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Abstract: Accurate prediction of landslide displacement is an effective way to reduce the risk of
landslide disaster. Under the influence of periodic precipitation and reservoir water level, many
landslides in the Three Gorges Reservoir area underwent significant displacement deformation,
showing a similar step-like deformation curve. Given the nonlinear characteristics of landslide
displacement, a prediction model is established in this study according to the variational mode
decomposition (VMD) and support vector regression (SVR) optimized by gray wolf optimizer (GWO-
SVR). First, the original data are decomposed into trend, periodic and random components by VMD.
Then, appropriate influential factors are selected using the grey relational degree analysis (GRDA)
method for constructing the input training data set. Finally, the sum of the three displacement
components is superimposed as the total displacement of the landslide, and the feasibility of the
model is subsequently tested. Taking the Shuizhuyuan landslide in the Three Gorges Reservoir area
as an example, the accuracy of the model is verified using the long time-series monitoring data. The
results indicate that the newly proposed model achieves a relatively good prediction accuracy with
data decomposition and parameter optimization. Therefore, this model can be used for the predict the
accuracy of names and affiliations ion of landslide displacement in the Three Gorges Reservoir area.

Keywords: displacement prediction; variational mode decomposition; grey wolf optimizer; support
vector regression

1. Introduction

Landslides are one of the most severe types of geological hazards in nature [1]. Land-
slide hazards often cause great losses, including property damage, injury and loss of
life [2,3]. Due to the complex geological conditions and frequent tectonic activities in China,
landslide disasters are frequent and may lead to catastrophic damage [3,4]. Displacement
prediction is intuitive and important for real-time monitoring and early warning of land-
slides. Accurate prediction of landslide displacement can reduce the risk, and has become
an increasingly important research issue in recent years [5,6]. Many researchers are commit-
ted to the prediction of landslide displacement [7–9]. Early landslide prediction is mainly
empirical, which uses certain macroscopic signs of landslides to speculate on the time of
occurrence. With the continuous improvement of the landslide monitoring technology,
more and more means are available to obtain landslide monitoring data [10–13]. Grow-
ing attention has been paid to landslide displacement prediction from the background of
landslide conception and genesis mechanism, by combining landslide multi-source sensing
information, displacement prediction-based mathematical statistical analysis, non-linear
prediction and comprehensive coupling model, which can provide more complex analytical
ideas [3,14–16]. The empirical model requires creep experiments to validate the prediction
model and has limited application scenarios. Mathematical statistical models are better for

Sustainability 2023, 15, 5470. https://doi.org/10.3390/su15065470 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15065470
https://doi.org/10.3390/su15065470
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-1745-874X
https://doi.org/10.3390/su15065470
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15065470?type=check_update&version=1


Sustainability 2023, 15, 5470 2 of 18

the prediction of single influential factors, but cannot solve the displacement prediction
of multiple influential factors. Nonlinear prediction suffers from slow convergence and
is easily trapped in local minima. The integrated coupled model achieves the prediction
of landslide displacement from multiple model perspectives and improves the accuracy
of displacement prediction. It has been reported that the obvious step-like displacement
can be affected by the periodic fluctuation of special geological environments, seasonal
rainfall and reservoir water level adjustment [5,16,17]. Landslide deformation is mainly
caused by a variety of factors. The complex process of landslide deformation makes it
difficult to accurately distinguish the stages of landslide deformation [18–21]. Therefore,
the traditional empirical means are no longer applicable.

At present, nonlinear integrated models based on long time-series analysis is the
most common displacement prediction method [22–24]. Many studies have classified the
original landslide displacement data into different characteristic components by analyzing
the evolution mechanism of landslide deformation. These methods consider both external
and internal factors that induce landslide deformation to achieve satisfactory prediction
results [17]. The conventional decomposition methods mainly include moving average
method, fitting a polynomial trend and smoothing a priori method, which mainly ex-
tract trend displacement and periodic displacement [8]. However, these methods do not
fully consider the influence of random factors and failed to obtain the random displace-
ment. More comparisons are needed to determine the decomposition parameters, and the
computational efficiency is relatively low [25]. In addition, researchers attempt to obtain
different components of landslide displacement using the empirical mode decomposition
(EMD) [26,27], the ensemble EMD (EEMD) [18,23,28], the complete EEMD of adaptive noise
(CEEMDAN) [29,30] and wavelet transform [31]. The above methods can overcome the
shortcomings of the conventional decomposition methods, and can completely decompose
the displacement components with different characteristics. However, a fixed displace-
ment component cannot be obtained by these methods. The EMD achieves a thorough
decomposition of the original displacement of the landslide, but it also suffers from modal
confounding and computational inefficiency [29]. In recent years, several researchers have
used variational mode decomposition (VMD) combined with artificial intelligence algo-
rithms to achieve accurate prediction of landslide displacement [32,33]. The VMD can select
the number of features of displacement decomposition according to the data size and type,
which can determine the physical significance of each feature component. It has higher
decomposition efficiency and accuracy than the conventional methods, including EMD
and EEMD. Therefore, the original landslide displacement data are effectively extracted by
VMD to obtain the most optimal landslide displacement component [34].

In recent years, artificial intelligence algorithms, such as the back propagation neural
network (BPNN), Support Vector Regression model (SVR) and Elman neural network
model, have been increasingly used for the prediction of landslide displacement [35,36].
For complex nonlinear curves, BPNN converges slowly and may not achieve satisfactory
fitting performance. The weights and threshold inputs of the Elman neural network have a
random nature and result in reduced model prediction accuracy [36]. Classical machine
learning algorithms often have difficulty in determining the parameters of the optimization
model. SVR has great flexibility in dealing with nonlinear data and helps to solve the
nonlinear regression problem [37]. However, it suffers from a shortage of parameter
selection, which requires appropriate parameter optimization methods to solve the problem
and improve the prediction accuracy [38]. Numerous parameter search methods have
been proposed by researchers in recent years, including the grid search method, genetic
algorithm (GA) [39,40] and particle swarm optimization (PSO) [5,27,35,41]. The gray wolf
optimizer (GWO) has been widely used in combinatorial model optimization problems
compared to some existing algorithms (GA, PSO), and in particular, it can greatly improve
the efficiency of parameter optimization. Therefore, the GWO algorithm has also been
introduced to realize the optimization of the SVR model parameters [25,42].
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The aim of this study is to establish a novel landslide displacement prediction method
based on the VMD and GWO-SVR model. Taking the Shuizhuyuan landslide in the
Three Gorges Reservoir area as an example, the original landslide displacement data are
decomposed by the VMD method into trend, periodic and random components. The
external and internal influence factors of landslide displacement are selected by combining
the gray relational degree analysis (GRDA). Then, the data are divided into training and
validation sets with different time scales. The optimal combination model is established
using the GWO-SVR model, which can achieve displacement prediction for the test set.
Finally, the effectiveness of the model is analyzed.

2. Methodology
2.1. Variational Mode Decomposition

VMD is an effective method for mode variational problems and signal processing [34].
The VMD algorithm can effectively extract the characteristic information of nonlinear
and non-stationary signals. The algorithm is mainly used for constructing and solving
variational problems. The basic principle of VMD is to decompose the original f (t) signal
into K characteristic components when the sum of the bandwidths of each mode component
(uk) is minimum. The VMD selects the appropriate number of mode decompositions based
on the original signal and obtains the estimated fundamental frequency bandwidth and
converts the problem for solving a variational problem with constraints [43].

min
uk ,ωk

{
K
∑

k=1
‖∂t

[(
σ(t) + j

πt

)
uk(t)

]
e−jωkt‖

2

2

}
s.t.

K
∑

k=1
uk = f (t)

(1)

where ωk is the center frequency; (σ(t) + j/πt)uk(t) is the analytical signal. Then, the
Lagrange multiplier operator λ and the quadratic penalty term α are introduced to trans-
form the above problems into unconstrained problems. The saddle points are obtained
by continuously updating λn+1, ωn+1

k and un+1
k using the alternating direction method of

multipliers. Decomposition of the initial signal f (t) into K characteristic components is
then conducted.

2.2. Support Vector Regression Model

SVR is a method for solving nonlinear function regression problems, which has
strong sparsity and robustness [37]. SVR mainly uses kernel functions to transform low-
dimensional nonlinearities into higher-level linear problems. After the solution, it is
mapped back to the low-dimensional space. The primary operations of SVR model are
described as follows.

Given a training sample D, a regression model f (x) is learned approximate to y.

D = {(x1, y1), (x2, y2), · · · , (xm, ym)}, yi ∈ R (2)

f (x) = wT + b (3)

where xi =
{

xi1, xi2, · · · , xij
}

is the input vector, yi is the corresponding output vector, and
w and b are the measured parameters. In this model, the loss is zero only when y and f (x)
are identical. It can be assumed by the SVR that a deviation of ε is tolerable between y and
f (x). The loss is measured only when the absolute value of the difference between f (x)
and y is greater than ε, which corresponds to the construction of an interval band of width
2ε centered on f (x). If the training samples fall into this interval band, they are deemed to
be correctly predicted. The kernel function in this model adopts radial basis function [30].
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2.3. Grey Wolf Optimizer

GWO is a meta-heuristic intelligent algorithm, which has the characteristics of simple
structure, few parameters and fast convergence [42]. The main contents of GWO algorithm
are as follows [30,44].

1© Social rank. Grey wolves are divided into four grades according to their fitness value.
2© Surrounding prey. Grey wolves need to encircle their prey, and the position of

individual wolves is constantly updated [45].

→
D =

∣∣∣∣→C ·→Xp(t)−
→
X(t)

∣∣∣∣ (4)

→
X(t + 1) =

→
Xp(t)−

→
A ·
→
D (5)

where
→
D is the distance between the individual gray wolf and the prey;

→
Xp(t) is the global

optimal solution position;
→
X(t) is the position of the gray wolf; t is the number of current

iterations;
→
C and

→
A is the coefficient vector.

3© Hunting. After the gray wolves surrounded the prey, they started to hunt, and
generally updated their respective positions at α, β and δ.

→
Dk =

∣∣∣∣→C i ·
→
Xk(t)−

→
X(t)

∣∣∣∣ (6)

→
Xi =

→
Xk −

→
Ai ×

→
Dk (7)

→
Xi(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(8)

where
→
Dk is

{→
Dα,

→
Dβ,

→
Dδ

}
, the distances of α, β and δ from ω, respectively, and

→
X(t + 1) is

the location of gray wolf following each update.

4©Find the best adaptation of gray wolf
→
Xα and output the optimal parameters g and C.

2.4. Displacement Prediction Flow

Figure 1 illustrates the landslide displacement process of this study.
Data decomposition. The original displacement is decomposed into trend, period and

random components by VMD. The influential factors are decomposed into periodic and
random components.

(1) Integration of the data set. The data obtained from the decomposition are employed
to construct separate datasets for the three components.

(2) Model training. The GWO-SVR model is trained to achieve the optimal prediction
models for the respective components.

(3) Selection of the optimal model. The model of three components is superimposed to
obtain the cumulative displacement optimal prediction model.

(4) Analysis of the results of the optimal model. The model is verified in the test set, and
the accuracy is determined in combination with each evaluation indicator.

To quantitatively analyze the forecast accuracy, the mean absolute error (MAE), root
mean square error (RMSE) and coefficient of determination (R2) are chosen as the evaluation
indicators of the model performance. The evaluation indexes are as follows.

MAE =
1
N

N

∑
i=1
|x̂i − xi| (9)
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RMSE =

√√√√ 1
N

N

∑
i=1

(x̂i − xi)
2 (10)

R2 = 1−

N
∑

i=1
(x̂i − xi)

2

N
∑

i=1
(xi − xi)

2
(11)

where N is the number of samples, x̂i and xi are the predicted and actual values, respectively,
and xi is the average of the actual value. The prediction results with a smaller RMSE and
larger R2 are considered to be better.
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Figure 1. Flowchart of displacement prediction. (A) Data preprocessing (light blue); (B) model
training, validation and test analysis (light green); (C) establishment of GWO-SVR prediction model
(light orange).

3. Case Study: Shuizhuyuan Landslide
3.1. Geological Conditions

The Shuizhuyuan landslide is 14.82 km east of Wushan city and 170 km from the Three
Gorges Dam [43]. The longitudinal length of the landslide is about 800 m; the horizontal
width ranges from 360 m to 1200 m; the average thickness is 30 m; the area is 62 × 104 m2;
and the volume is 1850 × 104 m3. The section with elevation below 180~250 m has a
relatively large topographic gradient of 30~45◦, which is the front edge area of the landslide.
At the elevation of 180~250 m and below 300 m, it is mainly gentle slope, which is the
central and rear-edge area of the landslide (Figure 2).
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Figure 2. Geological profile of Shuizhuyuan landslide.

The landslide material is mainly composed of Quaternary landslide accumulation
gravelly soil layer with loose structure, which is easy to be softened by rainfall infiltration
and causes sliding deformation. The contact surface between the surface loose soil and
bedrock is the sliding surface of the landslide. Rainfall infiltration and reservoir water
level change can cause the hydraulic gradient of groundwater in the landslide body to
increase, and the pore water pressure to increase, which will increase the sliding force of the
landslide. In recent years, the landslide has generally presented a trend of nearly uniform
creep deformation, which is mainly characterized by large deformation at the front edge
and relatively small deformation at the rear edge.

3.2. Analysis of Deformation Characteristics

The landslide mainly includes GNSS surface displacement and rainfall monitoring.
Combined with the landslide deformation trend, the monitoring point SZY-03 is located
in the front edge of the landslide and its data are the most obvious. Therefore, SZY-03
monitoring point among them is selected for data analysis, as shown in Figure 3.
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The landslide is affected by the periodic rise and fall of the reservoir water level as
well as the annual rainy season. During the adjustment of the reservoir water level and
abundant precipitation, the displacement deformation is faster, while the deformation is
slow during the non-rainy season or the relatively stable period of the reservoir water level.
Therefore, the displacement has relatively obvious step-like characteristics (Figure 3). The
displacement shows an upward trend when the abundant precipitation is concentrated
from May to September every year. For example, the precipitations in 2017 were 916.6 mm
and 445.5 mm in the rainy and non-rainy seasons, with the average monthly variations
of the corresponding displacement of 11.2 mm/month and 7.1 mm/month, respectively.
From November 2017 to June 2019, the reservoir water level fluctuated within the range of
147–174 m. The displacement expanded from 5.7 mm to 220.9 mm during the 2017 rainy
season, and the water level was reduced to 147 m. During the annual rainy season and
reservoir water level adjustment cycle, the landslide displacement changes significantly.
Precipitation contributes to the softening of the slope structure and makes the landslides
prone to displacement. The falling water level weakens the support force of the landslide
body, which in turn leads to further increase of the landslide displacement. On the contrary,
the rising water level can effectively support and protect the landslide body, and the
displacement is relatively stable. From January 2020 to December 2021, the reservoir water
levels fluctuated periodically in the range of 147–174 m, and precipitation was mainly
concentrated in the rainy season. The landslide displacement again appears to be on an
accelerated rise in deformation, which changes from 229.1 mm to 275.3 mm in 2020 and
from 278.4 mm to 364.6 mm in 2021.

4. Prediction of landslide Displacement
4.1. Decomposition of Cumulative Displacement

Cumulative monitoring data (1995 days) between July 2016 and December 2021 were
selected for data analysis, yielding 285 weeks of data. Weeks 1–240, 241–265 and 266–285
are classified as the training, validation and test sets, respectively. Four sets of training
sets with different time scales were constructed respectively, as shown in Table 1. In order
to obtain good landslide displacement prediction results, the displacement needs to be
decomposed correctly and the corresponding influential factors must be selected [25,27,46].
The displacement of the landslide due to its own geological conditions is defined as trend
term, displacement with periodic variations is used as periodic term, and displacement
with other instability influences is used as random term. The α and τ have a large impact
on the decomposition results of the data, after several comparisons, the parameter values
that better match the results are finally determined. Hence, the mode numbers K, α and τ
are set to 3, 2000 and 0, respectively. Decomposition results of the cumulative displacement
data are presented in Figure 4.

Table 1. Training sets of the prediction model.

Model
Number

Training
Set

Cumulative Data Monitoring

1–60 Weeks 61~120 Weeks 121~180 Weeks 181~240 Weeks

1© 60
√

2© 120
√ √

3© 180
√ √ √

4© 240
√ √ √ √

4.2. Decomposition of the Influential Factors

Reservoir water level and rainfall play a considerable role in the landslide deformation
process in the studied region [31,38]. The infiltration of precipitation may damage the
landslide structure, leading to soil softening and changes in the gravity field of the landslide,
as well as surface deformation and displacement of the landslide [47,48]. The dry and wet
cycles of landslides caused by the constant regulation of reservoir water level during the
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annual cycle also affect the stability of the slopes. Thus, precipitation, reservoir water level
and landslide deformation status were chosen as potential influential factors.
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(1) Displacement factors: average displacement of the current week (D1), average dis-
placement in the last two weeks (D2), and average displacement in the last three
weeks (D3).

(2) Precipitation factors: cumulative precipitation of the current week (P1), accumulated
precipitation in the current week and last week (P2).

(3) Reservoir water level factors: average reservoir water level in the current week (R1),
water level fluctuation data of the current week (R2), water level change data of the
current week and the last week (R3).

Considering the possibility that there is no trend term in the influential factor, the
decomposition is set to K = 2. The component with higher weight and lower frequency is
used as periodic influential factor, and the component with smaller weight and higher fre-
quency is used as random influential factor. The decomposition results of some influential
factors are presented in Figure 5.

4.3. Correlation Analysis between the Decomposed Components and Influential Factors

The reasonable selection of influential factors helps to improve the accuracy of dis-
placement prediction. Therefore, GRDA method was used to determine the relationship
between displacement and other influential factors. Notably, the closer the relation value is
to 1, the better the relationship between two variables when the discriminant coefficient ρ
is 0.5. If the correspondence between the compared sequences is greater than 0.6, we can
assume that they are closely related. Table 2 shows the results of GRDA method. It can be
observed from Table 2 that there is a significant correlation between the displacement and
influential factors.
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Table 2. GRDA for analyzing the relationship between the displacement and influential factors.

Model Number Component
Influential Factors

D1 D2 D3 P1 P2 R1 R2 R3

1© Periodic 0.7685 0.7685 0.7685 0.7679 0.7680 0.7682 0.7323 0.7362
Random 0.9455 0.8222 0.9743 0.7499 0.9697 0.7917 0.9457 0.7807

2© Periodic 0.9189 0.9190 0.9189 0.9187 0.9188 0.9188 0.8676 0.6441
Random 0.9738 0.9599 0.9706 0.9618 0.7010 0.8039 0.9646 0.9318

3© Periodic 0.8461 0.8464 0.8465 0.8435 0.8437 0.8447 0.7653 0.7800
Random 0.9778 0.9816 0.9592 0.9607 0.6542 0.9239 0.9613 0.8900

4© Periodic 0.8040 0.8040 0.8040 0.8039 0.8039 0.8040 0.8028 0.8036
Random 0.8971 0.9136 0.9187 0.7695 0.7271 0.9338 0.7967 0.7967
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4.4. Prediction of Trend Displacement

When training and predicting through the GWO-SVR model, the model parameters
need to be set first [14,49]. By using several experimental calculations, the relevant parame-
ters in the GWO algorithm are fixed as follows: the number of wolves is 30, the maximum
number of iterations is 100, the lower bound of the parameters of C, g is 0.01, and the
upper bound is 100. The evaluation indicators of trend displacement are listed in Table 3.
The values of RMSE and R2 of model 2© are better than those of other models, indicating
that model 2© has an excellent prediction accuracy. The displacement prediction results of
model 2© are shown in Figure 6.

Table 3. Evaluation results of trend displacement.

Model Number 1© 2© 3© 4©

MAE (mm) 0.1212 0.1181 0.1199 0.1294
RMSE (mm) 0.2426 0.2343 0.2383 0.2666

R2 0.9995 0.9995 0.9995 0.9994
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4.5. Prediction of Periodic Displacement

The evaluation indicators of periodic displacement are listed in Table 4. Notably, model
4© has the highest prediction accuracy with the MAE, RMSE and R2 of 0.0646, 0.0722 and

0.9943, respectively. The displacement prediction results of model 4© are demonstrated in
Figure 7. The impacts of precipitation and reservoir water level on landslide displacement
are highlighted in the period term. As a result, the period effect from longer monitoring
time series may be more obvious. The GWO-SVR model is also well implemented for the
displacement prediction of periodic term.



Sustainability 2023, 15, 5470 11 of 18

Table 4. Evaluation results of periodic displacement.

Model Number 1© 2© 3© 4©

MAE (mm) 0.0925 0.0917 0.0646 0.0646
RMSE (mm) 0.0944 0.0939 0.0723 0.0722

R2 0.9903 0.9904 0.9943 0.9943
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4.6. Prediction of Random Displacement

The random component includes the effect of unexpected events such as earthquakes,
human activities or other measurement losses, which possesses complex nonlinear character.
The evaluation indicators of random displacement are shown in Table 5. Model 4© has
the best prediction accuracy, with the MAE, RMSE and R2 of 0.0099, 0.0284 and 0.9849,
respectively, at 240 weeks. The displacement prediction results of model 4© are shown in
Figure 8. The influence of the random term often includes many unforeseen factors, but the
GWO-SVR model achieves the same accuracy of displacement prediction when appropriate
random influential factors are selected.

Table 5. Evaluation results of random displacement.

Model Number 1© 2© 3© 4©

MAE (mm) 0.1056 0.0163 0.0267 0.0099
RMSE (mm) 0.1553 0.0298 0.0359 0.0284

R2 0.5467 0.9833 0.9758 0.9849
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4.7. Prediction of Cumulative Displacement

The three displacement components of trend, period and random were superimposed
to obtain the predicted results of cumulative displacement, and the predicted values of each
evaluation indicator are listed in Table 6. Notably, the cumulative displacement monitoring
values of the displacement prediction models with different training sets are relatively
close to the model prediction values, indicating that the displacement prediction models
without training sets could basically achieve accurate prediction of landslide displacement.
The better prediction performance was achieved when the training set was displaced for
180 weeks, with the MAE, RMSE and R2 of 0.1536, 0.2421 and 0.9994, respectively. The
displacement prediction results of model 3© are shown in Figure 9.

Table 6. Evaluation results of cumulative displacement.

Model Number 1© 2© 3© 4© Combination Model

MAE (mm) 0.2089 0.1633 0.1536 0.1613 0.1489
RMSE (mm) 0.3054 0.2457 0.2421 0.2695 0.2414

R2 0.9991 0.9994 0.9994 0.9993 0.9994

Combining the previous analysis, the trend displacement is best for model 2©, while
the periodic and random displacements are best for model 4©. The optimal combination
model could be obtained by combining the three models. The evaluation indicators of the
combination prediction model in the validation set are demonstrated in Table 6, with the
MAE, RMSE and R2 of 0.1489, 0.2414 and 0.9994, respectively. The results indicate that the
optimal combination model has outstanding predictive performance (Figure 10).
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The optimal prediction model was evaluated in the test set with the following values:
MAE = 0.1993, RMSE = 0.3516, and R2 = 0.9995. The prediction data of the test set are
demonstrated in Figure 11.
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5. Discussion

In general, the causes of landslide deformation in the Three Gorges Reservoir area are
influenced by a variety of integrated factors, such as the landslide’s geological structure,
precipitation and other factors. In this study, seasonal rainfall and adjustment of reservoir
water level are found to control the occurrence of step-like displacement through landslide
mechanism and monitoring data analysis. The landslide underwent accelerated deforma-
tion mainly during the period of heavy precipitation and water level drop, followed by a
step-like displacement deformation. Therefore, an effective displacement decomposition
method is beneficial for better displacement prediction.

The characteristic components obtained from the decomposition of cumulative dis-
placements by conventional EMD methods are often not fixed [26,27]. Therefore, it is
necessary to combine and reconstruct these components to obtain the displacement charac-
teristic components of the landslides. The conventional decomposition method normally
produces no less than five characteristic components. The procedures for reconstructing and
combining these feature components to obtain the landslide trend, periodic and random
components are more complicated and the workload increases significantly, which leads
to lower computational efficiency. In this work, landslide displacements are decomposed
according to VMD theory, determining the explicit physical meaning of each component.
In addition, the VMD theory, which has good adaptive ability, can be used to decompose
the displacement based on the actual situation of the landslide [32,33]. Therefore, the trend,
period and random displacements of landslides are well extracted in this study. This avoids
the phenomenon of over-decomposition or incomplete decomposition of the components
caused by the uncertain number of components, especially in the conventional methods
such as EMD.

SVR is one of the most typical prediction methods, and landslide displacement can be
predicted by optimizing relevant parameters. The reasonable selection of input parameters
is helpful to improve the training efficiency of SVR. GWO has the characteristics of fast
convergence and high optimization accuracy [25], and it is introduced into SVR for param-
eter optimization [14,49]. In addition, to improve the prediction accuracy, different factors
affecting landslide deformation are analyzed using GRDA, and precipitation and reservoir
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level fluctuation data are added to the landslide displacement prediction model as addi-
tional influential factors. To further compare the pros and cons of algorithms, prediction
analysis is performed with the GWO-SVR and VMD-PSO-SVR models for the test set data,
respectively. A comparison of the prediction models is shown in Figure 12. The evaluation
indicators of each model are shown in Table 7. The VMD-PSO-SVR and the VMD-GWO-
SVR optimization algorithms with VMD decomposition are effective in improving the
prediction accuracy compared to that without VMD decomposition. As demonstrated
in Figure 12 and Table 7, the RMSE and R2 of VMD-GWO-SVR are greater than those of
other models. The VMD-GWO-SVR model has the best prediction performance, which can
provide a good decision basis for real-time landslide warning.
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Table 7. Evaluation index values of the three landslide displacement prediction models.

Model GWO-SVR VMD-PSO-SVR VMD-GWO-SVR

MAE (mm) 1.7441 1.0106 0.1993
RMSE (mm) 1.9242 1.1434 0.3516

R2 0.9845 0.9945 0.9995

6. Conclusions

Given the step-like nonlinear characteristics of landslide displacement, a novel model
is proposed to predict landslide displacement based on the VMD theory, GWO algorithm
and SVR model. VMD theory is used to effectively extract three components of land-
slide displacement, each of which represents a distinct characteristic of displacement. The
superposition results of the three components are basically consistent with the original
displacement, which proves the effectiveness of the displacement decomposition and effec-
tively solves the problem of low computational efficiency. The external factors influencing
landslide displacement deformation are accurately identified by GRDA. The experiments
on the Shuizhuyuan landslide prove that SVR can effectively solve the nonlinear regression
and time series problems. The optimization of SVR model parameters is realized by GWO
algorithm and the predictive performance of the above model is confirmed by multiple
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validation tests with different time series of training sets. The prediction results of the com-
bination model prove that the model can achieve a high accuracy for predicting landslide
displacement. Specifically, under the premise of adequate pre-monitoring information and
effective access to long-term landslide monitoring data, the proposed prediction model can
be applied for the prediction of landslide displacement in the studied region.
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