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Abstract: The current global health crisis is a consequence of the pandemic caused by COVID-19.
It has impacted the lives of people from all factions of society. The re-emergence of new variants
is threatening the world, which urges the development of new methods to prevent rapid spread.
Places with more extensive social dealings, such as offices, organizations, and educational institutes,
have a greater tendency to escalate the viral spread. This research focuses on developing a strategy
to find out the key transmitters of the virus, particularly at educational institutes. The reason for
considering educational institutions is the severity of the educational needs and the high risk of rapid
spread. Educational institutions offer an environment where students come from different regions
and communicate with each other at close distances. To slow down the virus’s spread rate, a method
is proposed in this paper that differs from vaccinating the entire population or complete lockdown. In
the present research, we identified a few key spreaders, which can be isolated and can slow down the
transmission rate of the contagion. The present study creates a student communication network, and
virus transmission is modeled over the predicted network. Using student-to-student communication
data, three distinct networks are generated to analyze the roles of nodes responsible for the spread
of this contagion. Intra-class and inter-class networks are generated, and the contagion spread
was observed on them. Using social network strategies, we can decrease the maximum number of
infections from 200 to 70 individuals, with contagion lasting in the network for 60 days.

Keywords: COVID-19; social network analysis (SNA); smart vaccination; smart lockdown; university
education; network-based strategy

1. Introduction

After the detection of COVID-19 in late 2019, the virus spread across the globe, with
over 624 million detected cases by October 2022 (https://news.google.com/COVID19/
map?hl=en-PK&mid=%2Fm%2F02j71&gl=PK&ceid=PK%3Aen, accessed on 14 February
2023). Due to COVID-19, the world has faced unprecedented health and economic chal-
lenges that have left the world at a halt. Recently, China and India have witnessed a
resurgence of COVID-19 cases that in some way jeopardized their struggle against the
pandemic. After the detection and spread of COVID-19, vaccines were developed at an
unprecedented speed to lower the virus’s mortality rate. The vaccines have shown excellent
results in immunogenicity and protection against this virus. The results also indicate that
they effectively reduce the virus’s transmission. The vaccines can also provide immunity
from severe diseases expected to last for around eight months to one year [1]. Many coun-
tries faced the issue of a limited supply of vaccines regarding their demand. New variants
of the COVID-19 virus, such as delta, omicron, and many others, arose based on mutations.
Despite being vaccinated, individuals were affected by the virus due to these variants.
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In the early stages of the pandemic, the world needed mass production of vaccines
to overcome the limited supply and meet the disastrous situation’s demands. Different
countries faced the problem of vaccine production due to a lack of resources, eventually
impacting their production capacity [2]. On the other hand, new variants of COVID-19
challenged the effectiveness of the so-called fully vaccinated individuals. In such a situation,
it could be essential to identify who should be vaccinated first to control the spread of
the virus. Different healthcare professionals proposed rules and regulations, as well as
organizational measures to prevent virus transmission [3].

With the prevalent spread of COVID-19 along with all the variants and the expectation
to have new variants, the demand for an all-time effective vaccine still exists today. In the
meantime, anti-vaccine activists have polarized millions of people in North America and
Europe, who do not follow the vaccination course because of being influenced by plenty
of fake news. Furthermore, recently, the resilience shown by the Chinese people towards
the complete lockdown because of the recent surge in the virus effectiveness demands
new ways to handle the case of the pandemic spread. In case of an emergence of any new
variant of COVID-19, the existing complete lockdown strategy enforced by many countries
might be challenged. The lockdown and mass-scale blocking of economic activities have
shaken several economies worldwide. The economic comeback of many countries is far
from the expectation in case of expected recession worldwide this year.

Among the affected in multiple factions of life, the educational institutions received
the most severe consequences of the lockdown strategy. The complete shutdown of the
universities and schools caused uncertain changes in the attitudes of the youth in isolation.
Educational institutes are considered key players in disease transmission with a substantial
public health impact. In the context of the pandemic, institutes around the globe tried to
find the best strategies to reorganize their activities to minimize the risk of contagion among
their students. Preventive measures were taken to prevent the faculty and staff during
the internal virus outbreak [4]. Going online at an educational institution became the only
option during the COVID-19 period, significantly impacting the global education system.

Most institutes started implementing virtual classes; however, due to the lack of
available facilities and relevant staff training, delivering online lectures was unsuccessful.
On the other hand, students could not receive their full attention and reflect their best
in online teaching. In such cases, institutes were forced to develop strategies to conduct
on-campus classes so that the lectures were delivered in a steady flow while limiting the
spread of the virus to the minimum. Consequently, the physical attendance of students
on campus on alternate days was the best solution to reduce student strength, thereby
avoiding the congestion of students on campus and controlling the spread of viruses. By
allowing students to attend classes on alternating days, we should be able to identify,
isolate or vaccinate individuals who can slow down the transmission rate of the virus.

Because of the unprecedented situation caused by the pandemic, several studies
have proposed different strategies to mitigate the adverse effects of the complete lock-
down at universities. A holistic approach recommends that institutions identify the
infected students early by speeding up the detection process, reducing the spread of
COVID-19 in respective groups [5]. A simulation-based study evaluated the effectiveness
of the spread of COVID-19 viruses by limiting human mobility. The study considered
group-to-group interactions instead of considering individuals as spreaders among the
groups [6]. Considering e-learning as an alternative to the physical learning environment
was left as the only option; however, improving group-based learning methodology is
proposed by [7] to reduce the spread faster. The COVID-19 era has passed. However,
few interventions have been made to identify smart methods for keeping the universities
running while reducing the risk of spread. A strategy was proposed to identify the criti-
cal nodes first to prioritize the vaccination process with the expectation of minimizing
the spread over the network [8]. This study is closest to our method, considering the
human interactions in the form of networks and then vaccinating the key figures, having
most of the spread risk accordingly. After an exhaustive literature search, it can be stated
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that social-network-analysis-based elimination of key university students has not been
studied well and demands detailed analysis.

According to the social network (SN) theories, human interaction tends to form
networks. These networks hold several attributes that can be called complex networks
technically. In most real-world networks, structural patterns exist that can be used to
model the rate of the spread of information, virus, technology adoption, and many more.
SN-based studies have revealed that not all nodes contribute equally toward spreading
information or viruses among the networks. However, there exists a few highly centric
nodes with a high tendency to spread information or viruses faster than the rest of the
nodes in the networks.

Based on the social network theories, it can be hypothesized that university students’
interactions may result in the emergence of complex network formation. These networks
will also possess a few highly centric nodes as compared to the average degree of each
node in the network. Individuals with higher centrality scores will have more tendency
to spread the virus; thus, they should be vaccinated first to slow the spread of COVID-19.
Otherwise, such individuals should be isolated from the rest of the community to break
down the respective information/virus propagation pathways. The following section
shares an outline of the structural properties of complex networks and the formal definition
of centralities in such networks.

Complex Networks and Key Nodes

Complex networks contain challenges, including identifying critical nodes, identifying
communities of interest, and modeling the network on incomplete information.

In recent years, due to wide-scale applications and great theoretical significance, the
identification of influential nodes in complex networks has attracted much attention, such as
in disease control [9–11], 10 transportation systems [12], network cascades [13], cooperative
framework [14], mobility networks [15], distribution of infections [16], and many more.

A random network model [17] is presented for the traditional epidemic spread models,
such as the susceptible–infectious–recovered (SIR) model [18]. A network of patients,
hospitals, and an inter-hospital-transfer-based model is presented where nodes represent
patients and hospitals [14].

Several network properties, including density, the clustering coefficient, and degree
centrality, are considered in the present study for a better representation of the student
interaction networks. Graph density of networks can be defined as the ratio of the number
of edges with reference to maximum probable edges [19]. Graph density describes the
connections and differences in the networks having the same type of relationships. The
clustering coefficient is another property of a network, and it is defined as a measure of the
number of nodes contributing to the formation of triads [20]. Degree centrality, closeness
centrality, and betweenness centrality can be used to define the key or influential nodes [21].
By using all the properties mentioned earlier, we can analyze the role of each node in a
network, and thereby apply strategies to restrict COVID-19 accordingly.

There exist several methods to predict the structure of complex networks from
data; the Watts–Strogatz model [22], Erdős–Rényi [23] model, and the sequential algo-
rithm model [24]. These models can be employed to formulate network models from
certain information.

Although several research articles have been published recently on educational insti-
tutes [3,25–29], to the best of our knowledge, none of them have taken into account the
communication structures of students within a class and their influence on the transmission
of this contagious virus. The socio-pattern dataset is based on school-based students’ inter-
action data in a specific setting. The number of students is limited to 118 [30]. Generalizing
the social interaction patterns found at the school level to university-level institutions is
not possible, until the studies are replicated and validated under the same settings.
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In the present study, we obtained data from more than 20 sections/classes of the
university. The university classes are composed of elective classes mainly, which are differ-
ent from the school structure (particularly in southeast Asia). Several network modeling
techniques are used to model the students’ interaction networks to observe the criticality of
several nodes. We had to approximate the network as we had incomplete interaction data.

In this work, the construction of an interaction network was a challenging task. With-
out using the sensors, we predicted the network from the questionnaire. The approximated
networks were validated from the trends found with likewise class data. In the first stage,
class networks were predicted, and then the inter-class relationships were predicted. This
attempt is closer to the local situation, which can be mapped in our local universities.
Therefore, this technique can be used in our local settings. In the presence of other studies,
none of the universities reported anything on using complex network methods for a smart
lockdown or anything similar.

This research provides insight into how communication within a class occurs and
visualizes the role of nodes having distinct network properties. It provides a comparative
analysis of different graph generation models and the role of key transmitter nodes in
institutional networks. This research focuses on the student–student interaction in educa-
tional institutes to control viral spread. This interaction is analyzed by using two types
of networks, i.e., the multivariate single-class networks of different classes. The solution
proposed in this research is to avoid the complete lockdown or complete online studies at
the universities/institutes by reducing the interaction significantly.

The contributions of this paper are as follows:

1. A novel smart method is proposed and applied to identify the interaction networks
among university-level students and identify critical nodes;

2. The effectiveness of network modeling techniques is presented for the student’s
interaction networks;

3. The study shows that removing a few critical nodes from our methods, i.e., the
students, will significantly drop the rate of the spread of a potential virus among
the entire network. Higher education institutions can use this technique to avoid a
complete lockdown in case of a pandemic in the future.

The rest of the paper is organized as follows. Section 2 highlights the research
methodology discussion, followed by the data collection process described in Section 3.
The network analysis is conducted in Section 4. The results and discussion of those results
are formulated in Sections 5 and 6, respectively. The SNA modeling approaches were
highlighted in the research methodology, along with a comparison of each. Furthermore,
the pragmatics of employing SNA techniques over the students’ interaction networks are
presented in detail under the context of a virus spread on established spread models.

2. Research Methodology

This paper addresses the gap in applying SNA for preventing internal outbreaks
within educational institutes, providing a methodology to support occupational health
and safety services in designing and selecting preventive measures to reduce the risk
of epidemics. Figure 1 presents the stages of the study, including surveying students,
modeling social networks, observing key attributes at the network level, applying the SIR
model, and the role of node removal over different types of networks.
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Figure 1. Research Methodology: this represents the flow of the study and presents the stages of
the study, including surveying students, modeling social networks, observing key attributes at the
network level, applying the SIR model, and the role of node removal over different types of networks.

3. Data Collection

Initially, students’ data are needed to simulate a network and visualize how class
communication occurs between the students. After creating a network, different social
network analysis techniques were applied to analyze the structure of the network and the
role of additional attributes. The foremost step is to collect data from university students,
which results in the development of social networks. A questionnaire was generated and
distributed among the undergraduate classes of the university. The following questions
were included in the survey.

1. How many friends do they have in the class?
2. How many people do they usually have discussions with for more than 10 min?
3. How many popular students are there in this class?
4. Are you a popular student in this class?

The first question is asked to connect to their respective nodes in the generated network.
Knowing their class friends, we could use this as a degree attribute in the network. The
second question signified the count of their strong and weak connections in the network.
The next question was asked to identify several highly centric nodes in the class that might
be key transmitters of the virus. The last questions told us whether they were the highly
centric-nodes of the class network or not.

The data were collected from different batches of students enrolled in various courses.
Their distribution is shown in Table 1.
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Table 1. The table shows the distribution of edges among the nodes based on the several used models.
Network properties are also presented in the table to observe the difference between the result of
each model. The Erdős–Rényi model has a higher density on average with a low clustering coefficient
concerning the two other models.

Students 353

Batches 4
Sections 35
Courses 53

Courses

This means students per course 35
Median student per course 7 (49.6)
Courses with 50+ students 13

Class

Mean students per class 12.1
Median students per class 11
Mean co-enrolled students 7.34
Median co-enrolled students 2 (17.2)
Class with 50+ students 15
Class with 20+ students 22

3.1. Social Network Generation

Through a survey, a large dataset was developed about the interaction pattern of
students. A threshold was set to a minimum of twenty (20) responses per class to model
the network from the data. The survey did not include the identity of any of the students
to maintain ethical standards.

3.2. Watts–Strogatz

The Watts–Strogatz model is employed on the given data to simulate a small-world
network [22]. By generating a network for each class individually, we can validate our data
by analyzing their social network attributes. All networks show the same pattern in their
network attribute values.

3.3. Erdős–Rényi

The second model was used to simulate the network is Erdős–Rényi. The model
creates a random network with mean degree of k = Np [23]. It simulates a network with
a low clustering coefficient. For creating a network using the Erdős–Rényi model, the
required parameters are N (number of edges) and P (probability of adding an edge between
nodes). The number of students is taken as the value for N for each class, while the value
of p is equal to 0.5.

The distribution of edges among nodes based on different models is depicted in the
Table 2, which also presents network properties to compare the results of each model. The
Erdős–Rényi model, compared to the other two models, has a higher density on average
but a lower clustering coefficient.

The proposed methodology is applied to the graphs that are generated through the
dataset collected from the questionnaire. The developed dataset is based on the responses
of 358 students. These students belong to 29 different class sections having enrolments in
53 other courses. The data are then transformed into various forms to generate networks
using different models. Each model creates a network of 19 different class sections with a
response of more than the threshold value, i.e., 20 responses minimum. Figures 2 and 3
represent the structure of the networks generated by the following network-generating
modeling techniques. Figure 4 presents the difference among the generated networks
based on the density attribute. Among the generated networks, Figure 5 represents the
difference on the basis of the clustering coefficients. This shows that the Watts model has



Sustainability 2023, 15, 5326 7 of 17

a higher clustering coefficients than the other two models, which refers to the nature of
networks closer to the real-world networks. An outline is presented in the following section
regarding the network-generating models.

Table 2. The table shows the distribution of edges among the nodes based on several models.
Network properties are also presented in the table to observe the difference between the result of
each model. The Erdős–Rényi model has a higher density on average with a low clustering coefficient
concerning the two other models.

Sequential
Algorithms

Erdős–Rényi
Algorithms

Watts–Strogatz
Algorithms

Nodes 1747 1747 1747
Edges 9449 49,963 10,453
Average Density 0.13 0.50 0.16
Standard Deviation of Density 0.06 0.01 0.1
Average Clustering Coefficient 0.25 0.10 0.52
Standard Deviation of Clustering Coefficient 0.094 0.03 0.03

Sustainability 2023, 15, x FOR PEER REVIEW  7  of  17 
 

Table 2. The table shows the distribution of edges among the nodes based on several models. Net‐

work properties are also presented in the table to observe the difference between the result of each 

model. The Erdős–Rényi model has a higher density on average with a low clustering coefficient 

concerning the two other models. 

 
Sequential   

Algorithms 

Erdős–Rényi   

Algorithms 

Watts–Strogatz   

Algorithms 

Nodes  1747  1747  1747 

Edges  9449  49,963  10,453 

Average Density  0.13  0.50  0.16 

Standard Deviation of Density  0.06  0.01  0.1 

Average Clustering Coefficient  0.25  0.10  0.52 

Standard Deviation of Clustering Coefficient  0.094  0.03  0.03 

The proposed methodology is applied to the graphs that are generated through the 

dataset collected from the questionnaire. The developed dataset is based on the responses 

of 358 students. These students belong to 29 different class sections having enrolments in 

53 other courses. The data are then transformed into various forms to generate networks 

using different models. Each model creates a network of 19 different class sections with a 

response of more than the threshold value, i.e., 20 responses minimum. Figures 2 and 3 

represent the structure of the networks generated by the following network‐generating 

modeling  techniques. Figure  4 presents  the difference  among  the generated networks 

based on the density attribute. Among the generated networks, Figure 5 represents the 

difference on the basis of the clustering coefficients. This shows that the Watts model has 

a higher clustering coefficients than the other two models, which refers to the nature of 

networks closer to the real‐world networks. An outline is presented in the following sec‐

tion regarding the network‐generating models.   

   

Figure 2. For a better understanding of  the modeled networks,  two generated networks are pre‐

sented: The Watts–Strogatz‐based model  (left) and  the Erdős–Rényi‐based model  (right)  for  the 

same class, BCS‐4F. Both network models are distinct in terms of centrality measure and clustering 

coefficient. The Erdős–Rényi model is dense with the absence of highly centric nodes, and the Watts 

models contain the highly centric nodes in the generated model. 

 
Figure 3. The network generated by the sequential method is different from Erdős–Rényi along with 

some similarities with the Watts model. Networks were generated using the sequential model for 

section BCS‐4F. 

Figure 2. For a better understanding of the modeled networks, two generated networks are presented:
The Watts–Strogatz-based model (left) and the Erdős–Rényi-based model (right) for the same class,
BCS-4F. Both network models are distinct in terms of centrality measure and clustering coefficient.
The Erdős–Rényi model is dense with the absence of highly centric nodes, and the Watts models
contain the highly centric nodes in the generated model.
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Figure 5. The clustering coefficient is a reliable measure to interpret the nature of the complex
real-world network. A comparison between clustering coefficients is presented based on the used
models, including sequential, Watts–Strogatz, Erdős–Rényi.

3.4. Sequential Model

To develop a real-world network, a sequential model is used to simulate the social
network of each class. This model uses the sum of degrees of each node in a network and
generates a maximum degree [24]. The algorithm for this model [24] is provided below

1. Start with an empty set E of edges. Let also d = (d1, . . . , dn) be an n-tuple of integers
and initialize it by d = d;

2. Choose two vertices, vi, vj ∈ V, with probability proportion didj(1 − didj) among all
pairs of i, j with i 6= j and (vi, vj) ∈ E. Add (vi, vj) to E and reduce each of d1, d1j by 1;

3. Repeat step (2) until no more edges can be added to E;
4. If |E| < 2m report failure and restart from step (1), otherwise output G = (V, E).

For this model, we used the number of friends provided in the survey as the degree
of each individual in the class. For our research, we called these individual classes intra-
class networks.

4. Network Analysis

The assessments of the generated networks are performed in two ways. First, the
overall network characteristics are assessed, most of which relate to the network’s cohesion.
Second, the role of each node in the network contributes to the overall cohesion of the
network; hence, the spread of the virus is analyzed. Generally, the network’s cohesion
metrics of students will provide a reference value to analyze how the different measures
taken on the node influenced the values. The main cohesion metrics that are evaluated are
as follows:
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The average degree represents the average ties per node, so a student is tied to how
many other students are in a class. For the reduction of the contagion risk, the lower the
rate value, the better.

Average Degree =
Total Edges
Total Nodes

Network Density is the ratio of observed edges to the number of possible edges
for a given network. Hence, it represents the number of ties; students are divided by
the maximum number of connections in the network. The lower this rate, the better for
containing the risk of the spread of contagion. The density of the network with total nodes
n with cardinality m can be defined by

D =
m

n(n− 1)/2

The Clustering Coefficient measures how connected a vertex’s neighbors are to one
another. So a high clustering coefficient means the students are tightly formed in a group.
The clustering coefficient of the network with nodes N, each having degree ki and Li number
of edges between ki neighbors of node i, can be represented as:

C =
1
N

N

∑
i=1

2Li
ki(ki − 1)

4.1. Susceptible–Infectious–Recovered (SIR)

Different mathematical methods are available to determine the impact of strong and
weak ties in spreading a pandemic. One of them is the susceptible–infectious–recovered
(SIR) model, which has been the choice of many researchers in studying the COVID-19
spread patterns [24]. This model calculates the theoretical number of infected people in
a population over some time. It works by making three different groups of a population
studied. The groups are susceptible, infectious, and recovered. Everyone in that population
can be in any of the abovementioned groups at a given time. Initially, all the individuals are
put in the susceptible compartment because they might contract the disease and become
infected. The individuals who are once infected progress toward the recovery group. This
recovery group contains individuals who are no longer a threat for spreading the disease
and can be either dead or recovered [25].

In this research, influential nodes are identified by different methods, and the SIR
model was applied after removing nodes from each technique. By using the SIR model
to the network formed after the removal of nodes, we can identify how we can restrict
the spread of the virus by taking these individuals out of the picture by either quarantine,
isolation, vaccination, or extra protective health and safety measures, and we did this by
mapping our data onto a network and finding out the effect of taking out selected data.

4.2. Identification of Potential Rapid Spreaders

Once the cohesion metrics are calculated for all networks of students for the baseline
scenario, a strategy was built to identify which nodes should be removed from the network.
By removing the nodes, we could analyze which nodes play a vital role in transmitting the
virus. For this purpose, we considered the following strategies to identify the influential
nodes in a network.

Degree centrality (DC) indicates whether the node is centric in a network. Generally,
nodes with high centrality also have high degrees [31]. The nodes having high centrality
can be considered the key spreaders, as they are the centric nodes and also have high
degrees, due to which they can transmit the virus across the network. This node works
as the joining link in the network. By removing these nodes, we could analyze how the
centrality node plays a role in spreading the virus. By eliminating the node using this
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strategy, we could observe the spread by analyzing the network’s cohesion metrics. The
DC of node i, is defined as Du et al. [32]

CD(i) = ∑N
j xij.

Betweenness centrality is a way of detecting the amount of influence a node has over
the flow of information in a graph [31]. It is often used to find nodes that bridge one part
of a graph to another. This parameter would help us analyze how nodes that serve as a
bridge play a role in transmitting the virus within the network. The BC of node i is defined
as Du et al. [32]

CB(i) = ∑N
j,k 6=i

gjk(i)
gjk

.

Closeness centrality (CC) is a way of detecting nodes that can spread information very
efficiently through a graph [31]. The closeness centrality of a node measures its average
farness (inverse distance) to all other nodes. Nodes with a high closeness score have the
shortest distances to all other nodes. The CC of node i is defined by Du et al. [32]

Cc(i) =

[
N

∑
j

dij

]−1

The PageRank (PR) algorithm [33] is a famous variant of eigenvector centrality and is
used to rank websites in the Google search engine and other commercial scenarios [33,34].
Like the eigenvector centrality, PageRank supposes that the importance of a webpage is
determined by both the quantity and the quality of the pages linked to it [35]. Initially, each
node obtains a one-unit PR value. Then, every node evenly distributes the PR value to its
neighbors along its outgoing links. Mathematically, the PR value of node vi at t step is [36]

PRi(t) = ∑n
j=1 aji

PRj(t− 1)
kout

j
.

Most countries are currently using a random removal strategy to vaccinate their
citizens. The same approach was used in our research to randomly select a node from
the class and then vaccinate it and observe how the selection of this node has affected the
overall network attributes, and hence, impacted the spread of the virus.

The influential nodes that can promote the most virus transmission are identified
using the above strategies. A threshold was set to 5 percent for each iteration. The given
threshold independently removes nodes identified by each strategy, and their cohesion
metrics are calculated. By comparing the impacts of each strategy on cohesion metrics on
the generated network, we can point out influential nodes identified by which strategy
diffuses the network more rapidly and slows the transmission rate of the virus.

5. Results

The proposed methodology is applied to the graphs that are generated through the
dataset collected from the questionnaire. The developed dataset is based on the responses
of 358 students. These students belong to 29 different class sections having enrolments in
53 other courses. The data are then transformed into various forms to generate networks
using different models. Each model creates a network of 19 different class sections with a
response of more than the threshold value, i.e., 20 responses minimum.

After the Erdős–Rényi, Watts–Strogatz, and sequential model networks were gen-
erated, the node removal process was performed. In this process, nodes are removed
using influential node identification strategies. Multiple iterations are performed in which
5 percent of nodes are removed using each strategy. After each iteration, network attributes
are calculated to compare their changes. Nodes are kept removed until 50 percent of nodes
are removed from each network and their attributes are calculated.
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5.1. Effects on Graph Density

Measuring the graphs’ density can help us identify sparse versus dense connections
among the students or the nodes. Density is computed over the generated graph of each
class section. Among all the strategies, only two of the class sections have minor differences;
otherwise, most of the class sections reflect the same results. The initial density of section
BCS-2C was calculated as A 0.33. In the first iteration, 5% of nodes were removed from the
network based on different centrality-based and random selections. The centrality-based
strategies and PageRank provided similar results on various iterations. After removing
nodes, the density of centrality-based removal graphs decreased to 0.27, while for the
random selection, the density was 0.31. The difference between each strategy was 0.04,
and centrality-based removal provided better results than random removal. After the
removal of 50% of nodes, the density of the centrality-based strategy decreased to 0.13,
with an average of 0.04 decrease per iteration, while the random nodes removal density
increased to 0.34. The same behavior can be observed in section BCS-6G. In the rest of the
class sections, centrality-based and PageRank removal provided better results, with density
decreasing in each iteration. In contrast, the random removal strategy’s effect on density
was very minute.

Figure 6 displays the density value after each iteration for the sequential model. It is
observed that the density decreases more rapidly in a centrality-based removal strategy con-
cerning each iteration. On the other hand, the density is not always decreased when nodes
are eliminated using the random technique; occasionally, it rises or stays the same. The
network’s density decreases when nodes are eliminated based on centrality and PageRank
measurements, and this tendency is seen across all 19 class sections. In comparison with
the random removal of nodes, the network density increases in most of the class sections
when nodes are gradually removed. Figure 5 shows that the density of the majority of class
sections declined by 50% in less than 20 iterations.
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Figure 6. Impact of node removal on density. It is shown in the figure that the removal of nodes
has a significant difference on several network attributes, including density, betweenness, average
centrality, closeness centrality, and PageRank centrality. The impact of node removal is observed over
the networks generated through the sequential method and presented results in comparison with
networks generated through a random model.

5.2. Effects on Clustering Coefficient

The clustering coefficient also showed a similar behavior on node removal in each
iteration. Networks in which nodes are removed using high centrality converge to the
optimum clustering coefficient, their value decreases without divergence. In comparison,
PageRank provided the second best results by converging to the optimum with a single
divergent. Betweenness and closeness did not converge to the optimum but provided
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similar results. Both provided the maximum clustering coefficient of 0.15, while high
centrality and PageRank gave the maximum clustering coefficient of 0.1. Randomly selected
nodes gave the worst result by diverging in most cases and gave a maximum clustering
coefficient of 0.6. In most of the class sections, the clustering coefficient increased or
remained the same. It converges to near optimum in only 4 out of 20 class sections.
This decrease in clustering coefficient value proves that the network’s connectedness is
decreasing, Figure 7. By selecting nodes on centrality measures, the network becomes
disconnected. Using these results, we can see how by selecting highly centric nodes, the
positivity rate of the virus can declined, and the transmission of the virus can be controlled.
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generated through the sequential method and random method. The trend shows that the removal of
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5.3. Effects on Average Path Length

By observing the average path length metric, we can identify how far a node is from
another node in a network. With this, we can find the transmission path of the virus.
The longer it takes for nodes to connect, the slower the transmission rate will be. All
strategies except random provided the same results in all of the instances. In just one
instance, betweenness centrality and closeness centrality provided better results with a
higher average path length than the centrality and PageRank results. Using a random
strategy, 90% of the instances did not show any change in their average path length from
the first iteration to the last, Figure 8.

5.4. Virus Transmission Using SIR

In this study, after node removal in each iteration, the SIR model was applied to a
network generated based on all strategies. By using the SIR model, we can identify which
influential node identification method best diffuses the technique to restrict the spread
of the virus. After identifying the influential nodes, these nodes were removed from the
network and the SIR model was utilized to analyze the transmission rate of viruses within
the network. After a 25% node removal from each strategy, for highly centric strategies, the
maximum infection reached 145 nodes having an average maximum infection between 60
to 100 individuals. The infection lasted 150 days, and most instances lasted between 25 and
50 days. The betweenness strategy observed the same behavior, but the maximum infection
lasted 90 days, with an average range between 30 and 60 days. Similarly, PageRank and
closeness strategy had a similar maximum infection rate, but maximum infection lasted 68
and 85 days, respectively, with an average ranging between 30 to 50 and 20 to 60 days.
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Figure 8. The impact of node removal on average path length is evaluated among the networks
generated through sequential and random methods. The trend shows that the removal of significant
nodes (on the two types of networks) has different results. The random-model-based networks have
little impact on the average path length after removing significant nodes.

The infection rate in networks generated due to random strategy had a maximum
infection of 158 individuals with an average range between 60 to 110 days. The infection
lasted in the network for 100 days, with an average between 25 to 60 days. This behavior
can be visualized in Figure 9.
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Figure 9. Virus transmission on the network using different strategies. The rate of the spread of the
virus is predicted after removing nodes through multiple criteria, including degree, betweenness,
random, PageRank, and closeness centrality. The results show that the removal of highly centric
nodes tends to reduce the spread of the virus over generated models. Betweenness-centrality-based
removal was found to be second best, closer to the closeness centrality measure.

From these results, we can observe that highly centric nodes have the fastest infection
spread, while the closeness, betweenness, and closeness have a comparatively slower
infection spread within the network. Places where there is no shortage of medical supplies
to treat the infection can tackle the spread rate and mitigate the diffusion rate of the virus.
The disadvantage of this strategy is that most individuals become infected in a short period
due to limited resource locality, so treating all individuals in a short period would not
be easy. Instead, treating 140 individuals in a year would be more feasible compared to
50 individuals in a day.
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The virus spread in-betweenness, closeness, and PageRank strategy gives an advantage
because the infection within the network spreads slowly. It takes longer to infect all
individuals and decreases the maximum number of infected individuals at a given time.
By identifying individuals using this strategy in locations where there is a lack of medical
resources to treat the infected, we can effectively target the resources to treat individuals.
We can easily manage to mitigate the transmission of the virus.

5.5. Analysis of Erdős–Rényi and Watts–Strogatz Networks

For the gathered data, random and small-world networks are generated for all class
sections. To analyze the effects of both strategies on these networks, similar to the sequential
model, the node removal process was performed, and all cohesion metrics were calculated.
A homogenous pattern similar to a sequential model was observed as density and clustering
coefficients decreased more rapidly in centric-based removal. In contrast, density in random
removal displayed mixed results that mainly remained at the same density value.

By selecting nodes based on the centrality measure, we can identify such nodes that
can be labeled as the key nodes of the network. These nodes play a vital role in the cohesion
of the network and can be the top transmitters of the virus. However, if we select a node
randomly, the probability of the key node being selected is very low.

In Figures 5–7, it can be visualized that removing the nodes having high centrality
reduces the impact on the cohesion metrics of the graph. In only a few cases of randomly
selected nodes, we can observe that the density is reduced; however, in most cases, it
increases or remains the same. While in all cases of highly centric node removal, the density
decreases, or in some instances, it remains the same. We can also observe a similar pattern
on average path length and clustering coefficient. The clustering coefficient of the graph
drops rapidly on highly centric node removal, while on the random node selection, it
does not give a constant change; instead, it can be observed that the clustering coefficient
increases and also decreases in a random selection of nodes.

In case individuals are selected based on centric value, we can observe a similar pattern
in the COVID-19 positivity rate and control the spread by selecting key individuals with
high centrality measures rather than randomly selecting individuals.

6. Discussion and Limitations

This study has demonstrated a strategy that can be used to deal with an emergency
state at educational institutions in COVID-19-affected cities. A detailed survey was con-
ducted at a university to identify the homogeneity among the network structure at inter-
and intra-class interactions. Initially, the data were collected in batches to generate networks
using different models like the Watts–Strogatz model [22], the Erdős–Rényi model [23], and
the sequential algorithm model [24]. The modeled networks represent the social interaction
networks of each class. The assessment of social networks is widely performed based on
multiple measures, including centrality, modularity, and resilience. The centrality measure
refers to the structural representation of the network regarding the presence of highly
centric nodes, which distinguishes a random network from a classical complex network.
The modularity represents the overall topological connectedness among the subnetworks
of the networks. A network’s resilience indicates a network’s ability to hold its properties
after removing certain nodes. In the present study, network centrality measures were com-
puted, including average degree, density, and clustering coefficient. Based on the found
interactions, the generated networks were then evaluated regarding resilience towards
rapidly spreading the virus.

The predicted social networks of students’ interaction are evaluated to compute
the resilience of these networks. The notion behind evaluating resilience is to identify
the networks’ structural sensitivity over removing fewer nodes. While considering the
predicted students’ network as complex networks, it is hypothesized that removing a few
‘selected’ nodes would have more impact on the networks than removing randomly picked
nodes. The node removal method was employed to evaluate the resilience of the networks.
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The nodes were removed from the network by using popular, influential node identification
strategies based on degree centrality, betweenness centrality, closeness centrality, PageRank,
and based on random removal. Considering each centrality measure, the top-scored nodes
were removed. The impact of the removal of prospective influential nodes in comparison
to the randomly selected nodes is first observed over the network properties, including
the average path length, density, and clustering coefficient of each network. To address the
core problem of restricting the potential spread of the virus over the network, we further
investigated the spread over the resultant networks. Susceptible–infectious–recovered
(SIR) model was used to evaluate, and then the SIR model was applied to analyze the
transmission of the contagions. Iteratively, all the generated networks were evaluated,
and it was found that highly centric node removal reduces the spread compared to the
randomly selected node removal. In the presence of complex network structures having
highly centric nodes, the virus among the neighbors tends to spread rapidly, and it reduces
the overall network diameter. That can be interpreted in the prevalence of complex network
attributes in student interaction networks.

The present study limited its scope to understanding the intra-class interaction patterns
that can be considered strong ties in the literature on social networks. However, one can
investigate the impact of the long ties while viewing the entire university as a single
network to model the spread of long-range connections, e.g., through members of sport
groups or drama societies. The interacting students may not be highly centric within the
class but can transmit the virus in communities at longer distances. Furthermore, the area
of complex networks has recently observed advances in mesoscopic centrality awareness
node significance. It refers to the idea that community structures may possess significant
information regarding highly centric individuals within the community, but do not receive
attention from centrality-score mining algorithms at the network level. This information
may open new avenues for scientists to examine the discussed problem differently.

These results will help to manage the classes during the serge of any possible COVID-
19 variant by isolating the influential nodes or prioritizing complete vaccination courses.
From the result, we can observe that the nodes selected for vaccination from centrality
measures decrease the density and other cohesion metrics compared to randomly selected
nodes. The spread of the virus can be reduced by simply choosing the top-network
contributors and isolating or immunizing them. The overall positive rate of COVID-19 can
be reduced, and its dissemination can be controlled by choosing and immunizing people
with high-centric values. By using such techniques, universities can avoid total lockdown,
or not achieve “complete lockdown,” they can continue their academic endeavors. The
schools have different social structures, particularly in South East Asia. Therefore, it has
been mentioned repeatedly that the results only apply to the universities unless applied
and evaluated at school-level students.

7. Conclusions

The global pandemic spread greatly affected social interactions independent of age,
location, and race. The educational institutions received the worst impact because of the
complete lockdown. The present study offered an alternative solution to complete lock-
down, particularly targeting higher education institutions in Southeast Asian countries.
The study identified the underlying structural interaction pattern among university stu-
dents evaluated through social network analysis techniques. The social network analysis
techniques focused on the centrality measures to identify key individuals among the pre-
dicted students’ networks. The interaction networks are analyzed in terms of the spread of
disease with the help of spread models, which showed that removing a few individuals
decreased the spread rate among the contagions. The results offer an opportunity for
institutes of higher education to continue their educational activities with the elimination
of a few students. The strategy can be considered a smart method to reduce the spread of
the disease while continuing educational activities without complete lockdowns.
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The present study can also benefit offices and other educational institutions by im-
plementing similar experiments. This strategy will allow a continuous availability of
professional services and educational activities, even during any potential pandemic in
the future.
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