land is larger than that 
of degraded land, and the area presenting stability is the largest, accounting for over 58%. 
From 2001 to 2016, the degraded areas decreased annually, while the stable and restored 
areas presented a fluctuating trend. By the year 2016, the degraded area was 3799.43 km2, 
accounting for 12.46% of the land, and the restored area was 6936.35 km2, accounting for 
22.75%, showing the most significant improvement. From 2016 to 2021, the degraded area 
accounted for 18.77%, with a year-on-year increase of 6.31%, and the restored area ac-
counted for 22.72%, showing little change. In the past five years, the overall recovery trend 
of land desertification in the Mu Us Desert has been relatively stable, while land degrada-
tion has occurred in the western Gobi Desert (Figure 7), indicating that the stability water-
scarce areas was poor and the desertification process was repeated. Therefore, it is neces-
sary to strengthen the governance of these areas by improving the availability of water 
resources. 

Table 7. Changes of desertification area in Mu Us Sandy Land between 2001 and 2021. 

Year Type Severe Degrada-
tion 

Degradation Stability Restoration Significant 
Restoration 

2001–2006 Area (km2) 1071.09 4160.34 19,162.86 4993.73 1105.08 
Percent (%) 3.51 13.64 62.85 16.38 3.62 

2006–2011 Area (km2) 620.25 3821.00 20,797.95 4278.67 975.23 
Percent (%) 2.03 12.53 68.21 14.03 3.2 

2011–2016 
Area (km2) 628.79 3170.64 19,757.32 5153.35 1783.00 
Percent (%) 2.06 10.4 64.79 16.9 5.85 

2016–2021 Area (km2) 1175.37 4545.94 17,841.65 5258.28 1671.87 
Percent (%) 3.86 14.91 58.51 17.24 5.48 

 

  
Figure 7. Cont.



Sustainability 2023, 15, 5619 15 of 20
Sustainability 2023, 15, x FOR PEER REVIEW 17 of 22 
 

  

 
Figure 7. Spatial distribution of land desertification changes during 2001–2021. 

5. Discussion 
Desertification is a major obstacle to global sustainable development. The effective 

monitoring of desertification is particularly important for environmental protection and 
ecological restoration practices. In this study, object-oriented classification based on an 
optimal segmentation scale was used to obtain desertification information for the Mu Us 
Sandy Land Ecological Function Reserve from 2001 to 2021. Compared with the previous 
studies [49–51], the unit of analysis used in our study was not a single pixel, but a similar 
object with the same spectral, geometric, and thematic characteristics, which overcame the 
problems of spectral confusion and the salt and pepper phenomenon in sparse-vegetation 
areas. 

Image segmentation is a special operation of object-oriented classification. The selec-
tion of a segmentation scale determines the size of the image objects and quality of the 
classification results; therefore, it is very important to select the appropriate segmentation 
scale. In previous studies, some scholars have tried to use object-oriented classification 
methods to extract desertified land information, and the classification results were signif-
icantly improved. However, the selection of a segmentation scale mainly relies on re-
peated visual comparisons, which causes increased subjective interference; therefore, clas-
sification accuracy may be improved further [52]. In this study, the mean variance and 
maximum area methods were used to determine the optimal segmentation scale of 140 in 
the study area, which can avoid over-segmentation and under-segmentation behaviors, 
to a certain extent, and reduce the influence of human interference. In a study conducted 
on Hunshandak Sandy Land [53], Li et al. presented an optimal segmentation scale for 
extracting vegetation types, such as arbors and shrubs, which was determined to be 145 
by the ESP2 tool of eCognition software, while the optimal segmentation scale for only 
extracting sandy land was 200. This effect is similar to the optimal scale determined in this 
study when the land class of the vegetation, such as grassland, was classified as non-des-
ertification land to participate in the segmentation process, indicating that the optimal 
segmentation scale for land desertification determined by this method presents a certain 
level of reliability. 

Figure 7. Spatial distribution of land desertification changes during 2001–2021.

Table 7. Changes of desertification area in Mu Us Sandy Land between 2001 and 2021.

Year Type Severe Degradation Degradation Stability Restoration Significant Restoration

2001–2006
Area (km2) 1071.09 4160.34 19,162.86 4993.73 1105.08
Percent (%) 3.51 13.64 62.85 16.38 3.62

2006–2011
Area (km2) 620.25 3821.00 20,797.95 4278.67 975.23
Percent (%) 2.03 12.53 68.21 14.03 3.2

2011–2016
Area (km2) 628.79 3170.64 19,757.32 5153.35 1783.00
Percent (%) 2.06 10.4 64.79 16.9 5.85

2016–2021
Area (km2) 1175.37 4545.94 17,841.65 5258.28 1671.87
Percent (%) 3.86 14.91 58.51 17.24 5.48

5. Discussion

Desertification is a major obstacle to global sustainable development. The effective
monitoring of desertification is particularly important for environmental protection and
ecological restoration practices. In this study, object-oriented classification based on an
optimal segmentation scale was used to obtain desertification information for the Mu
Us Sandy Land Ecological Function Reserve from 2001 to 2021. Compared with the
previous studies [49–51], the unit of analysis used in our study was not a single pixel,
but a similar object with the same spectral, geometric, and thematic characteristics, which
overcame the problems of spectral confusion and the salt and pepper phenomenon in
sparse-vegetation areas.

Image segmentation is a special operation of object-oriented classification. The selec-
tion of a segmentation scale determines the size of the image objects and quality of the
classification results; therefore, it is very important to select the appropriate segmentation
scale. In previous studies, some scholars have tried to use object-oriented classification
methods to extract desertified land information, and the classification results were signifi-
cantly improved. However, the selection of a segmentation scale mainly relies on repeated
visual comparisons, which causes increased subjective interference; therefore, classification
accuracy may be improved further [52]. In this study, the mean variance and maximum area
methods were used to determine the optimal segmentation scale of 140 in the study area,
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which can avoid over-segmentation and under-segmentation behaviors, to a certain extent,
and reduce the influence of human interference. In a study conducted on Hunshandak
Sandy Land [53], Li et al. presented an optimal segmentation scale for extracting vegetation
types, such as arbors and shrubs, which was determined to be 145 by the ESP2 tool of
eCognition software, while the optimal segmentation scale for only extracting sandy land
was 200. This effect is similar to the optimal scale determined in this study when the land
class of the vegetation, such as grassland, was classified as non-desertification land to
participate in the segmentation process, indicating that the optimal segmentation scale for
land desertification determined by this method presents a certain level of reliability.

In fact, in the process of segmentation, the determination of the optimal scale was
affected by several factors. The different selection methods, the setting of the segmentation
parameters, the type of ground objects present in the study area, and the resolution of the
remote sensing images led to differences in the results [41]. Based on the Landsat images,
Song et al. used the object-oriented method to extract ground feature information for the
desertification area in the northwestern Liaoning Province and determined the optimal
segmentation scale of vegetation types as 135 by using the mean variance method [54].
Gao et al. used the GF-2 image to identify shelterbelts in the desert oasis area of Dengkou
County. When the segmentation scale of shelterbelts in this area was determined as 82 by
using the ESP2 tool, the segmentation effect of the image was the best [55]. In addition,
the optimal segmentation scale is closely related to the spatial resolution of the image.
Generally speaking, the higher the spatial resolution, the smaller the corresponding optimal
segmentation scale, and the better the segmentation effect; however, this does not mean
that the classification accuracy will be higher. Lian and Chen used the object-oriented
method in their study to classify the ground objects of images with different resolutions
and observed that the classification accuracy of SPOT images with a resolution of 2.5 m was
higher than that of Quick Bird images with a resolution of 0.6 m. Classification accuracy and
spatial resolution do not simply have a linear relationship [56]. Similar conclusions were
determined in the study conducted by Jiang et al. [57]. It was observed that the optimal
segmentation scale was not completely consistent when providing results for different
regions, research objects, and resolutions.

Although similar studies exist that are concerned with the dynamics of desertification
in the study region, this study has provided long-term mapping trends of desertified land
since 2001. It is helpful to comprehensively analyze the change in desertified areas and
explore the spatial characteristics of the distribution of desertified areas, which has rarely
been analyzed in previous studies. To effectively identify the different types of severe-,
moderate-, and mild-desertification areas, the spectral, spatial, and thematic index features
were selected to construct feature spaces, and the random forest algorithm was used to
classify the desertification degree based on these features. Compared with the pixel-based
classification method, the overall mapping accuracy of this method increased by 8.06%, and
the Kappa coefficient increased by 0.1114. The mapping accuracy significantly improved
for different degrees of desertification. In the relevant research of this region [58], since 2000,
land desertification has been mainly moderate and severe and has gradually changed to
moderate and mild. The area of moderate desertification increased first and then decreased,
the area of mild desertification increased annually, and the area of severe desertification
decreased annually, which is the same pattern presented for the land desertification ac-
tivity observed in the present study. In addition, the spatial distribution of desertified
land was consistent with the research results obtained by Wang et al. [49]; the change in
desertification in the southeast region was more stable than that in the northwest, due to
climate and topographic factors, as well as human activity, and the research results are
reliable. In general, this research method meets the requirements of the classification of
land desertification degree, at present, and can provide methodological support for the
monitoring of desertification in the future.

However, there are certain issues that should be considered in future analyses. From
the perspective of classification accuracy, whether pixel-based or object-oriented methods
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are employed, the classification accuracy of mild- and moderate-desertification areas is
lower than that of non- and severe-desertification areas (Tables 4 and 5). The main reason
for this is that the characteristics between mild and moderate, and moderate and severe are
relatively similar, which makes it difficult to perform the classification; therefore, some mis-
classifications may occur [59]. Future studies should consider improving this consequence
through spectral information enhancement [60]. At the same time, the determination of the
optimal segmentation scale is affected by several factors; whereas the method we utilized
could effectively extract land desertification data, its robustness was not tested in other
regions [5]. Therefore, for different desertified areas, the selection of remote sensing data
with appropriate resolutions, a reasonable determination of the desertification segmenta-
tion scale, and the extraction of desertification information should also be key factors in the
research conducted in the future.

6. Conclusions

In view of the deficiencies of pixel-based land desertification information extraction,
this study combined the mean variance and maximum area methods to determine the
optimal segmentation scale and adopted the object-oriented random forest algorithm to
obtain the land desertification information for the Mu Us Sandy Land Ecological Function
Reserve from 2001 to 2021.

In the segmentation process, when there are multiple segmentation scales, a smaller
segmentation scale should be selected as the optimal scale. Compared with the pixel-based
classification method, the overall accuracy of object-oriented classification based on the
optimal segmentation scale was improved by 8.06%, the Kappa coefficient was increased by
0.1114, and the salt and pepper phenomenon was significantly reduced. From 2001 to 2021,
the area of desertified land decreased by 587.12 km2 and the area of severely desertified
land decreased by 4115.92 km2. The governance effect was remarkable. In the past ten years,
the restoration rate of the entire area increased by 22% in the whole area, while the restored
effect of the western Gobi Desert was not satisfied. The climate and topographic factors
were the main reasons for land desertification, and human activities also aggravated the
desertification process. Enhanced measurements are required for further successful gover-
nance in the future. This study explored the application of the object-oriented classification
method and the optimal segmentation scale for obtaining land desertification information
for the study area. The results show a significant improvement in the desertification classi-
fication accuracy. The long-term-mapping results provide effective decision-making ideas
and support for land desertification restoration and management projects.
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