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Abstract: The transfer of electricity-related water across regions and sectors provides an opportunity
to alleviate water stress and make the development of the power system sustainable. Yet, the key
node identification and properties of the electricity-related water network have not been studied. In
this study, the properties and key nodes of the regional sectoral electricity-related water network in
China were analyzed based on a multi-regional input–output model and complex network analysis.
An iterative method was proposed to calculate the water consumption index inventory. The results
showed electricity transmission can affect the regional water consumption index. Degree, intensity,
betweenness centrality, and closeness centrality indicators of nodes were used to identify the key
nodes. Sector 24 in Shandong was the key node with the largest closeness centrality. Sector 9 in
Xinjiang was the key node with the largest betweenness centrality. They were the best choice for
establishing points to observe and control flows, respectively. The transfer network did not have the
small-world nature with the average clustering coefficient being 0.478 and the average path length
being 2.327. It is less likely to cause large-scale clustering change in the network. This study can
provide references for the common sustainable development of power systems and water resources.

Keywords: electricity-related water; multi-regional input–output analysis; complex network analysis;
iterative approximation; key nodes identification

1. Introduction

The water crisis has become widely concerning all over the world [1]. In China, there
is a serious water crisis with half of the cities facing water shortages [2]. The per capita
water resource available was only 2239.8 m3 in 2020 [3]. In addition, the spatial mismatch
between water supply and demand do aggravate the water crisis [4]. In northern China,
less than 20% of the water resource needs to sustain 47% of people [2]. Water scarcity is
increasingly constraining Chinese sustainable development [5].

The power system consumed a large amount of water, which contributed to 14% of
the total industrial water consumption [6]. With electricity demand increasing and water
scarcity intensifying, a large number of thermal power and hydropower plants are faced
with the risk of water shortage [7,8]. The water crisis has been a significant constraint
factor for the development of power system. The study of electricity-related water is a
key aspect of understanding the water limitation of the energy system, further reducing
water shortages and providing policy strategies for the sustainable development of the
power system.

Quantifying the water consumption of power generation is more than essential for
studying the links between energy and water [9]. Process life cycle and hybrid life cycle
analyses have been used to quantify water consumption for different types of power
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generation. Liao et al. [10] calculated the water consumption of thermal power generation
in China with plant-level data. Wang et al. [11] discussed and compared the water footprint
of the five power types (hydro, thermal, solar, wind, and nuclear) based on life-cycle
assessment. In addition, Xi et al. [12] established the hybrid water intensity inventory for
power generation at the provincial level by considering the influence of power generation
type, cooling technology, generator set, and other factors. Economic trade has led to lots of
electricity and water consumption transfer. The electricity-related water transfer network
has also been investigated at different levels, including the national level, the electricity
grid level, and the provincial level. At the national level, Jin et al. [13] quantified virtual and
physical water flows in China using information from 5408 generators and inter-provincial
power transmission. At the electricity grid level, Zhu et al. [14] estimated the flows of
virtual water and scarce water in the power system based on the water intensity method,
but the spatial resolution of the study was not high. At the provincial level, Zhang et al. [15]
investigated the evolution of the inter-provincial virtual water network from 2005 to 2014
based on an electricity transmission network.

The input–output table covers the production process and the usage of products.
Input–output analysis (IO) can calculate the resource consumption for producing goods
and services based on sectoral economic interactions [16,17]. It has been used to analyze
environmental issues, including energy, carbon emission, water consumption and so on. Al-
lan et al. [18] studied the economic and emissions impacts of the likely future development
of the UK′s offshore wind sector. Yang et al. [19] studied the structural emission reductions
in China′s industrial and energy systems in 2007–2015. Gao et al. [20] calculated the carbon
footprint of China’s coal-fired system using the environmental extended input–output
model. Xie et al. [21] evaluated the carbon footprint among eight regions of China from a
consumption-based perspective. Wu et al. [22] studied the direct and indirect water con-
sumption efficiency and virtual water flow directions among different sectors based on the
input–output model. Liao et al. [23] compared the water footprint for final energy demand
in China’s megacities to investigate the spatial impact of water scarcity. Chen et al. [9]
quantitatively estimated the water footprint of each province in China and quantified
the transfer of virtual water between provinces. The multi-regional input–output model
(MRIO) was combined with the virtual water footprint to show how Australian agricultural
demand affects water resources around the world [24]. To better study the properties
and structure of the transfer networks, network analysis (e.g., ecological network analysis
(ENA)) was combined with MRIO [16]. Wang et al. [25] studied the energy-water nexus of
urban agglomeration based on MRIO and ENA. Zhang et al. [26] built the inter-provincial
virtual water flows induced by electricity transmission in China and identified the control
and dependence relationships using control and dependence allocation based on ENA.
However, ENA mainly analyzes the network from the perspective of generalized ecological
chain, and its help in the analysis of network characteristics and key nodes is limited.

Compared with ENA, complex network analysis (CNA) pays more attention to the
structural properties of the network, the interaction among nodes, and the importance of
nodes in a network from several different aspects like degree, intensity, closeness centrality,
and betweenness centrality. Complex network theory is proposed and developed based on
graph theory. It has been widely used in fields of society, economy, energy, and environ-
ment. For example, Wang et al. [27] studied the network risk propagation of agricultural
supply chains based on CNA and analyzed the risk propagation on the network by using
the Susceptible-Infected-Removed model. Liang et al. [28] identified the key sectors in the
global virtual carbon transfer network for reducing carbon emissions in a targeted way.
Ma et al. [29] The distribution structure of carbon emissions network among Chinese
28 sectors embodied in intermediate input were studied based on CNA. Wang et al. [30] cal-
culated and compared the regional sectoral carbon dioxide transfer in China by combining
complex network analysis and the hypothesis extraction method.

The existing research on electricity-related water focused more on the quantification
and transfer relations. Few studies analyzed the network properties and identified the key
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nodes in the electricity-related water transfer network. This study can be a supplement
to the research blank of the distribution characteristics and identification of key nodes
of electricity-related water network. The distribution of the degree and intensity of the
nodes can help understand the structure and distribution characteristics of the network.
It can give guidance at regional level to restrict or encourage policies for industries’ elec-
tricity consumption. Using degree, intensity, closeness centrality, and between centrality
indicators from CNA can identify the key nodes with special functions and further guide
the optimization of electricity-related water network. For instance, the ability of nodes
to observe and control flows in the network can be assessed by closeness centrality and
betweenness centrality indicators, respectively. The key nodes identified by using these
two indicators can provide references for the establishment of monitoring points and regu-
lation points for electricity-related water networks. This study can provide references for
the sustainable development of power systems and water resources.

In this study, the electricity-related water consumption index inventory considering
the electricity transmission was proposed based on iterative approximation method. The
electricity-related water transfer network among 30 regions and 27 sectors was constructed
based on the environment-extended MRIO model. Combined with the CNA, the small-
world nature of network and the properties of nodes were investigated. The key nodes
were identified using out-degree, in-degree, out-intensity, in-intensity, closeness centrality,
and betweenness centrality. The rest of the paper was organized as follows. Materials
and methods were described in Section 2. The results were presented in Section 3. Finally,
conclusions and the discussion were presented in Section 4.

2. Materials and Methods
2.1. Electricity-Related Water Consumption Index

According to the proportional sharing principle in power systems [31], the electricity
ultimately consumed in an area is a mix of local generation and electricity from other
regions. The mixing happens more than once in a complex power system. Electricity from
other regions is also mixed locally and transmitted through transmission lines. When
calculating the water consumption intensity from the perspective of consumption, it is
necessary to consider the mixed effect of power transmission on the water consumption
intensity of generation. An iterative process was proposed to represent the process of
power from different regions being mixed in the system and arriving at the load, as shown
in Figure 1.
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As for the electricity-related water consumption index, it can be modified iteratively
according to the proportion of electric quantity until it meets the set error accuracy require-
ments. The error accuracy was set as 10−10 in this paper. The correction method is shown
in Equation (1):

etit
i =

egi
egi + eti

·hwii +
n

∑
j 6=i

etji

egi + eti
·ecit−i

j (1)

where ectt
i represents the electricity-related water consumption index of region i after the

t iteration; egi represents the total power generation of region i; eti represents the total
amount of electricity transmission into region i; etji represents the amount of electricity
transmission from region j to region i. The initial value of ecii was set as the hybrid water
consumption index of power generation in region i, which represents the state when there
is no inter-region electricity transmission.

Due to the power generation structure in different regions having great differences,
the water consumption intensity in different regions is also very different. We described
the regional power generation water consumption intensity by using the hybrid water
consumption intensity which is mixed by the five common types of power generation
(hydropower, thermal, nuclear, wind, and solar power) according to the proportion of
power generation. Its calculation method is shown as Equation (2):

hwii =
egi,k

egi
·wk (2)

where hwii represents the hybrid water consumption index of power generation in region
i; egi,k represents the amount of electricity generated by kth technology in region i; wk
represents the water intensity of kth generation technology.

2.2. Construction of Electricity-Related Water Transfer Network

The electricity-related water transfer network was constructed based on MRIO. The
original 42 sectors from input–output tables were grouped into 27 sectors for 30 regions in
China, as shown in Table A1.

As an environmental extended coefficient, electricity-related water consumption was
applied to the MRIO model. It was calculated according to the coefficient obtained in
Section 2.1.

ewci
r = ecii·eci

r (3)

where ewci
r represents the electricity-related water consumption of sector r in region i; eci

r
represents the electricity consumption of sector r in region i.

The direct environmental impact factor was defined as the amount of electricity-related
water consumed per unit of total output, as shown in Equation (4):

ED =
[
edi

r

]
, edi

r =
ewci

r
xi

r
(4)

where edi
r represents the direct environmental impact index of sector r in region i; xi

r
represents the total output of sector r in region i.

In the MRIO model framework, the direct consumption matrix can be expressed as:

A =
[

ai,j
r,s

]
, ai,j

r,s =
zi,j

r,s

xj
s

(5)

where ai,j
r,s represents direct consumption index, which means the input from sector r in

region i for per unit total output for sector s in region j; zi,j
r,s represents intermediate input

from sector r in region i to sector s in region j.
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The total consumption coefficient matrix was used to allocate the consumption of
a certain region and a certain sector. The matrix form of its calculation was shown as
Equation (6).

L = (I − A)−1 (6)

where L represents the complete consumption coefficient matrix; I represents the
identity matrix.

Then, the complete environmental impact coefficient matrix was calculated by com-
bining electricity-related water with trade relations, as shown in Equation (7):

ET = ÊD·L (7)

The transfer network of electricity-related water can be built by Equation (8):

EWT = ET·F̂ (8)

where EWT represents the transfer relation matrix of electricity-related water, and F̂ repre-
sents the diagonal matrix of final consumption.

2.3. Complex Network Analysis

The electricity-related water transfer matrix was mapped to a weighted directed net-
work. A sector of a region was mapped to a node, and a transfer relation was mapped to
an edge whose weight was determined by the transition quantity. A total of 810 nodes
and 307,223 edges were built in this study. The transfer matrix of electricity-related wa-
ter was the adjacency matrix of the network. In addition, six indicators were chosen
from different aspects to investigate the nodes with great importance in the network,
which were out-degree, in-degree, out-intensity, in-intensity, closeness centrality, and
betweenness centrality.

2.3.1. In-Degree and Out-Degree Analysis

Out-degree was the number of relations that electricity-related water outputs from the
region and in-degree was the number of relations that electricity-related water inputs to
the region. The calculation methods were shown in Equations (9) and (10):

kinr = ∑
s 6=r

lsr (9)

koutr = ∑
s 6=r

lrs (10)

where kinr and koutr represent the in-degree and out-degree of node r, respectively; lsr

represents the number of edges from node s to node r.

2.3.2. Out-Intensity and In-Intensity Analysis

The out-intensity described the total amount of electricity-related water outflow of
nodes, and the in-intensity described the total amount of electricity-related water inflow of
nodes. The calculation methods were shown in Equations (11) and (12):

tinr = ∑
s 6=r

lwsr (11)

toutr = ∑
s 6=r

lwrs (12)

where tinr and toutk are the in-intensity and out-intensity of node r; lwsr is the weight of
the edge from node s to node r.
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2.3.3. Closeness Centrality Analysis

Closeness centrality described the ability of node pairs to observe the flow of the
network, and the node with the largest closeness centrality had the best observation field
for the flow in the network. Closeness centrality can be calculated by the reciprocal of the
average distance between nodes and all nodes in the network, as shown in Equation (13).

clcr =
N

∑N
s=1,s 6=r pdsr

(13)

where clcr represents the closeness centrality index of node r; pdsr represents the distance
of the shortest path from node s to node r.

2.3.4. Betweenness Centrality Analysis

Betweenness centrality described the ability of nodes to control the flow in the network.
The node with greater mediation centrality had a stronger ability to control the flow in the
network, which can be calculated by the number of the shortest path through the node, as
shown in Equation (14):

becr =
N

∑
s 6=r 6=t

sgst,r

sgst
(14)

where becrr represents the betweenness centrality index of node r; sgst represents the
number of shortest paths from node s to node t; sgst,r represents the number of shortest
paths through node r in the shortest path from node s to node t.

2.3.5. Small-World Nature of the Network

A small-world nature means most nodes are not adjacent to each other but can be
indirectly connected through multiple paths in the network [30]. The small-world nature
was determined by the average clustering coefficient (ACC) and the average path length
(APL). The clustering coefficient of a node was the proportion of the number of edges
among all its adjacent nodes in the potential maximum number of edges, as shown in
Equations (15) and (16):

CCr =
aer

anr(anr−1)
2

(15)

ACC =
1
N
·∑ CCr (16)

where CCr represents the clustering coefficient of node r; aer represents all edges of node r
actually; anr represents the adjacent nodes of node r.

APL was the average of the shortest path length between any two nodes, which
reflected the connectivity of the network, as shown in Equation (17):

APL =
2

N(N − 1)
·∑ pdsr (17)

The small-world quotient (SWQ) was used to quantitatively evaluate whether the
network has a small-world nature, which can be calculated as Equation (18). SWQ greater
than 1 indicated that the network has a small-world nature:

SWQ =
ACC
APL

· APLran

ACCran
=

ACC
APL

·
ln(N)

ln(k)
k
N

(18)

where ACCran and APLran represent the ACC and APL of a random network with the
same number of nodes and average degree, respectively.
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2.4. Data Sources

The data used in this study is mainly as follows. (1) The provincial power generation
data in 2017 was from the “China Electric Power Yearbook” [32,33]; (2) Water consumption
is the water use that could not return to the original resources and not available for reuse.
The water consumption coefficients for five types of power generation technologies are
derived from Feng et al. [34]; (3) The MRIO table of 2017 in China used in this study is from
Zheng et al. [35]; (4) Data of power consumption comes from the China Energy Statistical
Yearbook [36].

Due to data limitations, we only calculated and analyzed 30 provinces and au-
tonomous regions in China (Tibet, Hong Kong, Taiwan, and Macau are excluded because of
lacking data).

3. Results and Discussion
3.1. Regional Electricity-Related Water Consumption Coefficients

Figure 2 shows the water consumption index and the structure of power generation. There
were obvious regional differences in water consumption coefficient. The minimum ECI was
Inner Mongolia (3.01 L/kWh), followed by Ningxia (3.09 L/kWh) and Hebei (3.11 L/kWh).
There were five regions with ECI over 10 L/kWh, which were Sichuan (15.89 L/kWh), Yunnan
(15.38 L/kWh), Hubei (11.27 L/kWh), Chongqing (10.18 L/kWh), and Qinghai (10.09 L/kWh).
Compared with HWI, ECI showed a certain amount of increase or reduction in some regions
because of the electricity transmission among regions. Qinghai reduced by 0.66 L/kWh (from
10.74 L/kWh to 10.09 L/kWh). Shanghai increased by 3.83 L/kWh (from 3.26 L/kWh to
7.09 L/kWh). Guangdong increased by 2.80 L/kWh (from 4.24 L/kWh to 7.04 L/kWh).
Chongqing increased by 1.85 L/kWh (from 8.33 L/kWh to 10.18 L/kWh).
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in 2017.

Figure 3 shows the regional electricity-related water consumption and water stress
index (WSI) in 2017. Guangdong had the largest total electricity-related water consumption
(337.00 Mm3), followed by Sichuan (254.79 Mm3). What is more, Jiangsu and Shandong
had both large electricity-related water consumption and a large WSI. These regions need
to pay more attention to the water crisis compared to Guangdong and Sichuan.
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3.2. Electricity-Related Water Transfer Network

The total transfer of electricity-related water was 75.36 billion m3 in China in 2017.
The transfer among regions and sectors is shown in Figure 4. The area of a circle represents
the amount of electricity-related water passing through the node. The width of the line
represents the amount of electricity-related water transferred through the path. The amount
of electricity-related water flowing through different areas varied widely. The top five
nodes were BJ-27 (6.11 billion m3), JS-27 (4.68 billion m3), GD-27 (4.42 billion m3), JS-24
(3.82 billion m3), and XJ-21 (3.49 billion m3). There was also a huge difference in the amount
of electricity-related water transferred through paths. The top five relations were from
XJ-21 to ZJ-24 (238.66 Mm3), from XJ-21 to CQ-24 (231.22 Mm3), from XJ-21 to GD-27
(207.80 Mm3), from ZJ-4 to JS-24 (183.87 Mm3), and from XJ-21 to JS-27 (179.77 Mm3).

Table 1 shows the regional inflow and outflow of electricity-related water. The largest
inflow was to Guangdong (14.10 billion m3), followed by Jiangsu (13.24 billion m3) and
Zhejiang (8.34 billion m3). The largest outflow was from Xinjiang (7.33 billion m3), followed
by Qinghai (5.70 billion m3) and Ningxia (4.3 billion m3). The contribution of sectors in the
inflow or outflow within the region is shown in Figure 5. As for the inflow, the contribution
of the sectors presents obvious concentration characteristics. A large proportion of the
inflow was in sector 24 (average 50.87%) and sector 27 (average 31.14%). The largest
inflow sectors were sector 27 in Beijing (accounting for 88.61%) and sector 24 in Qinghai
(accounting for 87.41%). As for the outflow, a large proportion of the outflow was in sector
14 (average 13.76%), sector 21 (average 13.58%), sector 22 (average 11.59%), and sector
4 (average 10.47%). The largest outflow sectors were sector 21 in Anhui (accounting for
52.14%) and sector 21 in Xinjiang (accounting for 47.65%).
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consists of region-sector, e.g., BJ-1 indicates sector 1 in Beijing).

Table 1. The Regional inflow and outflow of electricity-related water.

No. Region Inflow (Billion m3) Outflow (Billion m3)

1 Beijing 6.89 0.58
2 Tianjin 0.76 0.62
3 Hebei 2.11 1.35
4 Shanxi 0.42 2.87
5 Inner Mongolia 0.64 4.12
6 Liaoning 1.51 1.57
7 Jilin 0.59 2.00
8 Heilongjiang 0.41 1.92
9 Shanghai 2.48 2.86
10 Jiangsu 13.24 1.39
11 Zhejiang 8.34 3.09
12 Anhui 1.61 1.33
13 Fujian 0.49 1.06
14 Jiangxi 1.06 1.83
15 Shandong 2.19 1.13
16 Henan 4.84 1.65
17 Hubei 0.74 2.19
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Table 1. Cont.

No. Region Inflow (Billion m3) Outflow (Billion m3)

18 Hunan 1.54 1.62
19 Guangdong 14.10 1.46
20 Guangxi 0.66 2.79
21 Hainan 0.13 2.76
22 Chongqing 3.35 2.71
23 Sichuan 2.22 1.88
24 Guizhou 0.60 3.12
25 Yunnan 1.68 3.51
26 Shannxi 2.10 2.24
27 Gansu 0.14 4.04
28 Qinghai 0.05 5.70
29 Ningxia 0.06 4.63
30 Xinjiang 0.41 7.33
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3.3. Complex Network Analysis

The electricity-related water transfer network was calculated as a weighted directed
network. A sector of a region was mapped to a node, and the transition relation was
mapped to an edge, whose weight was determined by the transition quantity. The SWQ
of the transfer network was 0.4947, with the ACC being 0.478 and APL being 2.327 in
the network. Thus, the transfer network does not have an obvious small-world nature,
which meant that the possibility of clustering changes in the network is very small. It
was less likely to cause large-scale clustering change when some nodes or edges in the
network changed.

The distribution of the in-degree of nodes is shown in Figure 6a. The maximum of the
nodes’ in-degree was 762, and the minimum was 0. The distribution of in-degree was very
discrete, with all probabilities less than 0.65%, which meant that the distribution of node
degrees is very discrete. The increasing rate of cumulative frequency varied at the point
of in-degree was 335. The increase rate was larger when the in-degree was less than 335
and smaller when it was bigger than 335, which meant the average frequency in the range
less than 335 was larger. The distribution of the out-degree of nodes is shown in Figure 6b.
The maximum of the nodes’ in-degree was 770, and the minimum was 0. The distribution
of in-degree was very discrete as well. The increasing rate of cumulative frequency kept
stable, with some slight fluctuations.
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Figure 7 shows the distributions of the in-intensity and out-intensity of nodes. Both
in-intensity and out-intensity showed a distribution with fewer at both ends and more
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in the middle. More than 60% of the nodes were with the in-intensity from 0.01 Mm3 to
50 Mm3. More than 60% of the nodes were with the out-intensity from 4 Mm3 to 200 Mm3.
However, the amount of electricity-related water transfer was concentrated on a few nodes
with high intensity. The 18 nodes with in-intensity of more than 1000 Mm3 transferred
58.87% of the total. The 12 nodes with out-intensity of more than 1000 Mm3 transferred
23.127% of the total.
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The correlations between degree and intensity of nodes were further analyzed, as
shown in Figure 8. In order to better show the correlations between the more important
(highly ranking) nodes, a logarithmic coordinate system was used to display the results.
The in-intensity of the nodes with the top 10 in-degree was not very large. There was no
strong correlation between the in-degree and the in-intensity of nodes. The main reason
was that one or several transmission paths transferred a large amount of electricity-related
water, and these paths with a large number of concentrated weights greatly increased the
in-intensity or out-intensity of nodes. Taking sector 27 in Beijing with the largest in-intensity
as an example, there were 18 paths′ volumes above 50 Mm3, accounting for 2.36% of the
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in-degree, but contributing 25.45% of the in-intensity. What is more, there was a similar
relationship between the out-degree and the out-intensity of nodes.
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Figure 9a shows the distribution of closeness centrality of nodes. The nodes with the
maximum closeness centrality were sector 24 in Shandong (1) and sector 24 in Guangdong (1),
followed by sector 5 in Qinghai (0.97). These three nodes had the best view to observe
the electricity-related water flow. Figure 9b shows the distribution of betweenness cen-
trality. The nodes with the maximum betweenness centrality were sector 9 in Xinjiang (1),
followed by sector 24 in Hainan (0.88) and sector 24 in Liaoning (0.85). Sector 9 in Xin-
jiang had the best control over the flow of electricity-related water in the transfer network.
These indicators evaluated the status of nodes in the network from different perspectives,
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and the key nodes in the network from these perspectives were identified, as shown in
Table 2. These key nodes can be prioritized when building a sustainable grid that considers
water security.
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Table 2. The top 5 key nodes in the network (Note: The node name consists of region-sector, e.g.,
SH-3 indicates sector 3 in Shanghai).

Indicators 1st 2nd 3rd 4th 5th

In-degree SH-3 SAX-2 SAX-4 SAX-9 SAX-23
Out-degree JL-13 GX-11 GX-13 GX-14 GX-5
In-intensity BJ-27 JS-27 GD-27 JS-27 ZJ-24

Out-intensity XJ-21 QH-14 XJ-14 QH-5 GS-14
Closeness centrality SD-24 GD-24 QH-5 QH-23 QH-4

Betweenness centrality XJ-9 HAN-24 LN-24 JL-6 HLJ-9
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3.4. Discussion
3.4.1. Electricity-Related Water Consumption Index

Regional electricity-related water consumption intensity was calculated with an it-
erative approximation method, considering the complex electricity transmission among
regions. This not only calculated consumption coefficients more reasonably and closer to
the actual but also provided a reference method for subsequent research in related fields.
In the iterative process, the ECI of the power transmission source had a great influence on
the ECI of the receiver. For example, Guangdong received a large amount of electricity
from Guizhou, Yunnan, and Hubei. The water consumption intensity of power generation
was relatively high in these three regions because of the high proportion of hydropower.
This will lead to an actual increase in water consumption corresponding to the electricity
consumed in Guangdong. It was more reasonable that Guangdong’s ECI increased by
2.80 L/kWh.

The power system is developed to the direction of low carbon. The capacity and gen-
eration of power plants using clean energy is increasing rapidly. It is necessary to consider
the water impact of power system while setting the goal of carbon emission reduction.
Wind and solar power development should be prioritized over hydropower development.,
because hydropower consumes much more water than the others. There are abundant
solar and wind energy available for development in northwest China, which is beneficial
to alleviate the energy crisis and achieve sustainable development. The construction of
transmission lines is also gradually improving. In particular, the construction of ultra-high
voltage direct current transmission lines can efficiently transmit power over long distances.
Increasing the ability of electricity transmission from the wind and solar resource-rich
regions to high-energy-demand regions like the southeast coastal cities is effective to re-
duce local electricity-related water consumption intensity and mitigate the energy and
water pressure.

3.4.2. Electricity-Related Water Transfer Network

The MRIO results showed that there are lots of electricity-related water transfers
caused by economic trade. The total transfer of electricity-related water was 75.36 billion m3

in 2017, accounting for 42% of the total electricity-related water consumption. Sectoral
contributions to electricity-related water transfers varied widely across regions ranging
from 0 to 0.88. The relatively large outflow contribution was mainly by construction sector
and other services sector. The relatively large inflow contribution was mainly by the
mining and processing of metal ores sector, the smelting and processing of metals sector,
other manufacturing and waste resources sectors, and the production and distribution of
electric power and heat power sector. The main reason was that it was affected by regional
economic industry distribution and sectoral characteristics. The concentration of sectoral
contributions provides direction for improving the electricity-related water network. The
corresponding incentive policies can effectively promote the technological upgrading of
these sectors with large outflow contributions, which can help improve energy utilization
efficiency and reduce energy and water pressure.

3.4.3. Key Nodes Identification and Network Distribution Characteristics

Combining with complex network analysis, we found that the electricity-related water
transfer network does not have a small-world nature (SWQ < 1), which meant that it was
less likely to cause large-scale clustering change when some nodes or edges change. One
possible influencing factor was that there are some nodes and paths with a large amount
of virtual water transfer in the network. When these nodes and paths changed, they may
affect the entire network and cause chain changes, and also suppressed the chain changes
when the nodes and paths with small amount transfer change. Furthermore, there was a
weak correlation between the degree and intensity of a node. The degree described the
number of nodes connected to other nodes. Some nodes had many connections with other
nodes, but the weight of the connection path was very small, resulting in a large degree



Sustainability 2023, 15, 5360 16 of 20

and a small strength. On the contrary, there were also one or several paths with a large
weight, which resulted that connected nodes having large intensities and small degrees.

In addition, we used out-degree, in-degree, out-intensity, in-intensity, closeness cen-
trality, betweenness centrality indicators to identify key nodes in the network. These
key nodes can provide a good reference for policy designation to stabilize and improve
electricity-related water network. The key nodes sector 3 in Shanghai, sector 2 in Shaanxi,
and sector 4 in Shaanxi with the largest in-degree had the most inflow paths. The key nodes
sector 13 in Jilin, sector 11 in Guangxi, and sector 13 in Guangxi with the largest out-degree
had the most outflow paths. These nodes have strong stability in the network. These nodes
can be the preferred choice for establishing transit or connections in the network.

The key nodes sector 27 in Beijing, sector 27 in Jiangsu, and sector 27 in Guangdong
with the largest in-intensity maintained the stability of inflow. It was very important to
ensure the stability of the transfer network. The transfer of electricity-related water can
be more reasonable and efficient by optimizing the source and path of inflow. The key
nodes sector 21 in Xinjiang, sector 14 in Qinghai, and sector 14 in Xinjiang with the largest
out-intensity bore a lot of output pressure. It was very meaningful to improve the technical
level of the corresponding industry to reduce water consumption. These nodes are better
choices for supply-driven or demand-driven network optimization.

The key nodes sector 24 in Shandong, sector 24 in Guangdong, and sector 5 in Qinghai
with the largest closeness centrality had the best view to observe the flow of electricity-
related water in the network. Setting up observation points in these places can timely and
efficiently observe the flow of electricity-related water for timely adjustment of relevant
policies. The key nodes sector 9 in Xinjiang, sector 24 in Hainan, and sector 24 in Liaoning
with largest betweenness centrality had a greater ability to subjectively control the flow
of electricity-related water, and can effectively adjust the transfer path and the structure
of the network. It was very difficult to master the strength and flow information of all
nodes. These key nodes can observe and adjust the network state with limited human and
material resources, even dynamic adjustment. Regardless, through the utilization of key
nodes, policies to limit or encourage formulated for the regional sectors will better improve
the overall network, not just the nodes.

The source of primary energy and the environment impact are likely to be major
challenges for future power system. The water resource is not only one of the necessary
resources of power system, but also one of the environmental impacts of power system.
The stability of the electricity-related water network is important for the sustainable devel-
opment of energy and water resources. The analysis of the characteristics and distribution
characteristics of the network help us to understand the network structure and improve
the network stability, such as increasing the degree of nodes with high output or input
intensity or setting reserve paths for paths with high transfer volume. At the same time,
key nodes help optimize the electricity-related water network from the perspectives of
output, input, observation, and regulation of electricity-related water flow so as to avoid a
potential water crisis threatening power grid security.

4. Conclusions

In this study, we analyzed the electricity-related water network based on the multi-
region input–output model and complex network analysis. An iterative method was
proposed to improve the accuracy of the water consumption index inventory. The transfer
relationship and the sector contribution of regions were assessed. The small world nature
and distribution characteristics of the network were investigated, and the key nodes in
the network were identified based on out-degree, in-degree, out-intensity, in-intensity,
closeness centrality, and betweenness centrality indicators. The conclusions are as follows:

Compared with HWI, the electricity-related water consumption index showed a certain
change because of the electricity transmission among regions. The intensity increases in
areas receiving electricity from areas with a high proportion of hydropower and decreases
in areas receiving electricity from areas with a high proportion of wind and photovoltaic.
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Increasing power output from areas with high wind and photovoltaic capacity could help
improve the overall power-related water transfer network.

The contribution of the sectors presents obvious concentration characteristics. For
inflow, a large proportion was in sector 24 (average 50.87%) and sector 27 (average 31.14%).
For outflow, a large proportion was in sector 14 (average 13.76%), sector 21 (average 13.58%),
sector 22 (average 11.59%), and sector 4 (average 10.47%).

The electricity-related water transfer network does not have a small-world nature. It
is less likely to cause large-scale clustering change. Besides, there was no strong correlation
between the in-degree and the in-intensity of nodes. The distribution of node degrees is
very discrete with all probabilities less than 1%. More than 60% of the nodes were with
the in-intensity from 0.01 Mm3 to 50 Mm3. More than 60% of the nodes were with the
out-intensity from 4 Mm3 to 200 Mm3. There are a few paths that transmit large amounts
of electricity-related water. Certain standards and limits should be set for these paths to
avoid excessive concentration from destabilizing the transfer network and exacerbating
potential water crises.

The key nodes identified were sector 3 in Shanghai with the largest in-degree and
sector 13 in Jilin with the largest out-degree. These nodes can be the preferred choice for
establishing transit or connections in the network. The key nodes identified were sector 27
in Beijing with the largest in-intensity, sector 21 in Xinjiang with the largest out-intensity.
These nodes are better choices for supply-driven or demand-driven network optimization.
The key nodes identified were sector 24 in Shandong with the largest closeness centrality,
and sector 9 in Xinjiang with the largest betweenness centrality. These key nodes can
observe and adjust the network state with less manpower and material resources.
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Appendix A

Table A1. Sectors’ compilation of regions.

Number Aggregated 27 Sectors Number Original 42 Sectors

1 Agriculture, Forestry, Animal
Husbandry and Fishery 1 Agriculture, Forestry, Animal

Husbandry and Fishery
2 Mining and washing of coal 2 Mining and washing of coal
3 Extraction of petroleum and natural gas 3 Extraction of petroleum and natural gas
4 Mining and processing of metal ores 4 Mining and processing of metal ores

5 Mining and processing of nonmetal
and other ores 5 Mining and processing of nonmetal

and other ores
6 Food and tobacco processing 6 Food and tobacco processing
7 Textile industry 7 Textile industry

8 Manufacture of leather, fur, feather and
related products 8 Manufacture of leather, fur, feather and

related products
9 Processing of timber and furniture 9 Processing of timber and furniture
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Table A1. Cont.

Number Aggregated 27 Sectors Number Original 42 Sectors

10
Manufacture of paper, printing and

articles for culture, education and sport
activity

10
Manufacture of paper, printing and

articles for culture, education and sport
activity

11 Processing of petroleum, coking,
processing of nuclear fuel 11 Processing of petroleum, coking,

processing of nuclear fuel
12 Manufacture of chemical products 12 Manufacture of chemical products

13 Manuf. of non -metallic mineral
products 13 Manuf. of non -metallic mineral

products
14 Smelting and processing of metals 14 Smelting and processing of metals
15 Manufacture of metal products 15 Manufacture of metal products

16 Manufacture of purpose machinery 16 Manufacture of general purpose
machinery

17 Manufacture of special purpose
machinery

17 Manufacture of transport equipment 18 Manufacture of transport equipment

18 Manufacture of electrical machinery
and equipment 19 Manufacture of electrical machinery

and equipment

19
Manufacture of communication

equipment, computers and other
electronic equipment

20
Manufacture of communication

equipment, computers and other
electronic equipment

20 Manufacture of measuring instruments 21 Manufacture of measuring instruments

21 Other manufacturing and waste
resources 22 Other manufacturing and waste

resources

22 Production and distribution of electric
power and heat power 24 Production and distribution of electric

power and heat power

23
Production and distribution of gas and

tap water
25 Production and distribution of gas

26 Production and distribution of tap
water

24 Construction 27 Construction

25
Wholesale, retail trades,

accommodation and catering
28 Wholesale and retail trades
30 Accommodation and catering

26 Transport, storage, and postal services 29 Transport, storage, and postal services

27 others

23 Repair of metal products, machinery
and equipment

31 Information transfer, software and
information technology services

32 Finance
33 Real estate
34 Leasing and commercial services
35 Scientific research
36 Polytechnic services

37 Administration of water, environment,
and public facilities

38 Resident, repair and other services
39 Education
40 Health care and social work
41 Culture, sports, and entertainment

42 Public administration, social insurance,
and social organizations
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