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Abstract: The collection of reliable data is an important and time-consuming part of the life cycle
inventory (LCI) phase. Automation of individual steps can help to obtain a higher volume of or
more realistic data. The aim of this paper is to survey the current state of automation potential in
the scientific literature published between 2008 and 2021, with a focus on LCI in the area of process
engineering. The results show that automation was most frequently found in the context of process
simulation (via interfaces between software), for LCI database usage (e.g., via using ontologies for
linking data) and molecular structure models (via machine learning processes such as artificial neural
networks), which were also the categories where the highest level of maturity of the models was
reached. No further usage could be observed in the areas of automation techniques for exploiting
plant data, scientific literature, process calculation, stoichiometry and proxy data. The open science
practice of sharing programming codes, software or other newly created resources was only followed
in 20% of cases, uncertainty evaluation was only included in 10 out of 30 papers and only 30%
of the developed methods were used in further publication, always including at least one of the
first authors. For these reasons, we recommend encouraging exchange in the LCA community
and in interdisciplinary settings to foster long-term sustainable development of new automation
methodologies supporting data generation.

Keywords: life cycle assessment; life cycle inventory automation; machine learning; molecular
modeling; knowledge engineering; digital twins; process simulation; artificial neural networks;
open data

1. Introduction

Having evolved over decades, life cycle assessment (LCA) has become one of the
most important environmental assessment methods and is widely accepted for evaluating
chemical processes and products [1,2]. With new areas, such as green chemistry or the
development of biorefineries, to make production less dependent on fossil raw materials,
science in this field often deals with techniques in the early stages of development. LCA not
only helps with product or process comparisons but also with the identification of hotspots
along the different process steps [3].

LCAs consist of four steps based on the ISO14040 and ISO14044: the Goal and Scope
phase (e.g., definition of system boundaries), the life cycle inventory analysis (e.g., data
collection of input and output data), the life cycle impact assessment (conversion into
environmental impacts) and the interpretation (evaluation of results) [4]. Performing an
LCA requires a great deal of time and data, both of which are often limiting factors in
the development of new processes that are still in laboratory or pilot stages. This paper,
therefore, reviews current developments in the automation of life cycle inventory (LCI)
creation, as this can help to make the integration of environmental impacts into decisions
during the technology development process easier, less time-consuming and can improve
data quality.
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As the most time- and resource-intensive, the second step in an LCA, the LCI, deals with
information and data collection for creating the processes needed for the LCA study [5,6].
Information collected for the product system typically covers a considerable volume of data [7],
including the flows to and from processes. This involves elementary flows (resources and
emissions but also land use), product flows (goods and services as products in a process) or
waste flows, as well as statistical data for, e.g., the market mix or process [4]. LCA covers
activities which take place at different times and places [8]. Additionally, data quality and
uncertainty distribution should also be collected for the parameters [5]. In a typical LCA,
thousands of unit processes are usually used [9].

The product system, which, in many cases, involves mapping a complex globalized
network consisting of thousands of interlinked human activities [10,11], is made from
decisions taken by different individual economic actors, based on economic, legal and
environmental indicators, and linked in the LCA based on the functional unit [8]. With
regard to the influence of the decision maker, for which the LCA is carried out, the system
is divided into fore- and background systems [8], which are often defined as follows:

Foreground system: The foreground system consists of processes which are under the
control of the decision maker for which an LCA is carried out. They are called foreground
processes.

Background system: The background system consists of processes on which no, or, at
best, indirect influence may be exercised by the decision maker for which an LCA is carried
out [8,12].

As shown by these definitions, depending on the goal, the author and client, there
can be different fore- and background systems and methods, and the possibilities for data
procurement can vary.

Another definition of the two systems can be that the foreground system is the one
where data collection efforts are conducted, reflecting the space of action [9,13], while the
background system models the remaining activities through the use of generic data from
LCI databases [9] or public and official national statistics, company websites or previous
research published in journal papers [5]. Usually, datasets in the background system
cover 99% of unit processes, while, in rare cases, the foreground system exceeds 5% of all
processes in the system [9].

The following review will analyze methods with automation potential for data collec-
tion for both fore- and background systems. It is emphasized that the boundaries of the
two are floating, and, also, depending on time and budget resources, there can be quality
in foreground data.

Categories are developed or identified based on the objectives behind the method
as well as the data source. Using empirical and bibliographic analysis, possible trends
over time and further developments in the methods are identified. In the Discussion and
Conclusions, recommendations will be extracted from the analysis for the applications in
chemical and process engineering, especially biorefineries, which deal with processes and
products in low technology readiness levels (TRLs).

2. Materials and Methods
2.1. Aims, Goals and Research Questions

For the analysis, the following research questions were defined:
Which methods with automation potential for data generation for the LCI phase can

be found in the literature, focusing on the past 15 years. What methods are used and for
what purpose is automation used in the LCI?

Are there examples of LCA available in journal papers, where the automation tech-
nique was used after development? With which frequency were the proposed methods
used and what are their advantages and disadvantages?

How transparent is the study—is, for example, Supplementary Material with comprehen-
sive information available? Can the developed automation techniques be easily transferred or
used for further LCAs, where, for example, the code or software is available online?
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If statistical models or methods of artificial intelligence are used, how and with what
volume of data were they trained, were their advantages or disadvantages mentioned and
are there similarities between the different LCAs? Is the model code used open access?

2.2. Scope

Our study assesses the automation efforts and methods already implemented in the
LCI phase, focusing on the last 15 years. Automation, which, in this context, means
the complete or partial replacement of manual human work steps or work by machine,
can serve different objectives: reductions in epistemic uncertainty sources through the
possibility of collecting more data at the same time, the acceleration of the implementation
of individual but similar LCAs due to automation of the data input or the connection
between fore- and background data.

The following focuses, in particular, on the LCI, which includes data collection, data
calculation and allocation of flows and releases (ISO 14040: 2006 + Amd 1:2020 [14]).
Data collection includes energy, raw material, ancillary and physical inputs, as well as
products, co-products and waste. “Emissions to air, discharge to water and soil and other
environmental aspects” must also be gathered. In the data calculation step, the data are
validated and related to unit processes, reference flows and the functional unit to calculate
the results of the inventory step. Allocation procedures can be used for systems with
multiple products or recycling systems, as shown in Figure 1 [15,16].
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Deutsches Institut für Normung [16].

2.3. Methods and Material

The literature was sifted systematically and we included only full-text available pri-
mary literature from journal or conference papers written in English, which either perform
or give guidelines for parts of the LCI phase.

After screening the papers, especially with regard to the fulfilment of the criterion
of automation (potential) in the LCI phase and quality of description of the methodol-
ogy, 30 papers and related articles (based on similar methods by the same authors) were
analyzed in more detail in accordance with our research questions.

The criterion of automation was fulfilled if typical human work steps in the LCI phase
of the LCAs were completely or partially replaced by machine work, such as transferring
and searching for data or filtering out relevant in- and output flows.

Authors of the identified literature were also scanned for further publications in this
area to identify which development or model was further used. The literature research
was conducted based on LCAs or method description papers for LCA dealing with the
described parts of an LCI, initially covering the last 10 years (2012–2022) and, subsequently,
since some interesting models were found earlier (2008/2009), extended to 15 years.
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2.4. Delimitations

The focus of this paper is on the derivation of automation potential for the field
of chemistry and process engineering, especially for biorefinery development. For this
reason, the literature sources evaluated mainly include general methods developed without
specific focus or LCAs from this area, and no literature from areas, such as construction,
electrical engineering, services, etc., was considered. The conditions and requirements
for the respective LCAs can vary greatly from one field to the next and the search was,
therefore, confined to the mentioned fields.

However, automation in the field of inventory assessment and methods such as
machine learning are mostly generally applicable to a wide range of LCAs, and the relevant
parts of this paper may also add value to related research fields.

As this study is focused on LCAs, no other environmental assessment was considered
for the selection of papers.

2.5. Classification

In order to categorize similar approaches, existing categories for LCI creation were
considered. Although there are several classification schemes for LCI data generation,
including differentiating bottom-up, top-down and hybrid approaches [17] or computa-
tional approaches, economic input–output analysis and the combinations of those two
approaches [18], we decided to use the more detailed hierarchy created by Parvatker and
Eckelmann [19] on the topic of “Chemical Life Cycle Inventory Generation Methods”,
which was expanded by Giesen et al. [20] with regard to ex ante claims. We aimed to
evaluate whether the automation in LCI generation can also be seen in LCA literature of the
last 15 years with regard to their hierarchy levels. Paravatker and Eckelmann [19] tested
their analysis of accuracy and data/time requirements between the different methods on
creating LCI data for chemicals on case studies on ABS and styrene, where very large
margins of error between the methods, exceeding 500% in some cases, could be observed.
As the data and time requirements, especially with low TRL, are often a limiting factor for
the LCA, literature on automation techniques was sifted to demonstrate that more accurate
methods can, in the future, be used with less time consumption and generate more reliable
data. In this research, as process engineers, we focus more on the TRL levels, although the
original work on the inverted pyramid (Figure 2) focuses on manufacturing readiness level
(MRL). The MRL scale is comparable to the TRL scale [21].
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The categories for our analysis are based on the hierarchy elements in Figure 2 and
described in more detail in the Results.

2.6. Findings from the Papers and Proceedings

With the goal of communicating the methodological approaches, objectives and results
of the articles, a summary of the articles is categorized based on the ways in which LCI data
can be generated. Special focus is placed on the description of the method, the automation
and possible advantages and disadvantages (such as the inclusion of uncertainties).

2.7. Bibliometric Analysis

For statistical analysis, keyword identification was performed using the software
VOSViewer [22], and the most common categories, years of publication and journals
published were identified using Web of Science (analytic tools and citation report) [23] and
Microsoft Excel. The authors’ relationships with one another were also examined using
Research Rabbit [24].

2.8. Empirical Analysis

Additionally, an empirical analysis was conducted to research the availability of open
science aspects (such as open-source publication, open-source code or software, etc.), as
well as an analysis of uncertainty and the used artificial intelligence techniques such as
machine learning.

3. Results

Building on the classification of Parvatker and Eckelmann [19], presented in the
Methods section, categories were merged based on findings in the literature (basic and
advanced process calculation). The categories were separated based on the breadth of
methods and subject areas (plant data and LCI database), more detailed sub-chapters were
introduced (process simulation) and a new category was introduced, namely, data from the
scientific literature, as shown in Figure 3.
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The hypothesis of a tendency to automation based on the Parvatker and Eckelmann
pyramid [19] could not be substantiated, as methods for optimization could be found in
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each of these categories. What is striking here, however, is the choice of methods depending
on the approach.

3.1. Plant Data

Obtaining data directly from the production facility in the right geographical location
increases the accuracy of LCA results [25] but is often not possible due to secrecy or poor
monitoring. Even when data are received, it is essential to compare process conditions and
check for measurement and reporting errors [19].

Plant data can also be gathered from governmental authorities, as many industries
report LCA-relevant data such as capacities to them. This, however, extends the scope of the
LCA to a larger geographical location and temporal frame [19]. Data can, for example, be
obtained from the United States Environmental Protection Agency (EPA) or the European
Life Cycle Database (ELCD), which are both integrated in the Global LCA Data Access
(GLAD) [26,27]. Additionally, industry associations, such as the International Council of
Chemical Associations (ICCA) or the American Chemistry Council (ACC), provide data
(Parvatker and Eckelman 2019), and some of these, such as Plastics Europe or the European
Solvents Industry Group, also provide them via GLAD [26]. Another source of data is LCAs
conducted by companies themselves, either published on their own or in environmental
product declarations (EPDs), which communicate life cycle impacts of products according
to the product category rules (PCRs). However, these often only contain aggregated results
and no detailed process steps nor complete LCI datasets [19]. Another data source, e.g., for
toxicity, is Comptox [28], a database from the EPA, which links different data, e.g., from
pubmed, Wikipedia, the NIST Chemistry WebBook and Usetox [29,30].

The automation potential in relation to government agencies and industry associations
can be observed as follows: Using linked opened data from the EPA [31] on chemicals man-
ufacturing in a standardized way with the outlook on automating the discovery, and use of
publicly available data was, therefore, added in the review. The mined data are reported by
companies, but a lack of transparency regarding underlying process technologies should
be taken into account, as well as possible variation in reporting requirements in the data
submission, which can influence the LCI generated [31,32]. However, a comparison with
existing LCI data and a case study showed that the information provided is as or more
reliable in the areas of air, water, hazardous waste, on-site energy usage and production
volumes. Key data gaps were identified, including material inputs, water usage, purchased
electricity and transportation requirements [31].

By using linked open data (LOD), the varying degree of uncertainty and heterogeneity
of the mined data should be reduced and lead to higher-quality data for the LCI. LOD
is a machine-readable format to support facilitated search and retrieval, guided by the
emergence of the semantic web, which is an approach to structuring and describing data to
enable sharing across multiple systems and applications [31]. For example, LODs from the
EU can be found here: https://data.europa.eu/ (accessed on 30 December 2022).

Cashman et al.’s method [31] was also used by Meyer et al. [33] but extended by
additional filtering based on metadata to exclude on-site activities not associated with
the desired chemical manufacturing. Their study included a comparison of top-down
(datamining), bottom-up (simulation) and a statistical approach, and it concluded that
the top-down-approach was limited by only being applicable for existing chemicals with
reporting requirements of release data and that there were differences in data quality,
depending on the generation of the data through measurements (ideal case), estimates
or engineering judgment [33]. Other aspects of Meyer et al.’s work are mentioned in the
sections below [33] and more recent work, like a method on data mining workflows for
modeling chemical manufacturing [34].

With respect to data gleaned directly from a factory’s manufacturing process, a study
using shortcut models for data extraction in standard operating procedures demonstrated
an automation opportunity. Energy use in the chemical industry is often an important factor
for environmental analysis, although it is often not very well documented nor monitored

https://data.europa.eu/
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when dealing with batch processes due to their complexity and dynamic nature [35,36].
Pereira et al. [36] proposed a bottom-up shortcut model using the standard operating
procedures (SOPs) of factories, where, through a systematic methodology building on basic
equations, energy data were extracted and data gaps were filled with default values or
expert knowledge. Uncertainties in this approach can be based on the quality of standard
process documentation as well as differences to the reality of batch-to-batch variability. The
use of default values, model simplifications and assumptions also adds to the uncertainty.
In the two case studies examined, the uncertainty was incorporated through fuzzy intervals
and the validation results showed “generally a good agreement between reference and
predicted values and a good capability of the uncertainty intervals to capture the batch-
to-batch variability of steam consumption” [36]. Data obtained from the SOPs using the
methods described were used by C. Pereira et al. (2018) [37] in a statistical model based on
reaction synthesis types, further described in the section on Section 3.9 in the article.

This method offers little possibility of automation so long as it is not coupled with text
analysis algorithms and support schemes for the calculation. However, it can save time for
LCI database generators or practitioners compared to basic facility-level data collection.
Incorporating the uncertainty in the data quality and using default data are also necessary
to secure the findings used with these data. One limitation, however, is the need to access
companies’ SOPs and ideally to be able to check their accuracy.

Developments in the field of LCA integration in dynamic manufacturing support tools
are also ongoing and are summarized in the book Resource Efficiency in Manufacturing Value
Chains by Blume [38].

3.2. LCA Databases

Using LCA databases reduces time, effort and resources for data collection and is
often preferred for creating the background system [5,11]. However, the unit processes in
the databases are subject to uncertainties, as the required data for them may, for example,
be unavailable, incorrect or unreliable [11,39,40], as well as representing only an average
condition of a whole country, a given time period as well as different instances of real
processes [41,42]. This then makes post hoc improvements necessary, which is evident in
the number of database updates [43,44].

Very common LCA databases have thousands of unit processes, such as GEMIS
(~10,000 processes [45]), GaBi (~14,000 datasets excl. 1000 complete models [46]) and
Ecoinvent (~18,000 processes [47]), which perform systematic updating and improvements
in the stored data [11]. Reinhard et al. [41] stated that, to the best of their knowledge, there is
no systematically guided way to implement LCI database improvement tasks. Data quality
and quantity improvements are more influenced by the external supply of data as well as
situation-driven requirements [11]. Therefore, a semi-automated prioritization method was
developed and applied on the Ecoinvent 3 database [9] using MATLAB, establishing that
across 19 LCIA indicators, 300 datasets were causing 60% of the environmental impacts,
mostly in the areas of electricity generation, waste treatment activities and energy carrier
provision (petroleum and hard coal) [41]. This method automates the prioritization for
updating through systematic selection of processes. However, the uncertainty in the
existing processes is not included, although an improvement in data quality is also needed
for uncertain processes. Additionally, each product/product system is given equal weight,
leading to many similar and connected processes being considered relevant [41].

This method was extended by a causer perspective, prioritizing “processes with ex-
changes of resources and emissions that are consistently important across product systems
and LCIA indicators”, and the connector perspective, where “sensitive hubs whose modifi-
cation can alter the results for the overall database considerably” are prioritized as well [11].
For climate change, three datasets caused 11% of the impacts [11].

Another project dealing with data generation, validation and management decision is
the Big Open Network for Sustainability Assessment Information (BONSAI) project, with
the main goal of maintaining an open database for LCA data and an open-source toolchain
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for the support of LCA calculations to make LCAs more transparent and reproducible [48].
One of their strategies is automation through “scrapers, data mining & advanced algorithms
for disaggregation, reconciliation and extrapolation” [49]. The BONSAI board consists of
many LCA scientists and LCA software creators who will be mentioned with respect to
other topics. These include Chris Mutel (scientist at the Paul Scherrer Institute, principal
author of the Brightway2 software framework), Bo Weidema (Professor at Aalborg Uni-
versity, developer of the original SPOLD LCI dataformat and former Executive Manager
and Chief Scientist of the Ecoinvent database) and Andreas Ciroth (founder and director of
GreenDelta, which developed the LCA software openLCA) [50]. Developments so far can
be accessed via Github [48].

Other automation approaches were found regarding changing the LCI data structure.
Different data formats bring limitations, and there are approaches to solving the issue of data
incompatibility, as the non-standardized LCA data structure inhibits automation efforts.

Building on this problem, new visions for data structure and harmonization have
been developed, such as the new data architecture by Ingwersen et al. [51], which com-
bines, stores and annotates LCA data in a resource description framework. One advan-
tage is “making data from diverse sources relatable without the need for a centralized
database schema” [51]. The code for the developed harmonization tool can be accessed
on Github [52]. This was a basis for the Federal LCA Commons [53], as discussed in a
report by Edelen et al. [54]. The data are also managed by the openLCA Collaboration
Server [53,55].

Mittal et al. [56] developed a coupled semantic data methodology for automated inven-
tory modeling for chemicals, through splitting inventory modeling data into two concepts
with different data needs: “lineage”, such as the synthesis pathway, using qualitative data,
as well as “process”, focusing on the process condition, which is quantitative. These linked
open datasets are coupled, for example, by chemical reaction and reaction participants.
By using the ontology query language, SPARQL (SPARQL Protocol and RDF Query Lan-
guage [57]), queries can be deployed to obtain an automated inventory of possible fitting
chemicals for concepts of ancestors or parents. Tested on a case study of nylon-6 produc-
tion, the proposed ontology guides inventory modeling using top-down or bottom-up
approaches [56]. Both main authors of the previously discussed papers, Ingwersen and
Mittal, were co-authors on the paper by Meyer et al. [33], which used classification trees.

Steubing et al. [58] proposed creating superstructures for future scenario LCI data in
the background system, containing different years and all individual exchanges of one
specific dataset, instead of creating many individual processes to reduce time and possible
mistakes when reconnecting the foreground system by hand to the various background
datasets and automatizing the scenario analysis. They illustrated their approach in the open-
source software Activity Browser [59], which is built on Brightway2 [60]. In the outlook,
they also mention the possibility of applying this approach to foreground systems. Limiting
factors in the development so far are the need for standardized future scenarios, the creation
and access to a future scenario database and the guidance for the LCA practitioners [58].

Automation potential was also found regarding connecting different databases and
fore- and background systems. Automation when using the “Ecoinvent LCI database with
scenario data from various data sources” was, for example, achieved by Mutel in his freely
available application “Wurst” [61], using Python and the Python-based LCA software
Brightway [60].

In some LCA studies, it is necessary to use data from different databases, as appro-
priate background data are not available in a single database. This can be challenging,
however, as it is necessary to find the appropriate data, structure them for use in an LCA as
a network of processes and link the processes together to build a product system model
(PSM) [62]. To obtain data from the GaBi database or from GEMIS, the related software is
required, as it is not freely available for different LCA software. There are also different data
formats for LCA data available, including more universal ones, such as EcoSpold, Inter-
national Reference Life Cycle Data System (ILCD) and JavaScript Object Notation (JSON),
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as well as software/database-specific ones, such as Zolca (for OpenLCA), SimaPro CSV
(for SimaPro) or GBX (for GaBi). To convert EcoSpold1, EcoSpold2, ILCD and JSON-LD
in any combination, the open-source project Global LCA Data Access (GLAD) [26] can be
used as well as a tool by GreenDelta, which converts EcoSpold and ILCD [63]. To discover
appropriate data, there are portals available, such as the aforementioned GLAD [26], the
LCA Nexus (GaBi data no longer available) [64] or the Federal LCA Commons [53]. These
search platforms are, however, still in their early stages [62]. To establish a standard for
LCA data, the United Nations’ Environmental Program “Shonan Guidance Principles” [65]
was developed as guidance principles for LCA databases.

Although finding the appropriate data can be challenging, another great challenge
right now is linking LCI data from different sources together in a structure that can be
reviewed, revised and reused by others [62,66]. An interim solution for doing so without al-
tering the newly created foreground process, which should be linked to different databases
with different process designation, is to use bridge processes, which combine, as input,
the different possible processes to be connected with the foreground process and give, as
output, exactly the input described in the process. The advantages and limitations of this
approach are discussed in [67]. Based on this publication, the prototype autoprox, written
in Kotlin, is available, which directly communicates with openLCA and the implemented
database, generating bridge processes [62,68,69].

Data quality and missing data were evaluated from case to case, and the extent to
which the processes to be linked fit together is subject here to the information and decisions
of the practitioner.

Another recent study, by Kuczenski et al., addressed the challenge of connecting
primary collected data for the foreground system with background data from databases in
an automatic way, by having three LCA software developers work on independent software
prototypes. Their task was to convert a Bill of Materials (BOM) into a foreground model
and then link it with background datasets [62]. Three initial prototypes were tested and
can be found on Github. The first prototype is pslink [70] and works unsupervised with
OpenLCA over the interface olca-py [69] It is the only model which is linked to Ecoinvent.
The second model is called antelope [71] and works supervised with the LCA-software
Antelope LCA, while the third model perdu [72] produces data readable by Brightway and
OpenLCA, and needs supervision by the matching of datasets.

These prototypes already facilitate automated install or embedding, and they can
interact with common used LCA software, for example, openLCA [73] and Brightway [60].
Additionally, they use a standard exchange format such as JSON-LD. With greater invest-
ment of time and integration in LCA software, the tools would be more accessible for LCA
practitioners. So far, none of their models have been able to transform the product spec-
ification into a complete product system model without manual intervention. Although
the preselected linking options from the prototypes can contribute to better accuracy, the
practitioner still needs to select the processes carefully with respect to data quality and
possible difference in flow or process compositions. Another approach to connecting back-
and foreground data is ontology design patterns, which could also be enhanced to address
the mentioned problems in more detail when in conjunction with similarity matching.

A previous approach to automated linkage from different data sources based on
ontologies was also developed by Kuczenski et al. [74]. Based on a joint workshop of
ontology engineers and LCA practitioners in 2015, a model called ontology design patterns
(ODPs) was created to derive a description of an LCA “catalog” that can be used to express
the semantic content of a data resource. This should reduce the problems of heterogeneous
formats of different databases and goes beyond widely used exchange formats, such as
Ecospold and ILCD, as it not only addresses the syntactic interoperability but supports
the interpreting of different data and the evaluation of the datasets‘ appropriateness for
the application. Interoperability and interpretability problems could be addressed via
automation by changing different labels between databases (e.g., for Designations of
Regions, such as the EU or unit conversion). The semantic model contains three classes
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or entity types: “Activities”, “Flows” and “Flow Quantities” as well. There were also two
relationships: “Exchange” is an established relationship between an activity instance and a
flow instance and “characterization” is an established relationship between a flow and a
flow quantity. The format of the generated catalogs are text documents in JSON [74].

One strength is, for example, that these catalogs can be used for advanced queries, as
the used search terms can be found in different data description positions depending on
the database used. Therefore, searching one keyword in two different databases, such as
Ecoinvent and GaBi, cannot appropriately cover the existing data right now. Using semantic
modeling tags, which appear frequently together with a given search term and could be
extracted automatically, along with codes to reproduce the search results, could be provided
with the catalogs. Additionally, similar or equivalent entities can be identified by using
text descriptions that have similar semantic content. Automation can be accomplished here
through advancing the search by metrics that yield numerical scores based on the actual
words in the process name, such as the Jaccard Index, used as an example in the publication
and locating synonyms in the queries by using online resources such as WordNet [75] or
machine learning algorithms such as Word2Vec [74,76]. The Python-based repository for
storing catalogs of LCI data is available on Github [77].

Implemented data conversion and importing are integrated in the open-source process
simulation software BioSTEAM [78], which has an implemented LCA module based on
Brightway2. This setup helps to overcome challenges when connecting foreground data
from the simulation with LCA databases [79].

3.3. Scientific Literature

There are many scientific articles from which data can be extracted and used for LCAs.
However, this category was not inserted in the pyramid of LCI data sources in a publication
by Parvatker et al. [19], and, depending on the specific data extracted from the paper (LCI
data, LCIA data, experimental data, which have to be upscaled to LCI data use . . . ), it can
be inserted in different levels of the pyramid. Though they all have this in common, the
textual format and heterogeneous structure create obstacles when extracting them [80].

Lousteau-Cazalet et al. [80] presented a decision support system (DSS) for eco-efficient
biorefinery process selection using an ontology-based semantic approach, which links open
data and offers automated reasoning. The DDS used knowledge engineering (KE) based
on semantic web technologies, soft computing techniques (fuzzy logic and belief theory)
and environmental factor computation, aiming to “structure experimental information and
express it in a standardized vocabulary”, as well as assessing the data source reliability and
computed and visualized green indicators [80,81]. For data management, extraction and
semantic annotation of data, as well as data source reliability assessment and bipolar flexible
querying, @Web, an online tool funded by the French National Institute for Agricultural
Research [82] was used. A case study comparing different pre-treatment processes for
sugar yield after enzymatic hydrolysis was undertaken, though there was no strategy to
deal with missing data needed to calculate the implemented environmental indicators (for
example, missing energy data) [80].

Belaud, co-author of the article mentioned above, further developed KE models for the
semi-automated integration of literature sources with other scientists over the years and, in
2021, presented a pipeline based on the LCA steps in publications with Prioux et al. [83–85].
Their pipeline extends the LCA phases with step 2 “Data architecture”, where KE methods
extract information from scientific articles and expand the last phase (“Interpretation”)
with visualization and analysis via machine learning methods and clusters [83]. For the
data extraction in the article from Belaud et al. [83], the previously mentioned French
National Institute for Agricultural Research [82] @Web platform was used, as well as an
internal software based on Microsoft Excel [83]. The extracted data were then written
in standardized LCA data formats and connected with the Ecoinvent database v3. Data
validation was accomplished using the pedigree matrix method [86], and mass balance was
verified manually by process engineers [83] or with the commercial simulator ProSim+ [84].
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The LCIA was calculated using SimaPro and the ReCiPe 2008 or 2016 method [83,84]. For
the visualization of the impact in step five, classical multidimensional scaling (MDS) and a
clustering algorithm (k-means) were used [84].

The case studies performed deal with the pre-treatment of rice straw and corn stover
in the context of a lignocellulosic biorefinery [83,84]. As is often the case in this area of
research, the data are from experiments in the lab, which means they have low technology
readiness levels (TRLs) (1/2). No scaling to higher TRLs has been included in the model to
date. Another limiting factor is the manual effort required by mass calculations in process
simulation software or by process engineers to check the data quality and calculate missing
data. By using data source reliability assessment beforehand, a pre-evaluation of the data
quality is included [84].

Another publication worth mentioning (not included in the evaluation as published
after the time horizon and focusing on one impact category and not the LCI) is by Shava-
lieva et al. [87], who trained a predictive model on the aquatic toxicity using semi-automated
knowledge extraction of scientific literature.

3.4. Process Simulation

Developing a simulation of a complex industrial process is a growing field, including
keywords, such as “digital twins” or “smart manufacturing”. Its potential from a technical
point of view is that it can also create data and reduce uncertainty for LCA models [88].

Parvatker and Eckelman [19], who compared different data sources, showed in their
case study on ABS and styrene that for greenhouse gas potential (GWP), the results are
similar to the primary data from plants, but for most other impact categories, the process
simulation did not perform as well as expected (out of 18 midpoint indicators from the
impact assessment method ReCiPe, only 4 were within a 10% range and another 4 within a
25% range). The authors recommend limiting LCI data from process simulation to GWP
and cumulative energy demand (CED) impact calculations. Disadvantages also include the
expertise required and the duration [19]. However, process simulations are quite common
in process development or optimization, so they can be a valuable source of data for the
parallel or retrospective LCA.

In a comparison of top-down (data mining), bottom-up (simulation) and statistical
modeling approaches, Meyer et al. [33] modelled their case study of cumene manufacturers
using an exciting flowsheet by ChemSep19 in the free-of-charge CAPE-OPEN to CAPE-
OPEN (COCO) simulation environment. They concluded that the simulation quality
depends on knowing the manufacturing process to make it representative of real-world
operations, and scored the data quality for their case study compared to the other methods
the lowest, as the simulation data used were over a decade old. However, the resource
and time requirements were low based on the freely available computational tools and
plans. Additionally, they also stated that the required knowledge and training for the
simulation are high. In their purpose-driven reconciliation framework, they, therefore,
stress the need to choose the data mining method based on the aim of the research, for
example, not creating high-quality release estimates by process simulation when screening
is the only intended assessment [33].

There is a risk of overlooking important environmental factors by conducting less
rigorous estimations when designing a new process, because catalysts, reaction promotors,
solvents or other material and machinery used can affect the sustainability of different pro-
cess opportunities [32]. As experimental data can be rare in the first TRLs, the development
of new processes is often supported by process simulation, which provides the opportunity
to explore different scenarios despite the lack of existing data. However, process simulation
is also used for optimization in large-scale implemented processes at high TRLs and, in
some cases, it is used specifically to generate data for LCAs (e.g., [89–91]).

To date, chemical process simulations mostly focus on techno-economic considerations,
and environmental issues are often addressed in a later step for process selection (as
in [32,92]). This is layer one in Kleinekorte et al. [93], who defined three areas of integration
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of LCA in process design. The second layer is integrating the LCA in a feedback loop
on a fixed-flowsheet for process optimization, and the third layer even integrates it from
the outset into the flowsheet generation via process synthesis by, e.g., “selecting options
from a superstructure or by altering the design via evolutionary algorithms” [93]. A visual
overview of the three types can be seen in Figure 4.

Sustainability 2023, 14, x FOR PEER REVIEW 12 of 42 
 

the expertise required and the duration [19]. However, process simulations are quite com-
mon in process development or optimization, so they can be a valuable source of data for 
the parallel or retrospective LCA. 

In a comparison of top-down (data mining), bottom-up (simulation) and statistical 
modeling approaches, Meyer et al. [33] modelled their case study of cumene manufactur-
ers using an exciting flowsheet by ChemSep19 in the free-of-charge CAPE-OPEN to 
CAPE-OPEN (COCO) simulation environment. They concluded that the simulation qual-
ity depends on knowing the manufacturing process to make it representative of real-
world operations, and scored the data quality for their case study compared to the other 
methods the lowest, as the simulation data used were over a decade old. However, the 
resource and time requirements were low based on the freely available computational 
tools and plans. Additionally, they also stated that the required knowledge and training 
for the simulation are high. In their purpose-driven reconciliation framework, they, there-
fore, stress the need to choose the data mining method based on the aim of the research, 
for example, not creating high-quality release estimates by process simulation when 
screening is the only intended assessment [33]. 

There is a risk of overlooking important environmental factors by conducting less 
rigorous estimations when designing a new process, because catalysts, reaction promo-
tors, solvents or other material and machinery used can affect the sustainability of differ-
ent process opportunities [32]. As experimental data can be rare in the first TRLs, the de-
velopment of new processes is often supported by process simulation, which provides the 
opportunity to explore different scenarios despite the lack of existing data. However, pro-
cess simulation is also used for optimization in large-scale implemented processes at high 
TRLs and, in some cases, it is used specifically to generate data for LCAs (e.g., [89–91]). 

To date, chemical process simulations mostly focus on techno-economic considera-
tions, and environmental issues are often addressed in a later step for process selection 
(as in [32,92]). This is layer one in Kleinekorte et al. [93], who defined three areas of inte-
gration of LCA in process design. The second layer is integrating the LCA in a feedback 
loop on a fixed-flowsheet for process optimization, and the third layer even integrates it 
from the outset into the flowsheet generation via process synthesis by, e.g., “selecting op-
tions from a superstructure or by altering the design via evolutionary algorithms” [93]. A 
visual overview of the three types can be seen in Figure 4. 

 
Figure 4. Integration of life cycle assessment (LCA) and process design based on research 
byKleinekorte [93]. Process selection: evaluation of fixed process structures by LCA. Process opti-
mization: integrated feedback loops of environmental impact on process design in process optimi-
zation. Process Synthesis by using algorithms. LCI = Life Cycle Inventory. 

Although these layers are defined focusing on the integration of LCA and process 
simulation with the purpose of choosing or designing more environmentally friendly pro-
cesses, the automation aspect for obtaining LCI data varies greatly between these three 
steps, as two (or more) software interact more in each further step. All layers could benefit 
from automation via interfaces between the process simulation and the LCA software to 

Figure 4. Integration of life cycle assessment (LCA) and process design based on research byK-
leinekorte [93]. Process selection: evaluation of fixed process structures by LCA. Process optimization:
integrated feedback loops of environmental impact on process design in process optimization. Process
Synthesis by using algorithms. LCI = Life Cycle Inventory.

Although these layers are defined focusing on the integration of LCA and process
simulation with the purpose of choosing or designing more environmentally friendly
processes, the automation aspect for obtaining LCI data varies greatly between these three
steps, as two (or more) software interact more in each further step. All layers could benefit
from automation via interfaces between the process simulation and the LCA software to
make the data transfer more efficient. Better cooperation between these two areas could
increase the data quality and completeness of LCA [32].

3.5. Process Selection

Process selection refers to the mere use of LCAs for choosing a process after simulating,
without any feedback on the process design development itself (used, for example, in [94–97]).
It is also used in terms of hot-spot analysis to identify parts of the processes with the highest
environmental impact (e.g., [93,98,99]). The degree of automation visible in the literature in
this layer was very low. There were, however, a few successful implementations, such as
the process sustainability prediction (PSP) framework with CAPE OPEN [100,101], tested
with frequently used process simulation software (PROII, Aspen Plus, COCO/COFE). The
Visual Basic-based framework then uses data obtained by the toxicological database and
molecular modeling to calculate environmental impacts with the WAR algorithm [102] and
support process selection. Unfortunately, a screening of the citations did not show any reuse
of their methodology, but Morales-Mendoza et al. [103] based their work on it [103]. A
comment by the Co-lan website administrators [101] recommends CAPE-OPEN flowsheet
monitoring as an easier approach, developed after the PSP framework was published. The
framework is available upon request [100]. Although there is much potential for making the
interaction of process simulation and environmental calculation smoother, in the applications
mentioned above, a small range of environmental impact indicators was calculated, limited
by the toxicological data available.

Another algorithm used to estimate environmental impact directly from the pro-
cess simulation flowsheet is the potential environmental impact (PEI) algorithm by Vin-
cent et al. [104], used in the process selection by Mio et al. [105]. However, another use
of this framework could not be found, even in the lead author’s later publications. A
co-author of this paper was Maurizio Fermeglia, whose framework was mentioned above.

Morales-Mendoza et al. [103,106] developed an automated coupling framework, the
Ecodesign Framework, which was tested on the process simulation software COCO, ProSim
Plus and Aspen HYSYS. The energy production modeling and emission computation were
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executed in the energy production simulator Ariane ProSim SA. The LCIA calculation
was conducted in SimaPro. The authors highlighted the limitations in the common LCA
software interfaces for using embedded LCA models. The integrated data enhance the
LCI sensitivity analysis [88,103]. However, in future work, uncertainties should be incor-
porated by confidence intervals and using Monte Carlo analysis of fuzzy concepts [103].
The ecodesign approach was later extended by a multicriteria decision-making method-
ological framework [107] and Azzaro-Pantel [108] expanded the developed framework for
food manufacturing.

A Microsoft Excel and Visual Basic-based approach called SimLCA was developed
by Gillani [109,110], combining SimaPro similar calculation procedures with data from the
process simulation ProSim Plus. It was based on a three-step structure (system, business
process and agrochemical process) and the involvement of five types of decision makers.
Through coupling with the process simulation, automatic updating of LCI and LCIA data
was achieved. Uncertainty was incorporated using the pedigree matrix [109].

The process–product–enterprise (P2E) approach [111,112] from two of the authors
who worked on the previously mentioned SimLCA (Belaud and Montréjaud-Vignoles)
enables process simulation interaction for process comparison and hot-spot analysis for
food production, with a case study on olive oil production. Their tool focused on the
evaluation of the process–product–enterprise system, as opposed to laboratory data, and
the integration approach can be seen in Figure 5. The approach involves converting data
directly from process simulation to a product model and sustainability assessment. They
also included social aspects (collected qualitatively and semi-quantitatively) as well as
multi-criteria analysis. While using Microsoft Excel and SimaPro for the inventory and
impact calculations in their first publication in 2014, they then proposed an in-house
VBA-application called “&cOlive” for the calculation, including a sheet for the process
simulation, which does not yet include energy calculations. Unfortunately, the framework
could not be accessed on the internet.
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Figure 5. Process–product–enterprise (P2E) approach structure modified from [113].

The thermo-environomic optimization methodology by Celebi et al. [113] was adopted
from a framework by Gassner and Maréchal [114] and aims to make comparisons of
different pathways for biorefineries, ranking them according to economic performance,
environmental impact and energy requirement. The model is visualized in Figure 6. The
ranking is established “according to the objective function with integer cuts constraints
(ICC)” methodology proposed by Maronese et al. [115]. The simulated parameters for their
case studies on wood to sugars (biochemical conversion) and wood to syngas (thermochem-
ical conversion) were obtained in Aspen Plus [116] and Belsim VALI [117] and combined
in a hybrid superstructure, containing “feedstock and raw materials units (Resources),
process conversion technology, units (Units), products units (Services) and layers which
correspond to the mass and energy balances nodes in the system”. GWP100 was then
calculated with formulas, including material and energy flow data (such as fuel and elec-
tricity) form Ecoinvent, though it is not mentioned whether automated linkage or selection
was used. Defining an MILP problem for the economic and environmental performance,
150 solutions were calculated in the Lua-OSMOSE framework, a platform hosted by the
École Polytechnique Fédérale de Lausanne in Switzerland, which allows for linking several
types of flowsheeting software and provides analysis tools (optimization, sensitivity analy-
sis, etc.). The OSMOSE framework is available on request [118], but some pages (such as
Wiki) were not working. More on the integration from LCA into the OSMOSE framework
can be found in Yoo et al. [119], Granacher et al. and Kermani [120,121].
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Another method linking LCA with data from simulation software was developed
by [122] as their simulation tool for water treatment EVALEAU [123]. It automatically
imported process data and calculations from the water chemistry calculation software
PHREEQC [124] and a water quality database via a Python-scripted code into the LCA
Software Umberto. The environmental impacts could then be evaluated through an opti-
mization code in Python. Missing data, e.g., on sludge treatment, were not considered [122].
The EVALEAU framework was also used for comparing the performances of six meta-
heuristic algorithms for multi-objective optimization for cost and environmental impact
optimization [125]. Another example of dynamic modeling, here in the area of wastewater
treatment, is the coupling of the software BioWin [126] through a Python script with LCA
in Umberto [127,128]. This script was also used for literature-based complementary calcu-
lations (e.g., on energy requirements) as well as assignments between the output flows of
the simulation and the flows of the LCA software. A summary of additional formula and
Ecoinvent database data used can be found in the Supplementary Material [127], although
the Python code could not be found.

Outside the chemical process simulation field, Cerdas (2018) combined engineering
models and LCA, where a simulation for the life cycle of electric vehicles (e.g., containing
energy mass models for battery systems from the cell up to the battery pack) or mass
models for the configuration of the vehicle, as well as driving contain simulation routines for
driving cycles is used for so-called integrated computational life cycle engineering (IC-LCE).
The concept was implemented in Python and uses Brightway for the LCA calculations. The
aim is to use less oversimplification (e.g., without using aggregated environmental impacts
from datasets or using different geographical boundaries). Automation is particularly
apparent here in the interaction between the different layers (simulation-LCA visualization
of results) without the need for user intervention; for instance, the appropriate regional
electricity mix is chosen by the software [129].

3.6. Process Optimization

Process optimization enables the simultaneous use of LCA and process simulation.
Environmental impacts as well as economic considerations are often included in the process
evaluation in a standardized way, for example, by means of mathematical programming
(e.g., multi-objective optimization), with the purpose of optimization of a fixed process
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flowsheet [93,130]. Azapagic and Clift [131] pioneered environmentally friendly process
optimization with the life cycle (LCO) approach.

The SUSCAPE framework, which uses life cycle assessment, surrogate modeling,
objective reduction, multi-objective optimization and data envelopment analysis (DEA),
is a good example of the second layer. A case study on the production of methanol from
CO2 and hydrogen assessed eleven CML 2001 LCIA indicators, taking the background
data from Ecoinvent database Version 3 [132]. These were included without aggregating
the indicators. Building on an Aspen-HYSYS model, decision variables, such as flow rate
and temperature, were varied through 1000 samples generated through Latin hypercube
design. Thus, 209 of them achieved the desired production rate and were used to build a
surrogate model, using 70% for training, 15% for validation and 15% for testing, which
was, afterwards, twice re-calibrated adding another 85 and 79 samples generated through a
single-objective optimization and a multi-objective genetic algorithm (MOGA). Afterwards,
an objective reduction using a single-objective genetic algorithm on the 11 objectives was
performed to build the then used initial Pareto frontier. Following this, an MOGA algorithm
already implemented in the MATLAB optimization toolbox was used for the multi-objective
optimization. The post analysis of the Pareto frontier was performed using DEA, identi-
fying only 10 out of the 126 optimal points as efficient [133]. Although this framework
integrates LCA and process simulation simultaneously, and compared to the examples
above, evaluates the process in standardized ways, an automated connection between them
is lacking. Although the evolutionary algorithm, MOGA, performed well and had attrac-
tive properties when integrated with the process simulator, there are numerous problems
in constraint integration, flowsheet initialization, decision variables and their boundary
selections [133,134]. Pasha et al. [134] recommended using derivative-free optimization
algorithms “due to their performance efficiency in discontinuous, non-differentiable, or
highly non-linear expressions”, such as the evaluation algorithm with taboo list (MODE-TL)
used in [135].

Based on the data from the Suscape framework [133], Rodríguez-Vallejo et al. [136]
developed a novel DEA approach, tailored to process synthesis and design using a key
performance indicator (KPI), thus “preventing unrealistic targets by accounting for thermo-
dynamic limitations represented as mass and energy flow constraints”. In their example,
they used the GWP and specific cost as KPI and performed the case study in Apentech as
well as GAMS for the DEA modeling.

Another tool performing multi-objective process evaluation is LCSoft, which was
exclusively developed for evaluation of chemical, petrochemical and biochemical processes
and able to integrate “with other process design tools such as sustainable design (Sustain-
Pro), economic analysis (ECON)”, process simulation and a property database tool (CAPEC
DB), allowing for automated data transfer between the packages [128,137]. The tool is
based on Visual Basic for applications with an Excel interface and consists of various tools,
including LCI knowledge management, a tool for estimation of environmental impact
characterization factors using a group contribution method, a tool to perform the LCA
calculation and the interface between the different software [137]. Software updates, such
as further managing options for LCI databases, new pathways for LCIA calculation and
new features, such as parameter sensitivity analysis, normalization, data quality indicator
and uncertainty analysis, using Monte Carlo analysis were described and tested by Chave-
wanmas, Malakul and Gani (2017) and Petchkaewkul, Malakul and Gani (2016) [138,139].
It is not open access but has to be purchased over PSE for SPEED Company Limited [140].

Multi-objective optimization was also performed by Helmdach et al. [128]. This
builds an automated connection between the process simulation software gPROMS, the
LCA-software Umberto and MATLAB for the optimization. While gPROMS was linked
with MATLAB using gO:MATLAB [141], Umberto and MATLAB were connected via
Excel and a Java robot mouse emulator, which simulated manual user clicks. Using the
TS-EMO algorithm LCA results, as well as costs computed from the mass and energy
flows, these can be used to calculate Pareto solutions. A gate-to-gate case study of the
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conversion of terpenes derived from biowaste feedstocks into reactive intermediates was
performed. Through the passing of all data (e.g., process parameters, material and energy
flows) to MATLAB, it is potentially possible to integrate different simulation software and
different complex systems, which is, however, limited by much software not exporting
gradients, although blackbox optimization also speeds up the calculation time of the
optimization [128]. Another example where Umberto was coupled directly via Microsoft
Excel with simulation software, namely ChemCAD, can be seen in Denz et al. [142].

3.7. Process Synthesis

As an extension of the optimization, a new process design can be created, for example,
by selecting options from superstructures or by using evolutionary algorithms. This could
influence the unit processes in a process flowsheet, the equipment used or the reaction route
for a given product [143–145]. Equation-oriented mathematical optimization problems are
not yet integrated in publications for automating the software connections described, but
preparatory work is as follows: Using superstructures and solving of the optimization
with multi-objective mixed-integer nonlinear programming (MINLP), it was applied, for
example, at a hydro-carbon biorefinery [146], for a microalgae-to-biodiesel process [147]
and for ammonia production [148]. König et al. [149] used reaction network flux analysis
and process network flux analysis to investigate the production of bio- and e-fuels. All of
the previously mentioned authors only included the GWP as an environmental indicator.
Caldeira et al. [150] used chance-constrained programming (CCP) optimization to identify
blend compositions of biodiesel based on a previously published LCA model [151].

A combination of flowsheeting energy integration techniques, LCA and economic
performance was performed for ammonia production by Tock et al. [152] based on previous
methodologies [114,153,154], stating that the integration of environmental impact likely has
an important influence on the engineering decisions, and the choice of its objective function
influences the optimal process configuration [153]. The thermo-environomic models were
developed in the flowsheeting software Belsim Vali4 [152], and the LCI was integrated as a
function of the parameters [153] so that the environmental impact takes the process design
and operation into account [152]. The optimization problem of finding the best process
layout was solved using an evolutionary algorithm in Matlab [152].

Another approach is, for example, the open-source project BioSTEAM [78], which
allows for flexible scenarios and incorporation of uncertainties in the direct interaction
between biorefinery design, simulation and technical-economic but also ecological assess-
ment on the basis of the LCA software Brightway2 [79,155]. The Python-based software
is for early-stage technologies, especially in the biorefinery sector, and automates agile
inventory data and simulations of different scenarios and designs, as well as enabling
rigorous uncertainty and sensitivity analyses [155]. Case studies of the software are on
sugarcane ethanol production [79], co-production of biodiesel and ethanol from lipid-cane
and the production of second-generation ethanol from corn stover [155]. Examples of
scientific papers including LCAs using BioSTEAM concern the production from lactic
acid production from lignocellulosic biomass [156] and renewable linear alpha-olefins by
base-catalyzed dehydration of biologically derived fatty alcohols [157]. Information on
BioSTEAM can be found on Github [158] and at the official homepage [78].

Another example of simulation software outside the process simulation, which allow
for the automated chance of own values through integrated feedback loops, that has already
been tested with LCA is Vensim [159], used by Stasinopoulos et al. [160] for integrating
greenhouse gas emissions into the transition to an autonomous vehicle fleet or discrete-
event simulation (DES), used by Löfgren and Tillman [161] for manufacturing.

3.8. Process Calculations

If available data are not sufficient or the LCA practitioner feels more comfortable with
chemical engineering calculations than with process simulation, process calculations can
be used. In their classification, Parvatker and Eckelman [19] defined advanced and basic
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process simulation as individual methods. However, the distinction between advanced and
basic calculations may vary depending on the author. While Smith et al. [32] presented their
calculations as simplifications, Parvatker and Eckelman [19] classified them as advanced.

The following is a definition by Parvatker and Eckelman [19], “advanced process
calculations build on basic process calculations but include consideration of production
scales, equipment efficiencies, heat transfer processes, reflux, and reactor geometries”.
Comparing this to the case studies on styrene and ABS by Parvatker and Eckelman (2019),
the difference to process simulation based LCI is minimal (11 out of 18 LCIA indicators were
within a range of 25% compared to actual plant data), and advanced process calculation
even performed better than simulation in some categories. In the prediction of GHG
emissions and CED, process calculation performed marginally poorer. For the calculation
of heat integration opportunities, pinch analysis with tools, such as i-Heat and Aspen
Energy Analyzer, was recommended [19]. Frameworks for calculations are available, such
as the scale-up framework for chemical processes by Piccinno et al. [162].

In contrast to advanced process calculations, fixed values for temperature, pres-
sure, etc., are applied for the basic calculation technique, which do not vary over time.
Mass and energy equations are typically used. However, since time must also be invested
in research for assumptions about, e.g., process yields and solvent recovery, Parvatker and
Eckelman [19] recommended performing an advanced calculation immediately if possible.

As an example of basic calculations, Jiménez-González, Kim and Overcash [163]
developed a methodology for developing gate-to-gate LCI information, including rules of
thumb, stating that these rules are dynamic and subject to change owing to current trends
in industrial production processes, improvements and pollution prevention methods.

Falling into the process calculation category, an approach using advanced process
calculation combined with a molecular descriptor was taken by Kleinekorte et al. (2019),
who developed a fully automated neural-network-based framework, aiming to integrate
process descriptors to the molecular properties to be able to distinguish different production
pathways when producing a chemical. The framework includes feature selection through
stepwise regression, setup of the network architecture using a genetic algorithm (GA)
from MATLAB and predicts 17 environmental impact categories: the Recipev1.08 (H)
midpoint categories [143]. For a case study comparing component- (solely based on
molecular descriptors) vs. process-specific networks, the training data used were 63 organic
chemicals obtained from the Gabi database, and 10% of them were chosen randomly for
the validation set. To avoid overfitting and due to limited input data, the feature selection
only chooses 10% of the number of training data as the final number for the descriptors
from originally 178 molecular and 7 process descriptors. The process descriptors were
based on Patel et al. [164] and include, for example, “the concentration of each component
at the reactor outlet [ . . . ] assuming ideal phase and chemical equilibrium”, which “is
assumed to correlate to the required separation effort” [143]. Compared to the molecular-
based ANN, the process-specific network increased the prediction in 10 of 17 midpoint
indicators, although the absolute coefficient of determinations was small, with values
lower than 0.4. for 16 impact categories. Compared to the literature, the ANN created by
Wernet et al. [165,166] performed worse in 14 of 17 cases. The authors also stated that they
performed similar to Song, Keller and Suh [167] with their R2 for GWP. However, when
comparing their acidification with the other neural networks (NNs) using the conversion
factors for impact assessment methods from Dong et al. [168], they performed significantly
worse. Kleinekorte et al. [143] additionally performed a case study on the CO2-based
pathway for formic acid and methanol and found when comparing it to LCAs from the
literature that the potentials are overestimated by their process-specific ANN, but the trends
are predicted correctly.

A comparison of the coefficients of determination of the NNs can be seen in Table 1.
It should be noted that this model is a mixture of molecular-structure-based model and
process calculation and is, therefore, not a straightforward automation of the latter.
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Table 1. Comparison of molecular-descriptor-based prediction on LCIA using neural networks and
Gaussian process regression; MLR = multiple linear regression, ANN = Artificial Neural Network,
GPR = Gaussian Process Regression, CED = cumulative energy demand, GWP = Global Warming
Potential, EI99 = EcoIndicator 99 Total, (T) A = Terrestrial Acidification; for molecular descriptor
based prediction on LCIA using Neural Networks.

Finechem Predictive_LCIA Process-Specific Environmental
Impacts

Using R (available as R-Package)
Tensorflow and

Brightway2 (available
on Github) [169]

Genetic algorithm from the
Matlab toolbox

ANN vs.
Gaussian
Process

Regression

Developed by [166] [165] [167] [143] [170]

Model ANN, (MLR) ANN ANN ANN GPR, ANN

Input data

103 chemicals (58
from Ecoinvent

v1.3 & 45
inhouse data)

‘basic chemicals to
solvents, chelating

agents and
pesticides

392 chemicals
(96 Ecoinvent
& 296 inhouse

& industry
data)

166 organic chemicals
from Ecoinvent

63 organic chemicals from the
GaBi Database

Three datasets
ranging from

62 to
547 organic
chemicals

Training/
Testing/

Validation
Splitting in %

85/15/0 85/15/0 84/6/10 85/5/10

80/10/10
using

Kullback-
Leibler

divergence

Molecular
Descriptors 2,6,17

10, reduced by
PCA to

8 factors

3839 decriptors reduced
by PCA to 60 features

Based on
Wernet

[165,166]
architecture

178
178 & 7
process

descriptors

Prediction
Accuracy

(Mean relative
error [%])

CED 22.4–28.8 29.1 30

GWP 58.2 65

EI99 20.7 21

(T)A 26

Coefficients of
Determination
for the Impact

Indicators

CED 0.58 0.45

GWP 0.41 0.48 ~0.08 ~0.23 ~0.31

EI99 0.69 0.87

(T)A 0.73 ~0.02 ~0.00 ~0.17

Application

petrochemical field [171,172].
postcombustion CO2 capture [173]
bio-based production of platform

chemicals [174,175].
Soft PVC plastic and a tobacco

flavor [176]

Organic chemicals
Case studies

acetic anhydride
hexafluoroethane [167]

CO2-based production of methanol
and formic acid to their respective

fossil pro- duction pathway
/

3.9. Stoichiometry

Stoichiometric methods, which are based on balanced chemical reaction and molecular
mass, are easily available. They are the basis of the calculations and simulations mentioned
above and have performed individually reduced time requirements but lack information
and process configuration, production scale, plant design or separation processes, which
leads to the ignorance of the important factors leading to environmental impacts. They can
be supplemented by thermodynamic data, such as heat of reaction and heat capacities, to
estimate the heat requirements and estimations of the separation of the target product from
the by-products after the reaction, leading to three levels. Level one only includes the balance
reaction, level two adds the heat of the reaction and level three incorporates the yield [19].

Parvatker and Eckelman’s [19] calculations for the different process levels showed that
the three stoichiometry levels were more likely to underestimate the environmental impact
compared to the real plant data (while process calculation and process simulation were more
likely to overestimate it), and that in 10 of 18 recipe midpoint categories, the results became
closer the higher the stoichiometry level. However, in five indicators, a reversed effect could
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be seen, where the accuracy from level one to three decreased. The method could be useful
for a comparison of products or processes for LCA practitioners with time constraints.

When screening the literature, a comparison of biofuel- and carbon-based fuel path-
ways, including the global warming potentials, was found by König et al. [149]. Their
calculation, however, is based on two screening methodologies for early-stage develop-
ment, the process network flux analysis (PNFA) [177] and the reaction network flux analysis
(RNFA) [178]. Although the RNFA is based on stoichiometry, the yield of the reaction and
the component properties, such as molar mass and enthalpy, the GWP calculation still
needs more detailed data for the PNFA, such as the effect of solvents, concentrations and
separations [149,177].

For the detailed literature analysis in this paper, only one publication with automation
potential could be identified. Pereira et al. [37] developed two models for estimating the
steam consumption in the production of chemicals based on different predictor variables
such as reaction type. The models, using probability density functions (PDFs) and classifi-
cation trees, were derived from “production data provided by a consortium of industrial
partners representing leading companies in fine chemical and pharmaceutical” and a case
study in which the intermediate substance 4-(2-methoxyethyl)-phenol, derived from differ-
ent synthesis routes, was tested. Steam consumption was chosen as it is usually the highest
energy utility consumption in batch plants [37]. As predictor variables, reaction type
and reaction mechanism, presence or absence of distillation process and reflux condition,
maximal temperature and time required for heating as well as process mass intensity and
steam consumption during distillation process were used, it can be argued that this is a
combination of process calculations and stoichiometry.

Including uncertainty calculations using Monte Carlos, the model outputs are in the
form of intervals rather than point estimations, and it is stated that estimation errors can
also occur due to the simplifying hypothesis that energy utility consumption is mostly
dependent on the production processes rather than on specific reactants, auxiliaries and
products [37]. No further use nor source code for the model could be found, which limits
the gain in knowledge and further development by other scientists.

3.10. Molecular-Structure-Based Models

The physical–chemical properties of chemicals, including molecular weight, composi-
tion and functional group, contain information about energy and resource requirements for
production, which are extensively used in combination with advanced statistical techniques
for prediction of toxicity [19,166], as well as in other areas, such as bioinformatics, medic-
inal chemistry or chemometrics [179]. A use for LCA was explored by various authors,
as described below. The prediction quality is, however, in the context of a narrow set of
chemicals used for training the model. Additionally, they are used to directly calculate a
predefined selection of LCIA results, not to generate LCI data. The models do not show
mechanical relationships other than statistical ones, which makes testing different process
configurations impossible [19]. However, they are a good alternative for screening pur-
poses, and in a case study by Parvatker and Eckelman [19], the performance was similar to
that of their stoichiometry calculations at level three.

Wernet et al. [166] assessed the capabilities of multiple linear regression (applying
a least-squares analysis) and neural network models, or more precisely, multilayer per-
ceptrons (MLPs) for this purpose. The models created were based on the inventory data
of 103 chemicals, ranging from basic chemicals to solvents, chelating agents and pesti-
cides. The data quality is rated as generally high—58 of the datasets were taken from
the Ecoinvent database v1.3 (1) and 45 were created in house by detailed analysis of pro-
duction processes. The MLPs used a Broyden–Fletcher–Goldfarb–Shanno algorithm, a
quasi-Newton method, for training 85% of the data on one input, one hidden and one
outer layer, with an optimized number of neurons in the hidden layer and normalized data.
Further, 30 combinations of training and corresponding test sets containing 15% of the data
were created, and the test set excluded a number of quantifiably unique chemicals.
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Further analyses of the relative prediction errors (MRE) of the NNs showed that the
detailed and the condensed model have comparable prediction capabilities (22.4% and
22.9%) while the minimum model consults in a higher MRE from 28.8%. Additionally, the
authors created new NN models through leave-one-out (LOO) cross-validation, which
showed “that even a relatively small increase in training set size has a considerable impact”.
The LOO model scored a mean relative prediction error of about 6% and a q2 of about 0.8,
which confirms the validity of the approach and the usefulness of the models.

The NN model performed better than the corresponding linear regression models,
showing that a linear relationship is not adequate to describe the model. Even the MLP
with the minimal input set almost always had a higher mean Pearson and Spearman rank
correlation coefficient (R2) than all the linear regression models.

They calculate the impact factors by focusing on the cumulative energy demand
(CED), as well as the global warming potential (GWP), the biological and chemical oxygen
demands (BODs, CODs), the total organic carbon (TOC) and the eco-indicators total (EI99 T),
Human Health (EI99 HH), Ecosystem Quality (EEI99 EQ) and Resources (EI99 R).

As a limitation, the authors state “that the current models are lacking in range and the
results carry a level of uncertainty” [166].

For further development with a focus on reducing overfitting, they concluded that
“more advanced techniques involving soft or hard pruning of the network weights could
be utilized to reduce the overfitting problem. However, it is expected that the impact
of a richer database would be much more significant” [166]. The richer database is also
recommended by the authors because a loss of predictive capabilities is seen due to the
limited capacity of NNs to extrapolate. To be able to interpolate “the training data should at
least broadly cover the chemical range of the test data”, as unique and untypical chemicals
in the test set revealed the problem of limited generalization capability [166].

Their subsequent article, which already used 392 chemicals to train an NN, was
compiled in 2009. Here, 296 were cradle-to-gate chemical data from industry partners and
96 from Ecoinvent. The data quality was rated as high, and everything was based on the
average European (UCTE) electricity mix. For usage in the LCI, the model estimates direct
heat and electricity use but also calculates LCIA results, such as the CED, the GWP and
Ecoindicator 99 [165].

As input, they selected ten descriptors from a former larger group. These were then
reduced to eight factors, accounting for over 95% of the variance, by performing a prin-
cipal component analysis (PCA) to reduce the trade-off between communicating as much
information as possible to the model while minimizing input size. Using seven hidden neu-
rons, resulting in 71 weights in the NN and a data-to-weight ratio of 4.8. (indicating some
overfitting), the model was trained with a Broyden–Fletcher–Goldfarb–Shanno algorithm, a
quasi-Newton method. Uncertainty was incorporated as the final model puts out 30 results
from the 30 best-performing models, which can be used for uncertainty analysis. The coeffi-
cient of determination (q2) for those models was usually between 0.4 and 0.7, and the electricity
and heat prediction model, as well as the CED and the Ecoindicator99 predictions, perform
well, while the GWP models perform less well due to a lower coefficient of determination and
a higher variation in the original data [165].

Based on these two publications, the R-Packet FineChem was developed to use this NN
for the generation of LCI and LCIA data in the petrochemical field, which helps practitioners
obtain LCI and LCIA data through the use of a model in an automated way, by only needing
to know the molecular structure [171,172]. An example where FineChem was used is the
calculation of LCA aspects of solvent selection for postcombustion CO2 capture [173,180],
were it was used for creating a computer-aided molecular design (CAMD), which helps
designing or finding different chemical compound/s, such as solvents, polymers and
pharmaceutics, by using a large number of feasible molecular structures based on the
estimation of desired physiochemical properties [181]. Integrating FineChem into a CAMD
framework would allow for integrating LCA criteria during the solvent selection in the first
stage compared to the post-assessment in FineChem, which has to be conducted in a second
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step [172]. Another example of where it was used is the evaluation of bio-based production
of platform chemicals [174,175]. Limitations of these LCAs in FineChem as well as an
outlook on developing FineChem to a group contribution-based version were described
by [172]. Wernet’s ANN [165] can also be used for free via the online tool EstiMol [182,183].

Using multiple hidden layers in contrast to FineChem [167] also generated an ANN
to predict LCIA results on the behavior of molecular structure. The model development
was based on three groups (training, validation and testing) using “166 unit process
datasets for organic chemicals from the Ecoinvent” database. The NN was created using
the Google Tensorflow framework in Python 2.7, and around 4000 molecular descriptors
were calculated for each chemical by Dragon7. To reduce the number of descriptors,
filter-based feature selection and PCA (preserving 95% of the variances in the original
dataset) were tested as well as using all descriptors as model inputs. After testing them on
72 different model settings (6 impact categories, 3 levels of hidden layers and 4 levels of
hidden neurons), PCA was further employed to reduce dimensions, as it had, in general,
higher R2 values at the 72 tested model settings. Six models were created for each model
output and the LCIA categorized cumulative energy demand (CED), global warming (IPCC
2007), acidification (TRACI), human health (Impact2000+), ecosystem quality (Impact2000+)
and eco-indicator 99 (I,I, total). Whereas the models for acidification, EI99 and human
health “perform relatively well, with R2 values of 0.73, 0.87 and 0.71,” the CED, ecosystem
quality and the GWP had a lower performance with 0.45, 0.48 and 0.21–0.31. Performance
can be compared to Wernet’s [165] model in Table 1 [165,167]. A drawback in this paper is
that the model was only compared with the first Wernet model [166] in the paper, instead
of comparing it with the more comprehensive model from 2009 [165], where the R2 data
were also available. There are also two case studies in the paper using the chemicals acetic
anhydride and hexafluoroethane (HFE) [167]. In general, chemicals with a high life cycle
impact can be identified as having higher estimation errors due to the limited training data
available for them. Additionally, those chemicals with especially high CED are mostly
pharmaceuticals, and the energy demand through selectivity and purity requirement in
this industry would need more specific training data.

Assumptions and uncertainties in the initial training data from the Ecoinvent database
should be considered when using this model. Additionally, this study used the Euclidean
distance-based AD measurement to characterize the uncertainty estimation, which provides
an indication of prediction errors. In their outlook, the authors stated that a combination of
the AD with methods such as nonparametric probability density distribution could improve
the uncertainty information and that future research should consider synthesis pathway
descriptors, such as reaction temperature, existence of catalyst or reaction selectivity, next
to the molecular descriptors [167]. The model can be accessed on Github [169].

Following on the ANN model mentioned in the Process Calculation section above [143],
Kleinekorte et al. [170] presented a comparison between the ANN model and Gaussian
process regression (GPR) for limited training data at a conference. They concluded that
“the GPR outperforms the ANN in terms of prediction accuracy on all datasets”. As GPR
is considered to be a powerful machine learning regression algorithm, especially also
useable for small datasets [184], a literature search was obtained on its usage for LCI data
generation so far. No further usage in combination with molecular models was found,
although in research on usage for predicting missing temporal or geographical data [185]
and for energy prediction during wheat production, the authors concluded the ANN model
with radial bias function was more accurate [186].

Meyer et al. (2019a) combined data-mined data from 348 facilities on air emission
and production volume with physicochemical property data, such as molecular weight,
vapor pressure, density and water solubility. Extracting the data for 45 chemicals first
using standardized emission and waste inventories (StEWI) and a Python script, as well
as ChemSTEER, they then created, in R-Studio, a single classification and regression tree
(CART) and, in an extension of the CART approach, a random forest (RF) model, with
2000 trees, which should increase the prediction accuracy and purpose-driven reconcili-
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ation of approaches to estimate chemical releases. However, when comparing the error
parameters, the CART model has better results for predicting new chemicals or chemicals
with poor data (chemicals outside the test and training set). Both models would need
a larger curated training set, but if a good model is generated, those using the model
need little knowledge about the process, and data quality can be good when current and
high-quality data are used for the training. Both R-codes are available in the supporting
information for the publication [33].

Hou et al. [187] estimated missing ecotoxicity characterization factors for 2122 USEtox
chemicals using fourteen physical–chemical characteristics obtained by the open-source soft-
ware OPERA (Open Quantitative Structure–activity/property Relationship App) [188,189]
and by using the Python Scikit-learn machine learning module [190], which is an open-
source Python library, including various regression, classification and clustering algorithms.
In their example, they calculated the hazardous concentration 50% (HC50) as a regression
problem through following machine learning methods: “k nearest neighbors (KNN), sup-
port vector machine (SVM), neural networks (NN), random forests (RF), adaptive boosting
(AdaBoost), and gradient boosting machine (GBM)”. They also compared the performance
with traditional QSAR models, such as ECOSAR, “ordinary least squares regression (OLS),
partial least squares regression (PLS), and principal component regression” [187]. The
machine learning models had better prediction performance than the traditional QSAR
models and, in total, RF had the best predictive performance. Based on these results, the
HC50 and CFeco were calculated for 552 chemicals without existing values using an RF
with 1000 trees and 4 as maximum feature for splitting trees. Uncertainty was addressed by
removing outliers with Cook’s distance measure and by giving a confidence interval for the
estimated data. Ref. [187] emphasized that their results are only useful references as long
as chemical-specific laboratory tests are not available. The limitations of their approach
are the difficulties in interpretation due to the missing explicit mathematical function to
explain the RF model (“black box”), the fact that the training causes high computational
costs and variables with less unique values are handled as less important. An extension
with more physical–chemical properties is also being considered. The advantages of their
approach are the time savings and the good performance, as well as the ability to easily
tune parameters and the wide applicability [187]. The Python code directly linking to this
article could not be found on the authors’ Github page [191].

Mio et al. (2021) created an extension to multiscale molecular modeling in their LCA
to identify a suitable material for a set of cylinder head covers for a marine engine, where
they compared aluminum with different nano-engineered thermoplastic polymers. As
visualized in Figure 7, the molecular modeling was applied on different modeling scales.

Although this extended approach is described here, as it is interesting to incorporate
LCI in all phases, the paper lacks methodological detail.

3.11. Proxy

The use of proxies, e.g., from existing databases, is a popular approach that reduces
data search time [19,176,193] but requires expert knowledge to establish the similarities in
any process routes and synthesis conditions [19,193]. Canals et al. [193] differentiated four
proxy data types for biobased products: scaled proxies (through linear scaling), direct proxies
(data with similar characteristics and functions), average proxies (average of several similar
products) and extrapolated data (through extrapolating similar LCIs). After comparing several
case studies, they concluded that quality as well as effort increases when moving from scaled
to direct to averaged and then to extrapolated, although sensitivity analyses should be carried
out for all of them. Parvatker and Eckelman (2019) maintained, after performing their case
studies on Styrene and its downstream product ABS, that its proxy data should be mainly
used as a placeholder, to be later replaced with data from higher areas of the pyramid (see
Figure 2). However, both studies concluded that using a proxy is better than omitting the
information [19,193]. A proxy method used by Parvatker and Eckelman [19] with automation
potential is monetary-based, using chemicals with similar market price, although the LCIA
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results were not as good as those from the direct proxy. Examples of using an average and
extrapolated proxy can be seen in Wernet et al. [176], who also concluded in their two case
studies that, compared to the process model approach or the use of the Finechem tool [171],
the use of proxies is not recommended.
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which is usually needed for parameterization of higher scale simulations or for gaining a detailed
resolution of selected portions of bigger systems” [192].

Developments in using proxy data for the direct prediction of LCIA results can be
seen in Steinmann et al. [194], who developed a regression-based framework for coal
power plants, and in Pascual-González et al. [195], who used multi-linear regression and
mixed-integer linear programming.

An approach used for our detailed literature analysis of automation potential for LCI
was performed by Hou et al. [196]. Their automated approach fills in data gaps in unit
process (e.g., energy demand for production) through a similarity-based link prediction
method, which identifies similar processes via data comparison of other intermediate and
elementary flows and estimates missing values by averaging the corresponding data of
the similar processes. For their example, they used 2546 processes from the Ecoinvent 3.1.
database and built a matrix using 7029 flow data from these processes. Comparing ap-
proaches with and without normalization, they were able to predict missing values with
high accuracy when using no normalization with 1% and 5% missing flows. They provided
two case studies on diesel, one for a dataset of another database (U.S. LCI database) and
one for a dataset directly from Ecoinvent [196]. Building on the work of Xu et al. [197], the
authors extended their research with a decision-tree-based supervised learning approach to
improve their forecast on identifying zero and non-zero flows. Their code can be accessed
via GitHub [198].

3.12. Bibliometric Analysis

Applying mathematical and statistical methods to books or other media of communi-
cation was first defined as bibliometric by Pritchard [199]. In our research, we apply it to
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the above-identified and discussed literature on automation in LCA to identify relationships,
trends and patterns (e.g., countries with higher research in this area, journals that publish on
these topics and keywords). We, therefore, identified the key publications for automation,
listed in the Supplementary Material in Table S3. When there was more than one interlinked
paper (e.g., on a method or software development), only one paper from these researchers
was selected. For example, Wernet published a pre-study for his final ANN used in FineChem
in 2008 [166]. This was not included and only the 2009 paper was used [165].

Research Rabbit [24], VOSViewer [22], Web of Science (Analyzing Tools and Citation
Report) [23] and Microsoft Excel were used for the different analyses.

Out of 30 closely analyzed literature sources, 10 were published by US first authors and
20 by European authors. Including all authors (using Web of Science the analysis), 17 coun-
tries with 45 regions were counted in total, where 11 regions were counted from authors
from US institutes and 28 from 10 European countries (Supplementary Material: Table S1).
Authors with the highest number of papers (four papers each, including co-authorship)
are Belaud JP, Hungerbuhler K, Ingwersen WW, Meyer DE and Papadokonstantakis S
(Supplementary Material: Table S2).

As demonstrated in Figure 8 in Europe, the topics are widely spread over the LCI data-
generating areas. However, 11 papers deal with process simulation. The US governmental
focus is very much on database improvement with three publications published by a first
author from the US EPA. Individual research institute focus could be not clearly identified;
only three publications on process simulations were from the Université de Toulouse in
France and two by the Ecole Polytechnique Federale de Lausanne in Switzerland. Most
studies were analyzed in the sector of process simulation with 12 literature sources, fol-
lowed by molecular-structure-based models with seven and LCI Databases with six papers.
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categories, while the outer circle shows the country of the employing institute of the first author.
Process Calculation is shortened to Calculation and Scientific Literature to Literature.



Sustainability 2023, 15, 5531 25 of 40

Analyzing the journals used for the publications on these topics, six papers were
published in the International Journal of Life Cycle Assessment (Springer; 5.553 five-year impact
factor), four in Sustainable Chemistry & Engineering (American Chemical Society; 8.471 five-
year impact factor) and two in Chemical Engineering Transaction (Italian Association of
Chemical Engineering) [200]. The other 18 papers were each published in different journals.

Most papers, eight in total, were published by the American Chemical Society, seven
in Springer journals, six in Elsevier journals and two each by the publisher Royal Society of
Chemistry and Italian Association of Chemical Engineering, respectively.

The number of publications rose slightly when looking at the trend between the first
published paper in 2009 and 2021, as well as the citation. However, as the increase in
citations can also be retraced to the higher number of papers, the grey line in Figure 9
normalizes it by dividing the citations by the published papers until that year. This shows
that there is no significant increase in citations in this area.
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Analyzing the papers which took up aspects of automation on the research paper
visualization platform Research Rabbit [24] showed connections between many universi-
ties, especially when looking at the author relations, mainly via collaborations between
university professors (e.g., Olivier Jolliet, André Bardow or Maurizio Fermeglia; see Sup-
plementary Material: Figure S1). Some institutes do not show connections in this context
outside their country, e.g., researchers from the University of Toulouse or the University of
Illinois at Urbana-Champaign [201].

Sorting papers by category, Web of Science rated 16 papers as environmental science,
14 papers as environmental engineering and 12 as chemical engineering (detailed Figure S2
with more categories in the Supplementary Material). As there were only 30 papers, it
seems that double or multiple counting was used.

The investigation in VOS Viewer, which examines word frequencies in the titles and
abstracts of papers, did not reveal any usable trends after words, such as ‘process’ (average
popular 2016), ‘data’ (2016,5), ‘model’ (2017) or ‘approach’ (2018). Despite variation in the
settings, the results reflect the general topic. It would probably be necessary to search a larger
number of papers. The figure can be found in the Supplementary Material, Figure S3.
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3.13. Empirical Analysis

As the categories for the following analyses were not defined automatically by the
papers metadata but identified by the content of the studies, this section is defined as
empirical analysis. It consists of an analysis of research fields or products the LCA focuses
on, an analysis of usage regarding TRL and development status of the method/software in
the papers as well as an analysis regarding methods used for automation and open science
aspects fulfilled.

An individual analysis of research fields or products addressed in the papers (Figure 10)
shows that the highest number (14 of 30) focuses on chemical products, especially in the areas
of molecular-structure-based models and process simulation, whereas especially database
topics and the usage of proxy data are more generally applicable. Based on examples and
recommendations in the various papers, the usage of the different data sources regarding
application to different TRL levels (x-axis) is visualized in Figure 11. Additionally, on the
y-axis, the papers were also sorted by the degree of development of their method or model,
which was defined by data obtained from the content as well as from research on further
usage (details can be seen in the Supplementary Material: Table S3). Only for the categories
process simulation, LCA Database and Molecular Modeling are methods implemented in
software environments for easy application and only in the overlapping categories “Database”
and “Process Simulations” were methods and models used after the initial papers. For all
other LCI sources (plant data, scientific literature, process calculation, stoichiometry and proxy
data), no usage in other papers could be found and no software implementation.
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Figure 10. Products addressed in the LCA case studies or aim of the study by LCI-generating category
(as some papers address more topics, the number is higher than the total number of papers (n = 30)).

Stoichiometry and molecular structure models can be used until TRL 9, though this is
not recommended, as process configurations and plant design are not considered. Proxy
data should only be used as placeholder and replaced later [19].

3.14. Open Access and Open Source

Analyzed with Web of Science, eleven papers of thirty were open access, from which
five had the status green accepted, four were gold hybrid and three were green published
and green submitted. Only one had gold status. The other 19 records did not contain data
in the field being analyzed.
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Figure 11. LCI data generation method used in the reviewed papers per Technology Readiness Level
for the Chemical Industry (TRL, defined in [202]) and degree of development of the method/software.
Color coding is per LCI data generation method. Stoichiometry and molecular structure models can
be used until TRL 9, though this is not recommended, as process configurations and plant design
are not considered. References for the different columns are the following. Model implemented in
available software: LCI database [55,67,68,76,77], Process Simulation [79,155], Molecular Structure-
based Models [165,166]; Model used by other papers: Plant Data [31], LCI Database [41], Process
Simulation [107,123,135,139]; Model used on case study/ies in the paper: LCI Database [56], Scientific
Literature [80,83–85], Process Simulation [100,101,110–114,128,129,154], Process Calculation [145],
Stoichiometry [37], Molecular Structure-based Models [33,169,172,189,194], Proxy [198,199]; Model
invented: Plant data [36].

Regarding the availability of the software or source code to use the method developed
and described in the paper as an unrelated researcher, the source code for open access could
only be found in six papers, mainly saved on Github.com or available as software extensions
(BioSTEAM [78], R-Package Finechem [173]), while four authors stated in their publication
that it could be obtained upon request. For most papers—nineteen in total—the source code
or software could not be obtained or found online. Of these, where the code or software is
open access, still no further usage from unrelated researchers was found—follow-up papers
using the software/method always contained a primary author.

3.15. Uncertainty

Parameter uncertainty was incorporated in ten papers, in which a Monte Carlo analysis
was performed four times and twice referred to the pedigree matrix. For the molecular-
based models and proxy data, different kinds of distance measurements/intervals were
used and were integrated once for plant data fuzzy intervals [36]. Other approaches, such
as combining fuzzy logic and Bayesian networks, as proposed by, e.g., Riali, Fareh and
Bouarfa (2019) [203] for dealing with ontologies, were not found.

The listing per paper can be found in the Supplementary Material in Table S3.
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3.16. Further Use of the Models

For 19 papers, no usage of the developed model/framework after publication could
be identified.

For those with examples outside the scope of the original paper and further usage in
other publications, such as the FineChem tool by Wernet et al. [165,166], the examples were
created with contributions from prior involved scientists, such as Papadokonstantakis or
Hungerbrühler. This is also the case with BioSTEAM, where most papers were published by
staff from the University of Illinois at Urbana−Champaign, although in the paper, a collabora-
tion seems to have been established between the developing university and the University
of Wisconsin–Madison [157]. Other examples where the developers are contributors to their
own models include the Suscape-Framework [133], LCSoft [137], EVALEAU [122], Ecodesign
Framework [103] and Knowledge Engineering (KE) for data extraction [81].

Integrating software developers seems to benefit real-world application tools, as in
Kuczenski et al. [62], where two developed frameworks for data connection can be used
through the OpenLCA Olca and Brightway.

3.17. Automation Techniques Used

The most popular methods which favor automation were connections between software,
such as those building interfaces or including LCAs in existing software (all process simulation
LCAs (10–21 in Table S3 in the Supplementary Material), ANNs (for molecular modeling—22,
24–26 in Table S3), techniques used for machine learning, such as probability density functions,
random forest or Gaussian process regression (23, 26–28 in the before mentioned Table S3), as
well as techniques to connect or search for LCI data, such as using ontologies for linking data
(2,4,5,7–9 in Table S3). Data extraction with knowledge engineering and data mining using
linked open data were each also used once (2,9 in Table S3).

3.18. Artificial Intelligence Techniques Used

Automated learning of models is a central theme in classical (inferential) statistics
but more recent in artificial intelligence (AI) and its subcategory machine learning [204].
How often it was used in the reviewed papers is analyzed here. In contrast to traditional
statistical methods, AI can be used to obtain solutions without prior knowledge of relation-
ships and dependencies. The techniques build on emulating biological processes, such as
learning, self-correction or reasoning [205]. Otherwise, data mining is used for knowledge
discovery in data, e.g., to find new patterns and models, and is often more descriptive than
predictive [204].

The book Data Science Applied to Sustainability Analysis [206] identifies two possible use
cases for machine learning in LCI, either for data cleaning after automated data collection
or for the estimation of inventory flows. Ghoroghi et al. [207] added that machine learning
techniques could also be used to reduce uncertainty by increasing accuracy in LCA and
reducing the simulation time. Building on their distinction, one can also divide the predic-
tion of data into, on the one hand, prediction using similar data (such as chemicals with
similar descriptors) or prediction for higher TRLs (e.g., upscaling of a lab experiment or
pilot plant) on the other.

Automated data collection allows for incorporating ontology to make data for LCI
more easily machine-processable and connected and can be observed, for example, in
Mittal et al. [56], Lousteau-Cazalet et al. [80] and Ingwersen et al. [55]. Data (or text) mining
was used and mentioned in their abstract in four literature sources [31,33,56,74]. They were
all based on the need for datasets with ontologies and more linked open data.

Data uncertainty was only included by Lousteau-Cazalet et al. [80], with the pedigree
matrix, though for future developments, other approaches, such as probabilistic approaches,
could be possible [203].

Machine learning was only mentioned once in the title and abstract by Hou et al. [187],
who evaluated different models and concluded that their random forest model was best for
estimating the ecotoxicity characterization of chemicals. In addition, however, Wernet et al.,
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Song et al. and Kleinekorte et al. [143,165,167] used ANNs and Gaussian process regres-
sion [170] for environmental impact estimation. None of these generate LCI data as they go
directly to the LCIA step.

4. Discussion and Conclusions

This review describes various approaches and developments in the field of automated
data generation and collection. Automation potential to support the LCA practitioners
work in the life cycle inventory phase was identified in the areas of:

• Data extraction and mining (from literature, online available governmental and indus-
try data, company documents and databases)

• Data combination and testing of compatibility (e.g., connecting back- and foreground data)
• Data insertion and optimization (process simulation software connected or combined

with LCA software)
• Data generation based on limited data descriptors (process simulation, calculations

and stoichiometry)
• Data generation based on data from similar in- and outputs (such as molecular model-

ing and proxy data)

In addition, database developers use prioritization calculations to improve the effi-
ciency and effects of their database updates.

There could be differences in the development and further usage of the methods/models
identified (see Figure 11), where the most developed and most frequently used of the 30 re-
viewed papers are the combination and testing of compatibility (LCI Database tools), data
generation based on more limited data through process simulation and data generation based
on data from similar in- and outputs (such as molecular modeling). These data generation
sources were also identified as the most frequently used sources, with process simulations
being most frequently used (12), followed by molecular-structure-based models (6) and LCI
databases (6). Focusing on chemistry, process simulation (4) and molecular modeling (5) were
most often used for chemical production and process development (4) for the special case of
biorefineries. One reason for this could be the close connections between scientists dealing
with LCAs in the chemical field with tools, such as process simulation and molecular model-
ing. It may also be due to the easier access to data than when cooperating with companies
or using statistical data, which may present additional barriers, such as lack of experience or
reduced availability. Proxy data as well as stoichiometry and process calculation may also not
be used that often based on their high uncertainty, even though using these methods can lead
to more realistic results than omitting data. On the positive side, the visualization in Figure 11
shows that there are three to six possible data sources per TRL stage, the combination of which
can help generate higher-quality LCA results.

As used within other automation cases, data extraction and automated linkage could
also be tested with common process simulation software to identify relevant information
from the results and insert in the LCA. More automated interaction in the process simulation
and LCA software could lead to

• Enhanced accuracy, as process software provides detailed information on the energy
and material flows within a process

• More iterative designs, as changes in the process can be evaluated in terms of their
environmental impact in real time, leading to process optimization and material
efficiency improvements

• Advanced sensitivity analysis with realistic process values to identify the most signifi-
cant drivers of environmental impact

• Advanced scenario analysis for changes in process parameters, energy sources or raw
materials

If the integration in the interface of standardized process simulation software is
limiting the use cases, this could be circumvented by using export, files e.g., in JSON.
However, this procedure runs contrary to the aim of developing further to process synthesis,
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where the LCA results interact with the simulation and its parameter settings (e.g., by
optimization). One way of achieving this is the creation of individual process simulation
software with integrated LCA modules such as BioSTEAM [78]. Its practicability has to be
tested over time, as software such as this may not have the variety of application scenarios
or have limited models and data to choose from. If larger process simulation software
companies integrate LCAs in the future, this would support the forwarding of data and, in
the best case, enable parameter interaction, leading to automatic optimization of processes
according to environmental indicators. However, the usage of other data sources and
functions of the LCA component included in this software could be limited. As an interface
to manage interaction and data transfer, CAPE OPEN could also be an interesting and
already existing interface between process simulation software. Preparatory work for this
was conducted in the process sustainability prediction framework [100,101].

Molecular-structure-based models are computational models that use information
about the molecular structure of a material to predict its properties and behavior. These
models have the potential to improve the accuracy of Life Cycle Assessment (LCA) by
providing more detailed information on the environmental impacts of materials and bear
a lot of automatization potential, beyond the focus of this paper, focusing on LCI data
generation and predicting environmental impacts for missing chemicals.

Other potential uses include material substitution (identifying materials with sim-
ilar properties that can be used to replace materials with high environmental impacts),
ecodesign (by optimizing the molecular structure of chemicals to minimize their toxicity
or reduce their contribution to climate change) or improving life cycle inventory (by in-
creasing accuracy by providing more detailed information on the chemical composition
of materials and energy and resource requirements). All of those could be very beneficial
when having an interface or being integrated with LCA software to automatically generate
various process and input options.

However, the molecular-structure-based models reviewed in the literature of this
publication have only been used for the prediction of environmental indicators, not for LCI
data. This limits their applicability and topicality, as developments in the environmental
assessment methods have to be incorporated manually and additional factors such as
process conditions cannot be integrated in the calculation. Therefore, for further develop-
ment, a combination with the similarity-based link prediction used by Hou et al. [196] and
Xu et al. [197] could be beneficial, as this method, using proxy data from Ecoinvent, can
deliver an average of possible process conditions and further descriptors for the chemicals.
Nevertheless, the development of the molecular-structure-based models does not seem to
be favored by the scientific community. The R-Package FineChem, which is also the basis
for the graphical interface Estimol, was developed in 2009 and has not been updated since
then, leading to software using no longer current Ecoinvent data and impact assessment
methods. Although FineChem was used in later publications by co-authors of the first
application until 2018, no improvements have been made since. For recent papers, creating
ANNs and using Gaussian process regression, no further usage or improvements were
identified either.

The review also showed that knowledge engineering, such as building and using
ontologies for linked open data, is an important method of data generation. Knowledge
engineering is the process of designing and developing knowledge-based systems that use
artificial intelligence techniques to solve problems and make decisions. The wide range of
areas of application in the scanned literature showed data extraction from text or structured
data files used data sources, such as scientific literature, statistics from governmental
authorities and industry associations, plant and manufacturing data as well as data from
different databases. Successes for a widespread establishment of this standard can be seen,
for example, through the Federal LCA Commons and should also be carried further by the
Bonsai Initiative in Europe [49]. However, the flagship projects are mainly LCA internally
focused on existing LCA databases, while the facilitated generation of new data through
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cooperation with other data sources, such as industry, companies or scientific literature, is
not yet very advanced.

Improvements in using knowledge engineering in LCA should, however, be extended,
as they can provide several benefits, including improved accuracy, reductions in human
error, time and cost savings, scalability potential (especially for large datasets and complex
systems), standardization and the possibility of enabling the integration of LCA with other
systems, such as supply chain management software or product design tools, to provide
real-time feedback on the environmental impact of products and services.

Transparency is a critical aspect of Life Cycle Assessment (LCA) as it enables stakehold-
ers to understand the assumptions, data and methods used in the assessment. Although
open science is promoted by international platforms (United Nations, EU, US government),
the availability of source codes is still not very high in the scanned literature, with 20% (6
out of 30) being freely available, which demonstrates a lack of traceability and reusability.
Additionally, the degree of further use of the developed methods and software (at 30%)
raises concerns as to how successful and easily adaptable their developments are for other
scientists. Further usage of models should, in general, be supported, as shown by the
fact that those few papers where the models and methods were mentioned again after
publication were only those where one of the authors of the first publication was involved.
However, methods should be established to raise awareness among other scientists of the
applications, knowledge and motivation for use, both to ensure positive impact for LCA
practice as well as making further development more likely. This aspect also includes
the need for more transparency and honesty on the success and future prospects of the
developed model in order to be able to map out optimal future paths by drawing on the
knowledge of all the scientists involved. Another area for improvement is honesty in
comparisons with other models—e.g., comparisons should not be made with the other
authors’ superseded older models, which leaves the impression that the model presented
is deliberately being parlayed. Of advantage for further use are those that work with
open-source LCA software such as Brightway [60], where the whole LCA can easily be
published and recalculated from others. Reproducibility not only helps to raise the quality
and trust in LCA but also simplifies an implementation of new methods by other scientists,
thus making further development of the method more likely.

For use as an LCA practitioner: depending on their prior knowledge, new skills must
be acquired or cooperation with other scientists must be undertaken to correctly apply
certain methods, such as process simulation (e.g., BioSTEAM [78]) or machine learning
techniques (e.g., using scikit-learn [190]), and to correctly assess the uncertainties. However,
in the long run, these skills could be acquired when applied to several LCAs and, therefore,
time resources for generating LCI data can be reduced. These tools can also increase data
quality in the long term through additional data and in-depth calculation methods. Ready-
made software solutions, such as FineChem [171] and Estimol ([183], an interface based
on FineChem), are easier to use, but research and estimation of the actual viability of the
result or a comparison with other methods are necessary to evaluate the appropriateness.
Regarding software solutions based on ANNs, in addition to the limitation to the pure
generation of predefined impact categories, the topicality of the data used by the ANN
must also be taken into account (for those networks that are publicly accessible, the data
are from 2008 and 2009). The comparisons of the different ANNs have also shown that
the publication of important data, e.g., that the performance of the network varies, is vital,
and attention should be paid to the underlying uncertainties when using them. However,
even when referring to ready-made LCA databases, responsible research is required where
the data are selected with care. As Reinhard et al. [41] showed in their data update system
for Ecoinvent, the data used are still rarely checked according to system and guidelines
between updates.

Generating reliable data for the different TRLs and situation fitting is and will be a
challenge for the LCA community. As described, there are different solutions and methods
already developed to tackle this problem but further development as well as implementa-
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tions or interfaces with LCA software and the creation of appropriate framework guidelines
and recommendations should be driven by international organizations such as the Life
Cycle Initiative in interaction with LCA scientists and practitioners.

Focusing on chemistry, process simulation and molecular modeling, in particular,
were used for chemical production and process development for the specialist field of
new biorefinery concepts. As demonstrated by the results for both process simulation
and molecular-structure-based models, there is still a wide range regarding how and with
which methods automation is applied there, so one of the recommendations of this review
is to focus on standardizing approaches and developing high-quality (preferably open-
source) software solutions for both data sources. Developments by individual institutes
and researchers should be made available for the public, and if methods are promising,
efforts must be undertaken to develop them further. Additionally, differentiation when
incorporating multiple sources would help with data quality issues as well as filling in
missing data. In general, international coordination efforts should be undertaken to identify
promising approaches and develop them further.

Further significant potential for automation in LCA, which could lead to more efficient
and accurate assessments, should be evaluated and improved as well. Examples could be:

• Software: LCA calculations can be automated using software that can perform the
required calculations based on the data collected. This saves significant time and
reduces the risk of human error. Recent software developments such as the software
Makersite [171] speed up the process by automatically mapping product data to
multiple LCA databases.

• Sensitivity analysis: Automation can be used to perform sensitivity analysis and global
sensitivity analysis on LCA models. This kind of analysis involves varying the input
data and observing the impact on the overall results. Automation can speed up this
process and allow for a more comprehensive analysis.

• Reporting: The results of an LCA can be presented in different formats, including
tables, graphs and charts. Automation can assist in the generation of these reports,
ensuring that they are standardized and consistent.

• Integration: Similar to the discussed interaction with process simulation, LCA can be
integrated into other systems, such as supply chain management software, to provide real-
time feedback on the environmental impact of products and services. Automation can
help facilitate this integration and enable companies to make more informed decisions.

Overall, automation has the potential to streamline the LCA process, reduce the time and
cost required to conduct assessments and improve the accuracy and consistency of results.
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version 1.6.18; Settings: Extraction from Title and Abstract; Minimum number of occurrences of a term—10;
Selection rate = Relevance > 0.5 (non-selected terms with this condition were: LCA, life cycle assess-
ment, framework and study); Size—Weighted after Occurrence; Scores—Average Publication year [22];
Table S1: Web of Science Analysis by Country/Region (analyzed articles see Table S3); Table S2: Web of
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of Reviewed Papers.
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