
Citation: Sene, N. Solution Procedure

for Fractional Casson Fluid Model

Considered with Heat Generation

and Chemical Reaction. Sustainability

2023, 15, 5306. https://doi.org/

10.3390/su15065306

Academic Editors: Wael Al-Kouz,

Nimer Murshid, Hasan Mulki and

Fayed Mohamed

Received: 13 February 2023

Revised: 9 March 2023

Accepted: 13 March 2023

Published: 16 March 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Solution Procedure for Fractional Casson Fluid Model
Considered with Heat Generation and Chemical Reaction
Ndolane Sene

Section Mathematics and Statistics, Institut des Politiques Publiques, Cheikh Anta Diop University,
Dakar 5005, Senegal; ndolane.sene@ucad.edu.sn

Abstract: In this work, the objective is to get the exact analytical solution of a generalized Casson
fluid model with heat generation and chemical reaction described by the Caputo fractional operator,
using the approach that the Laplace transform method includes the Laplace transform of the Caputo
derivative. After the exact solution, it will be studied the impact of the order of the fractional
derivative and the most essential parameters included in the modeling like the Prandtl number,
the thermal Grashof number, the mass Grashof number, the Schmidt number, the heat generation
parameter, and the chemical reaction parameter. The physical points of view of the influence will
be discussed and analyzed. The findings of the paper will be illustrated by several graphics. The
development in industry and engineering science, it makes important to study the flow behavior of
non-Newtonian fluids. The domains of applications of the flow behavior of non-Newtonian fluids
are diverse such as geophysics, biorheology, and chemical and petroleum industries.

Keywords: fractional casson fluid; grashof numbers; schmidt numbers; Prandtl number; Caputo
fractional derivative

1. Introduction

Fractional calculus has gained much interest these last decade and continues to be
used and discussed in the literature. It is recognized that fractional calculus has many
applications in modeling biological models [1,2], in modeling physical phenomena [3,4],
in mathematical physics madelings [5,6] like modeling fluid and nanofluid models, the
fundamental mathematics [7] and many others applications, see the following papers
to complete the studies [8,9]. Fractional calculus is also discussed in the literature and
some researchers asked questions about the validities of the fractional operators and the
applications of fractional calculus in real-life problems. Note that, it has been found many
types of fractional derivatives in Fractional calculus, there are that the Caputo and the
Riemann-Liouville derivative [10,11]. They were the first fractional operators discovered in
the literature on fractional calculus. The first type of derivative was the Riemann-Liouville
derivative but its inconvenience was that at first the derivative of the constant function is
not zero, secondly, the initial conditions for each problem should be in integral forms which
are not realistic. And then to solve these problems the Caputo derivative [10,11] has been
proposed and answers the previously listed inconveniences. Recently since 2015, other
news forms of fractional operators without singular kernels have been proposed in the
literature. It has been discovered that the Caputo-Fabriozio derivative [8] and the Mittag-
Leffler fractional operator [7] named in the literature by the Atangana-Baleanu derivative.

This paper will be destined to model fluid under the Caputo derivative. In physics,
due to its excellent properties, it will be used this derivative in the present investigations.
The novelties of the present investigations can be summarized in the following sentences.
The Tzou algorithm to propose the numerical solutions of the considered Casson fluid
model were used in the present investigations. The second point in the investigations is
the use of the Caputo derivative, which will permit us to see the influence of the order of
the derivative on the dynamics of the fluid, the influence generated by the order of the
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Caputo derivative will be explained in physical viewpoints. The last point of the new
information will be the analysis of the influence of the parameters of the model on the
dynamics of the considered fluid model type according to the variation of the order of the
fractional operator.

The literature on the modeling fluid and nanofluid is vast, but in this paper was
assigned the works which are found interesting for the investigations. In fractional calculus
many of them use the Caputo derivative, there also exist works that used the new fractional
derivatives, and here they have been recalled. In [12], the reference works in a fluid model
with fractional order derivative, the subject of the investigation was to give a method
to obtain the analytical solution via the Laplace transform. In [13], they proposed the
model with Mittag-Leffler derivative and model with Caputo-Fabrizio derive applied to the
second-grade fluids models. In this investigation, the authors try to propose a comparative
study between the two fractional fluid models. They also used Laplace transform to get
the solutions of the fluid models. In [14], the authors proposed work on the influence of
magnetic field on the double convection problem of viscous fluid over an exponentially
moving vertical plate, the proposed model has been described by the Caputo time-fractional
derivative. In [9], the authors have proposed some semi-analytical solutions using the
semi-analytical method for the fractional fluid model. In [15], the authors investigate the
works related to the subject tilted as MHD Casson Fluid Flow Over an Oscillating Plate
with Thermal Radiation described by the fractional operator known as the most used and
named the Caputo fractional derivative. In [16], the authors used the Atangana-Baleanu
and the Caputo Fabrizio derivatives to model the convective flow of a generalized Casson
fluid, the authors have proposed the Laplace transform method and give a comparative
study between the models presented in this paper. In [17], the authors have used the
Caputo derivative in modeling the free convection flow of Brinkman-type fluid by using
the Laplace transform method to get the analytical solutions, the authors also explained
the influence of some parameters used in the model and give their physical interpretations
as well. In [18], in the same direction the authors have exploited in this paper via the
Laplace transform the analytical solution of the second-grade fluid with Newtonian heating
and have used the Caputo fractional derivative operator to do the investigations. In [19],
the authors combined the Fourier transform and the Laplace transform for proposing the
analytical solutions of a class of fluid models. In [20], the authors have used also the
Laplace transform method to propose the analytical solutions and depict the figures of
the dynamics of the solutions associated with the convection flow of an incompressible
viscous fluid under the Newtonian heating and mass diffusion represented by the Caputo
derivative. The authors also have analyzed the influence of the order of the fractional
operator in the obtained dynamics and have explained the behaviors from physical views
points. In [21], the authors have considered a second-grade fluid model and used the
Caputo derivative in the modelings, using the standard method known as the application
of the Laplace transform including the Laplace transform of the fractional operator to
get the behavior of the considered model, the influence of the order of the fractional
operator and the parameter used in the considered model in this paper have been analyzed
and explained physically. For more informative recent literature on the subject of MHD
Casson fluid flow [22], on unsteady MHD Casson fluid flow through a parallel plate with
hall current [23], the conducting Casson fluid flow past a stretching cylinder [24], and
others [25].

The aims of the present investigation consist to determine the exact analytical solution
for a generalized Casson fluid model with heat generation and chemical reaction described
by the Caputo fractional derivative. The main information related to the approach used is
the utilization of the Laplace transform. The secondary results associated with the present
work are the studies of the influence of the order of the Caputo derivative, the Prandtl
number, the thermal Grashof number, the mass Grashof number, the Schmidt number, the
heat generation parameter, and the chemical reaction parameter, it has been tried to explain
the cause of these influences in physical views points. The motivation for using the Casson
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fluid model is that it is to illustrate the utilization of the Laplace transforms for getting the
solution in case of a differential equation described by a fractional diffusion equation with
perturbations. Note that the Casson fluid model and Navier-Stokes equations are in the
same classes of fractional differential equations because all of them, the fractional diffusion
equations are utilized to describe the diffusion processes.

2. Preliminaries

Modeling with fractional operators has attracted many researchers and many fractional
operators have been proposed in the literature. In the present paper, it has been recalled
some fractional operators necessary for the investigations in modeling fluid models. It
will be proposed the Riemann-Liouville integral, the Caputo derivative, and the Laplace
transform of the associated Caputo derivative. Some necessary functions as the Mittag-
Leffler functions and associated functions will be recalled as well to complete this section.
The beginning of this part will be a review of the fractional operators with the Riemann-
Liouville integral which will play an important role in the investigations, they notably will
be used to determine the analytical solutions to the considered problem. The following
definitions have been recalled.

Definition 1 ([10,11]). Let that the function h : [0,+∞[−→ R. And then the Liouville-Riemann
integral of the function h is represented in the literature by the following description that

Iαh(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds, (1)

with the time verifying the condition that t > 0, α ∈ (0, 1) is the order of the fractional integral,
and the Γ(. . . ) denotes the Gamma Euler function well known in the literature of mathematics.

The second operator which will be recalled in this section concerns the Caputo operator,
due to the memory effect discussed in the literature, this derivative will be used to model
the fluid in this investigation. The definition is recalled in the next lines.

Definition 2 ([10,11]). Let that the function h : [0,+∞[−→ R. And then the Liouville-Riemann
integral of the function h is represented in the literature by the following description that

(Dα
c h)(t) =

1
Γ(1− α)

∫ t

0
(t− s)−αh′(s)ds, (2)

with the time verifying the condition that t > 0, α ∈ (0, 1) is the order of the fractional integral,
and the Γ(. . . ) denotes the Gamma Euler function well known in the literature of mathematics.

The Laplace transform is used in fluid modeling. The Laplace transform will be
applied in the differential equation of the fluid model. In many other types of differential
equations, the Laplace transform is used and its inverse. In this part, the Laplace transform
of the Caputo derivative has been considered. The transformation [10,11] is as follows

L{(Dα
c f )(t)} = sαL{ f (t)} − sα−1 f (0). (3)

The Mittag-Leffler function is utilized in many domains to express the solutions of dif-
ferential equations. This function also received many attractions and many generalized
forms have been proposed. There exist in the literature many versions of the Mittag-Leffler
function and generalization, the present form version is used

Eα,β(z) =
∞

∑
n=0

zn

Γ(αn + β)
, (4)
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where the parameters satisfies the conditions that α > 0, β ∈ R and the variable t is into
the set C. The Gaussian error function and the exponential function are obtained when the
parameters satisfy the condition that α = β = 1. The inverse of the Laplace transform is
very important in this present paper and to this end, the Tzou algorithm is represented by
the following form

h(x, t) =
e4.7

t

[
1
2

h̄(x,
4.7
t
) + Re

{
N

∑
k=1

(−1)k h̄(x,
4.7 + kπi

t
)

}]
. (5)

where Re(. . . ) represents the so-called real part of the complex number, i is the imagi-
nary unit, N is a natural number, and h̄ is the Laplace transform any continuous function
h : [0,+∞[−→ R. The detail on this formula can be found in the literature, for example in [26].

3. Fractional Modeling

In the present modeling, a Casson fluid model with heat and mass transfer over an
infinite vertical flat plate is under consideration. As in the paper in the literature, a flow
along the x-direction and the y-axis normal to the plate are considered. At initial, the fluid
and plate are at rest with uniform temperature and concentration denoted respectively
by T∞ and C∞ are considered. Note that at t = 0+, it is supposed that the plate starts
motion in its plane with constant velocity represented by U. Furthermore the temperature
and concentration of the considered Casson fluid to be maintained at constant as Tw and
Cw. As reported in the literature, for the present Casson model the constructive equations
can be obtained after the application of the usual Boussinesq’s approximation, see in [27],
and then the model for the free convection flow of Casson fluid along with heat and mass
transfer is described by the following differential equations with Caputo derivative and
dimensionless variables

Dα
t u =

(
1 +

1
β

)
∂2u
∂x2 + Grv + Gmw, (6)

Dα
t v =

1
Pr

∂2v
∂x2 + ηv, (7)

Dα
t w =

1
Sc

∂2w
∂x2 − Kw. (8)

The dimensionless initial and boundary conditions considered for the velocity u, the tem-
perature v, and the concentration w in the investigation are described in the following forms

u(x, 0) = v(x, 0) = w(x, 0) = 0, (9)

u(0, t) = 0, v(0, t) = w(0, t) = t. (10)

The Prandtl number Pr, the thermal Grashof number Gr, the mass Grashof number Gm, the
Schmidt number Sc, the heat generation parameter η, and the chemical reaction parameter
K are represented respectively as the following descriptions, see in [27]

Pr =
µCp

k
, Gr =

νgβT(Tw − T∞)

U3 , (11)

η =
νQ0

U2ρCp
, K =

νk1

U2 , (12)

Sc =
ν

d
, Gm =

γgν(Cw − C∞)

U3 . (13)

For simplifications of the read of the present investigation, the nomenclature of the parame-
ters used in the previous modeling is summarized in the following Tables 1 and 2.
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Table 1. First Nomenclature Table.

Parameters Descriptions

ρ Density

Tw Constant temperature

T∞ Ambient fluid Temperature

βT Thermal expansion coefficient

Cw Constant concentration level at the plate

C∞ Ambient fluid concentration

ν Kinematic viscosity

µ Dynamic viscosity of the fluid

k Thermal conductivity

β Material parameter of Casson fluid

γ Coefficient of concentration

Table 2. Second Nomenclature Table.

Parameters Descriptions

k1 Chemical reaction parameter

ρ Density of the fluid

Cp Specific heat capacity of fluids

Q0 Heat generation term

d Mass diffusivity

Gm Mass Grashof number

Gr Thermal Grashof number

Pr Prandtl number

Sc Schmidt number

g Acceleration due to gravity

K The chemical reaction parameter

η The heat generation parameter

The interest of the present paper is the initial and boundary conditions for the velocity,
the temperature, and the concentration represented in Equations (9) and (10) which are not
similar to the initial condition represented in the papers in the literature in this field. In this
paper, it will be observed that the initial and boundary conditions have a significant impact
on the behavior the dynamics of the Casson fluid model. In other words, the fluid model
is sensitive to the changes in the initial and boundary conditions. Another importance of
the present model is the use of the Caputo derivative which introduce the memory in the
model. The importance of the fractional operator in modeling real-world problems can be
found in the literature. The initial and boundaries conditions are motivated by the fact for
the velocity at the initial condition, in real problems, there is no fluid, and at a certain time,
for a notably long time, the fluid is used, and then it lost the velocity and thus here also, it
is zero in the conditions. For the temperature and the concentration, it is natural, to begin
with, certain values for the temperature and the concentration because at the beginning
of the diffusion processes the fluid has a concentration and fluid temperature. Important
notices are that the variable time “t” is obtained after the application of the Boussinesq
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approximation. The constructive equation obtained in Equations (6)–(8) are obtained after
the application of Boussinesq approximation and considering that

v =
C− C∞

Cw − C∞
,

w =
T − T∞

Tw − T∞
.

4. Solutions Procedures for the Constructive Equations

In this section, it is provided that the solutions to the constructive equations consid-
ered in models (6)–(8). The determination of the solutions of the fractional differential
Equations (6)–(8) by considering Equation (8) under the initial and boundary conditions
defined in Equations (9) and (10), has been started. Firstly, it is applied that the Laplace
transform to both sides of Equation (8), and it got the following representations

sαw̄− sα−1w(0) =
1
Sc

∂2w̄
∂x2 − Kw̄,

sαw̄ =
1
Sc

∂2w̄
∂x2 − Kw̄, (14)

∂2w̄
∂x2 − Scsαw̄− ScKw̄ = 0.

Solving the second order differential equation represented by the Equation (14) under the
Laplace initial condition defined by w(0, s) = 1/s2, it is got the following form

w̄(x, s) =
exp

[
−x
√

Sc(sα + K)
]

s2 . (15)

The algorithm to get the inverse of the Laplace transform has been proposed by Tzou
and Puri, 1997, thus the first author’s name is associated with the method. The process is
described in the following. For the inverse of the Laplace transform of Equation (15), using
the Tzou formula, it is obtained in the following form

w(x, t) =
e4.7

t

[
1
2

w̄(x,
4.7
t
) + Re

{
N

∑
k=1

(−1)kw̄(x,
4.7 + kπi

t
)

}]
. (16)

where Re(. . . ) represents the so-called real part of the complex number, i is the imaginary
unit, and N is a natural number. The solutions of some special cases can be determined
using the Laplace transform method, the first case is when the order of the Caputo operator
converges to 1. It is obtained by the following Laplace transform

sw̄− w(0) =
1
Sc

∂2w̄
∂x2 − Kw̄,

sw̄ =
1
Sc

∂2w̄
∂x2 − Kw̄, (17)

∂2w̄
∂x2 − Scsw̄− ScKw̄ = 0.

Using the Laplace transform of the initial condition as previously represented, it is got a
solution of the second-order differential Equation (17) described by the following

w̄(x, s) =
exp

[
−x
√

Sc(s + K)
]

s2 . (18)
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Here again, the Tzou algorithm can be applied to get the solution of the considered case (17),
it has been obtained in the following form

w(x, t) =
e4.7

t

[
1
2

w̄(x,
4.7
t
) + Re

{
N

∑
k=1

(−1)kw̄(x,
4.7 + kπi

t
)

}]
. (19)

The second method is using the classical procedure of inverting the Laplace transform
of Equation (18) for getting an exact solution, it has been obtained that the following
representation for the solution

w(x, t) =
1
2

[(
t− xSc

2
√

K

)
exp

(
−x
√

KSc
)

erc f

(
x
√

Sc
2
√

t
−
√

Kt

)]

+
1
2

[(
t +

xSc
2
√

K

)
exp

(
x
√

KSc
)

erc f

(
x
√

Sc
2
√

t
+
√

Kt

)]
. (20)

Note that for the case where the chemical reaction parameter is null, it has been obtained
that a solution for the second differential equation represented in (17), it has been obtained
that the following form

w̄(x, s) =
exp

[
−x
√

Scsα
]

s2 . (21)

The same procedure previously adopted in the Laplace transform inverse can be used. As
previously mentioned, it has been used that the Tzou procedure and it has been obtained
that the following form for the solution, that

w(x, t) =
e4.7

t

[
1
2

w̄(x,
4.7
t
) + Re

{
N

∑
k=1

(−1)kw̄(x,
4.7 + kπi

t
)

}]
. (22)

Note that when the order of the Caputo operator converges to 1 in Equation (8) with K = 0,
it has been recovered that the classical solution mentioned in the literature, it has been
obtained that

w(x, t) =
(

x2Sc
2

+ t
)

er f c

(
x
√

Sc
2
√

t

)
− x
√

Sct
2
√

π
exp

(
− x2Sc

4t

)
. (23)

It has been continued that now with the fractional differential equation described by
the second equation of the considered model, it is mean that Equation (7) under the initial
and boundary conditions mentioned in Equations (9) and (10). After the application of the
Laplace transform including the Laplace transform of the Caputo derivative, it has been
obtained that the following transformations

sαv̄− sα−1v(0) =
1

Pr
∂2v̄
∂x2 + ηv̄,

sαv̄ =
1

Pr
∂2v̄
∂x2 + ηv̄, (24)

∂2v̄
∂x2 − Prsαv̄ + Prηv̄ = 0.

The resolution of the second order differential equation represented in Equation (24) with
the Laplace transform of the initial condition given by v(0, s) = 1/s2, it has been obtained
that the following equation

v̄(x, s) =
exp

[
−x
√

Pr(sα − η)
]

s2 . (25)
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It has been repeated that the same procedure of inversion using the Tzou method and then
it has been obtained that the following form of a solution, that is

v(x, t) =
e4.7

t

[
1
2

v̄(x,
4.7
t
) + Re

{
N

∑
k=1

(−1)k v̄(x,
4.7 + kπi

t
)

}]
. (26)

The special case can be obtained when the order of the Caputo derivative converges to 1.
it has been obtained that the following procedure of solution by applying the Laplace
transform on Equation (7)

sv̄− v(0) =
1

Pr
∂2v̄
∂x2 + ηv̄,

sv̄ =
1

Pr
∂2v̄
∂x2 + ηv̄, (27)

∂2v̄
∂x2 − Prsv̄ + Prηv̄ = 0.

The solution of the second order differential equation represented by Equation (27) is
represented as the following form

w̄(x, s) =
exp

[
−x
√

Pr(s− η)
]

s2 . (28)

For inverting Equation (28), it is used that the Tzou procedure, it has been obtained that as
a solution the form defined by the form

v(x, t) =
e4.7

t

[
1
2

w̄(x,
4.7
t
) + Re

{
N

∑
k=1

(−1)kw̄(x,
4.7 + kπi

t
)

}]
. (29)

It is finished by determining the solution of the first Equation (6) of the model by using
the Tzou procedure. At first, it is applied the Laplace transform to both sides of Equation (6)
and with the initial and boundary condition, and then it has been obtained that

sαū− sα−1ū(0) = κ
∂2ū
∂x2 + Grv̄ + Gmw̄,

sαū = κ
∂2ū
∂x2 + Grv̄ + Gmw̄, (30)

∂2ū
∂x2 −

sα

κ
ū = −Gr

κ
v̄− Gm

κ
w̄.

where κ = 1 + 1
β . Replacing the results found in Equation (15) and the form got in

Equation (25), it is to solve the following differential equation

∂2ū
∂x2 −

sα

κ
ū = −Gr

κ

exp
[
−x
√

Pr(sα − η)
]

s2 − Gm
κ

exp
[
−x
√

Sc(sα + K)
]

s2 . (31)

The resolution of this equation will be decomposed into two parts, it is begun by solving
the differential equation described in the form

∂2ū
∂x2 −

sα

κ
ū = −Gr

κ

exp
[
−x
√

Pr(sα − η)
]

s2 . (32)
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Solving the previous differential Equation (32) using the classical procedure to solve the
second-order differential equation, and considering the Laplace transform of the initial and
boundary conditions, it has been obtained that the following form

ū1(x, s) = A exp
[
−x
√

sα/κ
]
+ C exp

[
−x
√

Pr(sα − η)

]
(33)

Considering the Laplace transform of the boundary condition, it has been obtained that
A = −C where it has been obtained that

C = − Gr
s2[sα(Prκ − 1)− Prηκ]

. (34)

It is continued with the resolution of the second differential equation described in the
following equation, it has been obtained that

∂2ū
∂x2 −

sα

κ
ū = −Gm

κ

exp
[
−x
√

Sc(sα + K)
]

s2 . (35)

Adopting the previous procedure of resolution, the form of the solution taking into account
the boundary condition gives the form

ū2(x, s) = B exp
[
−x
√

sα/κ
]
+ D exp

[
−x
√

Sc(sα + K)
]

(36)

Considering the Laplace transform of the boundaries conditions, it has been obtained that
B = −D where it has been obtained that

D = − Gm
s2[sα(Scκ − 1) + ScKκ]

. (37)

The solution of the differential Equation (31) can be summarized by summing
Equations (33) and (36) and then it has been obtained that the following form

ū(x, s) = ū1(x, s) + ū2(x, s) (38)

The analytical solution of Equation (6) uses the Tzou algorithm utilized for the inversion of
the Laplace transform of Equation (38), and then it has been obtained that the form

u(x, t) =
e4.7

t

[
1
2

ū(x,
4.7
t
) + Re

{
N

∑
k=1

(−1)kū(x,
4.7 + kπi

t
)

}]
. (39)

5. Results and Interpretation

This section, it is given the graphics of the dynamics of the solutions considering the
Caputo fractional derivative in the model (6)–(8). As mentioned in the previous section,
it will be analyzed the influence of the parameters of the model utilized in the modeling
will give the physical interpretations. The testing values are selected from the recent
investigations in the literature, some of the values can be found in [12], and some of them
in reference [27]. The motivation for using these values is to observe the behaviors of the
solutions in this paper and to compare them with the behaviors observed in the literature,
it does not notice a difference.

This part begins with the graphics of the concentration distribution represented in
Equation (8) and it is used the analytical solution described in Equation (16) to give the
curves obtained with Matlab. It is fixed that respectively Sc = 6.5; Sc = 9.5; Sc = 12.5;
Sc = 15.5; and Sc = 18.5; and it is considered different values of the order of the fractional
operator. In all the graphics K = 0.04 and t = 5. it has been obtained that the following
graphical representations Figures 1a,b and 2a,b.
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Figure 1. Concentration distribution for α = 0.9 (a). Concentration distribution for α = 0.95 (b).
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Figure 2. Concentration distribution for α = 0.98 (a). Concentration distribution for α = 1 (b).

In these Figures 1a,b and 2a,b, it has been illustrated the impact of the variation of
the Schmidt number. in the present case, its increase according to the variation of the
order of the fractional order does not change the behaviors. That is the increase of the
Schmidt number implies a decrease in the concentration distribution, this behavior has
a physical interpretation. This behavior is because the increase in the Schmidt number
enhances the diffusivity, which in turn generates a reduction of the concentration of the
considered fluid model. In the second analysis, it is fixed the Schmidt number to Sc = 6.5,
it is considered different orders of the Caputo derivative and by increasing the values of the
Thermal conductivity K. It has been obtained that the following graphical representations
Figures 3a,b and 4a,b.

In the previous Figures 3a,b and 4a,b, it is noticed that increasing the values of Thermal
conductivity K generates according to the variation of the values of the fractional operator
a decrease in the profile of the concentration. This behavior is due to the fall of the
diffusivity when the Thermal conductivity K increases. Finally, it is concluded that the
Thermal conductivity K and the Schmidt number Sc influence the value of the diffusivity
of the concentration. It is finished by focusing on the influence of the order of the Caputo
derivative in the dynamics of the fluid model considered in this paper. Let that Sc = 6.5,
Sc = 9.5, Sc = 12.5 and Sc = 15.5, the thermal conductivity K = 0.04, it is considered that
the order of the fractional operator increases into the interval (0, 1). It has been obtained
that the following Figures 5a,b and 6a,b.

By the previous Figures 5a,b and 6a,b, it is noticed that after a certain time, it is
noticed that the increase in the order of the Caputo derivative influence the diffusivity,
making an increase in the diffusivity and then generating an increase in the value of
the concentration distribution. It is concluded that the order of the fractional operator
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influences the diffusivity. In other words, the memory effect affects the diffusivity of the
considered concentration distribution.
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Figure 3. Concentration distribution for α = 0.9 for different K (a). Concentration distribution for
α = 0.95 for different K (b).
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Figure 4. Concentration distribution for α = 0.98 for different K (a). Concentration distribution for
α = 1 for different K (b).
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Figure 5. Concentration distribution for Sc = 6.5 (a). Concentration distribution for Sc = 9.5 (b).
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Figure 6. Concentration distribution for Sc = 12.5 (a). Concentration distribution for Sc = 15.5 (b).

Let’s analyze the influence of the parameters of the model and the order of the fractional
operator in the dynamics of the temperature distribution of the considered fluid. It is begun
by analyzing the influence of the Prandtl number Pr in the dynamics to arrive at the end it is
given the information in the following Figures 7a,b and 8a,b represented by using η = 0.1.

It is observed that the same behavior as in the influence of the Schmidt number, it is
noticed that the increase in the values of the Prandtl number causes the decrease of the
temperature which is explained by the fall of the diffusivity in the temperature distribution.
It is continued with the influence of the parameter η and Pr = 6.5. It has been obtained the
following Figures 9a,b and 10a,b for illustrative examples.
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Figure 7. Temperature distribution for α = 0.3 (a). Temperature distribution for α = 0.5 (b).

It is remarked that the increase of the value of the η generates an increase in the values
of the temperature distribution, and the second remark is the influence of the order of
the fractional derivative does not changes. In other words for every considered order of
the Caputo derivative, the concentration distribution increase versus the increase of the
parameter η. It is noticed that the parameter η has the same influence as the order of
the operator, and then it concludes that the η influence the diffusivity of the temperature
distribution too, increasing its values and generating an increase in the temperature.

It is to finish this paper with the graphical representations of the velocity distribution,
it is also to analyze in detail the influence of the parameter used in the modeling of the
considered dynamics. It is started with the order of the fractional operator, it is to explain
how the order influences the dynamics of the velocity. It is considered that Pr = 26,
Gr = 12, Sc = 20, η = 0.4, β = 1.8 and then it has been obtained that the following
graphics Figures 11a,b and 12a,b.
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Figure 8. Temperature distribution for α = 0.7 (a). Temperature distribution for α = 0.9 (b).
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Figure 9. Temperature distribution for α = 0.3 for different η (a). Temperature distribution for α = 0.5
for different η (b).
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Figure 10. Temperature distribution for α = 0.7 for different η (a). Temperature distribution for
α = 0.9 for different η (b).

It is observed that the increase in the order of the fractional operator caused an increase
in the velocity distribution. We notice the same increase in behavior when the Mass Grahof
number Gm increases. These behaviors are generated by the fact that the increase of
buoyancy forces is generated by the increase of the Mass Grahof number and in turn, it
causes the increase of the velocity as observed in the previous figures. At the start of the
new section, it is fixed the following values Pr = 26, Gm = 12, Sc = 20, η = 0.4, β = 1.8, it
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is now considered taking different values of the Thermal Grashof number Gr, it has been
obtained that the following Figures 13a,b and 14a,b for illustrative examples.
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Figure 11. Velocity distribution for Gm = 10 (a). Velocity distribution for Gm = 12 (b).
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Figure 12. Velocity distribution for Gm = 14 (a). Velocity distribution for Gm = 16 (b).

The behavior noticed with the Mass Grahof number Gm causing an increase of the
velocity is noticed with the Thermal Grahof number Gr. Thus the Thermal Grahof number
also impacts the buoyancy force. Due to the buoyancy forces, note that the increase of
the Mass Grahof number Gm and the increase of the Thermal Grahof number directly
cause the increase of the temperature and the concentration. It can be noticed by the
constructive equations of the velocity, the temperature, and the concentration influence the
equation satisfied by the velocity, and then their increase causes the increase of the velocity.
It is continued by influencing the diffusivity of the temperature and the concentration,
in other words, it is given that the graphics with different values of the Prandtl number
Pr and the Schmidt number Sc. It is fixed the following values Gr = 10, Gm = 12,
Sc = 20, η = 0.4, β = 1.8. It has been obtained that the following illustrative examples
Figures 15a,b and 16a,b.

It is noticed that the increase in the Prandtl number Pr reduces the diffusivity of the
temperature which reduces the velocity and then it is observed the confirmation in the
different Figures 15a,b and 16a,b, it is noticed that the velocity decrease as well as with the
increase of the Prandtl number Pr. It is focused now on the Schmidt number Sc, it has been
got that the following graphics Figures 17a,b and 18a,b.
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Figure 13. Velocity distribution for Gr = 10 (a). Velocity distribution for Gr = 13 (b).
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Figure 14. Velocity distribution for Gr = 16 (a). Velocity distribution for Gr = 19 (b).
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Figure 15. Velocity distribution for Pr = 15 (a). Velocity distribution for Pr = 18 (b).
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Figure 16. Velocity distribution for Pr = 21 (a). Velocity distribution for Pr = 24 (b).
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Figure 17. Velocity distribution for Sc = 17 (a). Velocity distribution for Sc = 21 (b).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

5

10

15

20

25

30

=0.65

=0.75

=0.85

=0.95

=1.0

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

5

10

15

20

25

=0.65

=0.75

=0.85

=0.95

=1.0

(b)

Figure 18. Velocity distribution for Sc = 25 (a). Velocity distribution for Sc = 30 (b).

It is noticed that the increase of the Schmidt number Sc impacts the velocity by
reducing its values, it is because the Schmidt number Sc reduces the diffusivity of the
concentration which in turn reduces the velocity because the concentration influence as
well the constructive equations of the velocity. It is now focused on the impact on the
velocity when it is considered different values for the Casson fluid parameter, it is fixed
that Pr = 24, Gr = 10, Gm = 12, Sc = 20, η = 0.4. It has been obtained that the following
graphics Figures 19a,b and 20a,b.
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Figure 19. Velocity distribution for β = 0.5 (a). Velocity distribution for β = 1.0 (b).
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Figure 20. Velocity distribution for β = 1.5 (a). Velocity distribution for β = 2.0 (b).

It is noticed in this section remarking that the increase in the values of the Casson
parameter increases the values of the velocity, the simple explanation is that increasing the
Casson fluid causes directly the reduction of the boundary layer thickness which generates
the increase of the velocity according to the increase of the order of the fractional operator,
as well.

Before closing this investigation, it is important to compare the present results with
some results in the literature, on the same subject. As previously mentioned this paper
provides a new method for getting an analytical solution, thus the testing values used for
the graphics came from the papers [12,27]. as it can be observed in these papers using a
different method of inversion to get their analytical solution, we observe the behaviors for
the velocity, the temperature distribution and the concentration are in good agreements
with the present investigations.

6. Conclusions

In this paper, it is used the Tzou algorithm to determine the values of the numerical
inverse of the Laplace transforms. For findings, the fluid model constructive equations
are constituted by fractional diffusion equations all with reaction terms that make the
calculations complex, and for the alternative to get the analytical solutions it is proposed
the Tzou algorithm to get solutions. The influence of the parameters of the model like the
Prandtl number and Schmidt number Sc reduces the diffusivity and causes a decrease in
the values of the concentration, temperature, and velocity. It is also focussed on the impact
of the Grahof numbers which impact the buoyancy forces and cause an increase in the
velocity distributions. It is also focussed on the influence of the Casson fluid parameter
which impacts the boundary layer thickness and causes an increase in the velocity, too. The
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memory effect plays an acceleration effect in the present paper as can be observed by the
arrows in the present paper. The future direction of investigation can interest the use of
the non-singular fractional operator, and focus on the behavior of the algorithm used in
the present paper when the Caputo operator is replaced by the fractional operator as the
Caputo-Fabrizio derivative or the Atangana-Baleanu derivative.
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