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Abstract: This study examines the effects of short-term exposure to PM10 and O3 on all-cause,
cardiorespiratory, and cerebrovascular mortality in the urban area of Thessaloniki, Greece. An
analysis was performed on the vulnerable subgroup (the elderly population). The primary effect
estimates employed were the relative risks for every 10 µg/m3 increase in air pollutant concentrations.
Strong associations between PM10 and O3 levels on mortality were reported, with the elderly people
becoming frailer. An increase of 10 µgr/m3 in PM10 concentration resulted in a 2.3% (95% CI:
0.8–3.8) and 2% (95% CI: 0.1–4.5) increase in total and cardiorespiratory mortality, respectively.
O3 concentrations showed even stronger associations for all-cause (3.9%, 95% CI: 2.5–5.3) and
cardiorespiratory deaths (5.3%, 95% CI: 3.1–7.7) with 10 µgr/m3 increases; no statistically significant
associations were found for cerebrovascular causes, while both pollutants presented stronger impacts
on health between day 0 and 3. Concerning the elderly, the total mortality rose by 3.2% (95% CI: 1.5–5)
due to PM10 concentrations and by 4.4% (95% CI: 2.9–6) due to O3 concentrations. In total, 242 (170)
all-cause deaths were annually attributed to the PM10 (O3) level in Thessaloniki. In the efforts towards
achieving a sustainable environment for humanity, health benefits resulting from two air pollution
abatement scenarios (a 20% reduction in PM10 levels and full compliance to the European Union
PM10 limits) were quantified. The analysis led to a respective decrease in total excess mortality
by 0.4% and 1.8%, respectively. This outcome stresses the necessity of appropriate civil protection
actions and provides valuable scientific knowledge to national and regional administrations in order
to develop proper health and air quality plans.

Keywords: air pollution; PM10; ozone; cardiorespiratory mortality; cerebrovascular mortality; elderly;
Thessaloniki; Greece

1. Introduction

In recent years, poor air quality, both ambient and indoor, has become a pressing
issue, with more frequent and intense episodes of high pollution levels being prevalent in
cities across the globe. Currently, it is considered the biggest environmental risk to human
health and the second-greatest environmental concern among Europeans, second only to
climate change [1].

According to the WHO [2], 3 million deaths were solely attributable to outdoor air
pollution globally in 2012, an estimation which Fuller et al. [3] has raised to 4.5 million,
particularly for ambient particulate matter (4.14 million) and ambient ozone (0.37 million).
This not only impacts mortality but morbidity as well. The most compelling evidence
regarding the health consequences of air pollution relates to cardiovascular and respiratory
ailments; nevertheless, studies exploring other health impacts are also increasing [4,5].
Older adults are more susceptible to the negative health impacts of air pollution due
to their decreased aability to adapt to stressors on their physiological, metabolic, and
compensatory processes, as well as their higher likelihood of having cardiovascular and
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respiratory diseases [6,7]. Elderly mortality has been found to be particularly affected by
PM10 and O3, with higher excess risks than other age groups [8–11].

PM10 and O3 are considered to represent a major part of the problem [12]. Ozone
exposure has significantly increased worldwide, leading to a 46% increase in ozone-
attributable mortality from 2000 to 2019 [13]. PM10 and O3 are linked to a rise in all-cause,
cardiovascular, and respiratory mortalities [11,14–18]. The WHO has also emphasized
PM2.5 [19] as they are found to be associated with the premature mortality of several
age groups [15,20,21]. In 2020, approximately 238,000 premature deaths in the European
population were caused by exposure to PM10 concentrations above the WHO’s 2021 guide-
line level of 45 µgr/m3 [22]. Additionally, the European Environment Agency attributed
16,800 premature deaths to acute ozone exposure in 2019 [23]. Despite EU and national
policies, the pollutant levels in many areas exceed the recommended guidelines (European
Council Directive 2008/50/EC), and although significant improvements are evident, the
impacts of serious air pollution in Europe still persist. Approximately 11% and 12% of the
EU urban population is exposed to PM10 and O3 concentrations above EU standards, a
percentage that rises to 71% and 95%, respectively, when taking into account the WHO
guidelines of 2021 [24].

Threshold violations take place at several locations throughout Europe [25]. However,
the problem appears to be more pronounced in Southern and Eastern Europe [26], especially
with respect to the PM and ozone concentrations in Greece, Spain, and Italy [27–29]. These
areas are characterized as climate change hotspots; thus, the collective impacts of climate
change and air pollution variables should be taken into consideration [30] under the specific
topographical and meteorological conditions of each region [31]. With respect to the latter
air pollutant, the ground-level ozone concentrations in Southern Mediterranean countries
are often alarmingly high and are comparable to the highest levels of places that are located
in the most contaminated parts of Central Europe [32].

When focusing on Greece, the country has been found to be in violation of the three
most commonly exceeded EU air quality standards for PM10, O3, and NO2, according to [33].
Using 2019 data, it was estimated that 75 deaths per 100,000 population in Greece could
be attributed to air pollution, where the deaths were primarily caused by ischemic heart
disease, stroke, and respiratory infections [4]; this corresponds to 1,101 attributable DALYS
(Disability-adjusted life years) per 100,000 citizens [34], or 104,000 YLLs (Years of life lost)
for the entire Greek population [35]. As expected, the two largest cities of the country suffer
the most from the acute air quality problems because of the dense population and build-up
of air pollutants caused by the topography and adverse meteorological conditions, e.g.,
the urban heat island effect [36]. The EU air quality standards are significantly surpassed
by the PM10 concentrations observed in Athens and Thessaloniki [37], and the YLLs are
primarily affected by PM10 exposure as well as O3 to a lesser extent [38].

Thessaloniki in particular is one of the most polluted cities in Europe, especially with
respect to the PM level [39] but also with respect to the O3, VOCs, and noise pollution
levels [40]. O3 limit values are mostly exceeded during the summer months, while winter
is the most favorable season for PM10 violations [32]. Nevertheless, Thessaloniki’s major air
quality problem consists of PM10 concentration levels. As a result, in December 2020, the
European Commission decided to take legal action against Greece by referring the country
to the European Court of Justice for the substandard PM10 air quality of Thessaloniki [41].

To address the issue, effective and enduring air pollution mitigation plans must be
identified and put into action [42,43]. Such measures and policies to combat particulate air
pollution were tested in a recent study [44], which resulted in a more than 20% reduction
in the PM10 concentrations in Thessaloniki, Greece. Moreover, it is necessary to assess the
health benefits of the abatement measures by quantifying the impact of air pollution on
human health.

However, majority of the literature focuses almost entirely on Athens (e.g., [38,45,46]);
only recently has a study by [47] discovered that brief exposure to PM2.5 and PM10 in
Thessaloniki is connected to an amplified risk of all-cause and cardiovascular mortality.
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In addition to the above, there is a significant lack of studies specifically examining the
suitability of mitigation measures in terms of health benefits for the area of Thessaloniki.

In this study, we utilized advanced statistical tools to investigate the associations
between short-term exposure to PM10 and O3 and daily all-cause (natural, non-accidental),
cardiorespiratory, and cerebrovascular mortality from 2006 to 2016 in the urban area
of Thessaloniki. We also examined the effect of air pollution on the elderly (all-causes,
65+ years) as it is crucial to understand the specified response of frail subgroups to
environmental stressors.

Most importantly, to assist air quality planning, we estimated for the first time the
impact of the modification of PM10 levels on Thessaloniki’s population mortality under
two air pollution abatement scenarios: (1) full compliance to EU levels, thus eliminating
the exceedances of PM10 daily values; and (2) a 20% horizontal reduction in the PM10
concentration in order to assist air quality planning. These scenarios were based on the
most cost-efficient measures identified by the recent study of [44] to combat PM10 pollution
in the urban area of Thessaloniki.

Thus, the main goal of the current work was to present evidence on the air pollution–
mortality relationship in the Thessaloniki urban area, accounting for the cause-specific
deaths, lag structure, elderly mortality, and potential mitigation measures that can be of
utmost importance for environmental stakeholders and local policy makers.

2. Materials and Methods
2.1. Study Area

This research centered on the urban area of Thessaloniki (Figure 1), which includes
seven municipalities (Thessaloniki, Kordelio-Evosmos, Pavlos Melas, Kalamaria, Neapoli-
Sikies, Ampelokipoi-Menemeni, Pylaia). Thessaloniki, the second largest city in Greece and
an important economic and industrial center in the Balkans, is situated in the northern part
of the country and has a population of about 1,000,000, representing 20% of the country’s
industrial activity [32]. The city is located on the northeastern coast of the Thermaikos
Gulf and is close to Hortiatis mountain (1200 m) on the eastern side. The western side
is characterized by a large flat area, which houses the industrial zone of Sindos. The
city’s location to the south means that it is greatly affected by the nearby sea, which
contributes to its Mediterranean climate [48]. Vehicular traffic, residential heating [44],
biomass burning [49], and industrial emissions [32] are the main origins of air pollutants
in Thessaloniki [50], resulting in the deteriorated air quality in the area, especially during
years of economic crisis [51]. Dust storms originating from North Africa also significantly
contribute to particle pollution in the area [47,52,53].

2.2. Air Quality and Mortality Data

The hourly values of PM10 and O3 concentrations (µgr/m3) for the period of 2006–2016
were acquired by 5 air quality monitoring stations that cover the urban area of Thessaloniki
and are operated by the Ministry of the Environment and Energy. The highest PM10 value
and maximum 8-hour moving average for O3 over each station were used in the present
study, which represented the daily concentrations for the datasets.

The Hellenic Statistical Authority (ELSTAT) provided the daily mortality data, con-
sisting of age and cause of death, for all municipalities in the urban region of Thessaloniki
(2006–2016); the causes of death were categorized into all-cause (natural, non-accidental),
cardiorespiratory, and cerebrovascular according to the ICD-10. Emphasis was placed on
studying the overall mortality rate among the elderly, specifically for deaths that occurred
among individuals aged 65 years and older.
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2.3. Data Analysis

We applied a DLNM to our data in order to show the impact of air pollution on
mortality with delay in time, in accordance to previous studies [18,54,55]. DLNMs are
a powerful modeling tool that are capable of simultaneously capturing both non-linear
exposure–response dependencies and delayed effects. Unlike conventional distributed lag
models, which struggle with non-linear relationships, the DLNM methodology utilizes
a ‘cross-basis’, a two-dimensional function space that depicts the connection between
predictor variables and the lag dimension of their occurrence. This approach offers a
comprehensive portrayal of the exposure–response relationship’s time course, making
it possible to estimate the overall effect with precision, even in the presence of delayed
contributions. In order to describe the air pollution–mortality associations in the present
study, we applied generalized non-linear models with a quasi-Poisson family based on the
quasi Akaike information criterion. The DLNM package [56] in R programming language
(R version 4.1.1; R Foundation for Statistical Computing) was used to implement the family
of applied models.

There are differences in the literature regarding the lag structure used to best de-
scribe the association between air pollution and mortality; in some cases, short lags of
0–1 days [21,57–61] or up to 3 days [15] are deemed to be the most appropriate, while
in other studies, a week is chosen [62–64]. There are also examples in the literature sug-
gesting that the adverse response to pollution persists for more than a month [65–67]. To
this end, we investigated the correlation between short-term exposure to PM10 and O3
and specific causes of death at various lags in order to decide the effect estimates for the
present analysis.

In order to investigate the efficiency of mitigation measures in terms of health ben-
efits, we not only applied the DLNM analysis for the original PM10 dataset, but also for
2 mitigation scenarios:

(1) Complete compliance with the EU limits (daily PM10 value < 50 µgr/m3),
(2) 20% reduction in the PM10 concentration.

Table 1 shows the percentage of days in which the daily EU limits were exceeded
during the range of 2006–2016. The EU air quality guidelines were surpassed on 1894 (47%)
days of the 4018-day study period for PM10 (>50 µg/m3) and on 1124 (28%) days for O3
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(>120 µg/m3). Under the 20% PM10 reduction scenario, only 27% of days surpassed EU
limits, resulting in 1119 exceedances.

Table 1. Mean annual values of pollutants (µgr/m3) during the study period and during PM10

reduction scenario 2. Numbers in parentheses denote the percentage of annual violations of the EU
daily limits.

Year
O3 Mean Annual
Value (%—Days
Over 120 µgr/m3)

PM10 Mean Annual
Value (%—Days
Over 50 µgr/m3)

PM10 20% Reduction
Scenario (%—Days

Over 50 µgr/m3)

2006 85.8 (6.5%) 58.9 (53%) 47.1 (34%)
2007 95.3 (18%) 70.5 (79%) 56.4 (53%)
2008 118.7 (48%) 66.9 (76%) 53.5 (51%)
2009 112.7 (45%) 56.1 (57%) 44.9 (28%)
2010 99.1 (26%) 51.2 (39%) 41 (20%)
2011 114 (50%) 56.8 (45%) 45.5 (25%)
2012 115.2 (47%) 52.6 (43%) 42 (24%)
2013 101 (30%) 48.7 (35%) 39 (21%)
2014 82.2 (2.5%) 46.6 (30%) 37.3 (14%)
2015 99.5 (25%) 49.7 (33%) 39.8 (17%)
2016 92.3 (9%) 47 (31%) 37.6 (15%)

3. Results
3.1. Mortality Data Analysis

During the study period, we analyzed 73,990 natural deaths that occurred from all
causes, 28,945 from cardiorespiratory diseases, and 10,007 from cerebrovascular causes.
The number of deaths among the elderly population amounted to 62,482. The descriptive
statistics of the pollution and daily mortality for the reference period are provided in Table 2.

Table 2. Statistics of the daily mortality (number of deaths, top) and pollution (µgr/m3, bottom).

Daily Mortality

Mean St. dev.

All-cause 18.4 4.7
Cardiorespiratory 7.2 2.9
Cerebrovascular 2.5 1.6

Elderly 15.5 4.4

PM10

Median Mean Min 25th perc. 75th perc. Max

49 55 11.6 38 65 256.6

O3

Median Mean Min 25th perc. 75th perc. Max

99 101 14 76 123 232

The data on deaths show that cardiorespiratory mortality accounts for over 40% of all
natural deaths, making it a crucial group to examine in terms of susceptibility; the authors
of [68] have reported that stroke and ischemic heart disease are the primary causes of
mortality in Greece, which supports the claim. Elderly mortality reflects 84% of all-cause
mortality for all ages, as Greece has one of the highest percentages of individuals aged over
65 years in Europe [69]. The daily mean and median pollutant concentrations are generally
higher in Thessaloniki than those reported in other metropolitan areas [15,70] and resemble
the values of large cities with important air quality issues [62,63,71]. Similar values of mean
daily mortality and summary statistics of PM10 in Thessaloniki are also verified in [72].
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3.2. Lag Effect Analysis

Table 3 displays the correlation between short-term exposure to PM10 and O3 and
specific causes of death at various lags. The lag structure here yields a prolonged effect of
PM10 and O3 on all mortalities from the current day to day 6 in Thessaloniki. As a result,
the relative risk per 10 µg/m3 increase in PM10 and O3 concentrations over lag 0–6 is used
hereinafter as the effect estimates.

Table 3. Associations between cause-specific mortality and short-term exposure to PM10 and O3 at
various time intervals (0–1, 1–6, and 0–6 days). Results are presented as a percentage increase of risk
(RR%) and as 95% confidence intervals (95% CI) per 10 µg/m3.

PM10

Mortality RR%, Lag 0–1 RR%, Lag 1–6 RR%, Lag 0–6

All-cause 2.2 (0.6–3.3) 0.8 (−1.9–3.2) 2.3 (0.8–3.8)
Cardiorespiratory 1.9 (0.5–3.6) 0.7 (−2–3.5) 2 (0.1–4.5)
Cerebrovascular 1.5 (−1.8–5.2) 1.1 (−1.9–4.9) 1.8 (−2–6.1)

Elderly 2.7 (1–3.5) 1.5 (−0.4–2.9) 3.2 (1.5–5)

O3

Mortality RR%, Lag 0–1 RR%, Lag 1–6 RR%, Lag 0–6

All-cause 1.9 (0.9–3) 2.7 (0.2–5.3) 3.9 (2.5–5.3)
Cardiorespiratory 2.8 (1.06–4.5) 3.5 (−0.54–4) 5.3 (3.1–7.7)
Cerebrovascular −0.7 (−3.5–2.23) 2.8 (−4–9.9) 3 (−7–11)

Elderly 2.2 (1.55–3.4) 3 (0–5.86) 4.4 (2.9–6)

The estimated associations between the PM10, O3, and mortality in Thessaloniki are
illustrated in Figure 2. The diagrams show the relationship among the air pollutants
concentrations, excess risk, and lag values as a three-dimensional surface. The associations
of PM10, all-cause, and cardiorespiratory mortalities are non-linear. An immediate increase
in deaths is evident for exposures to high levels of pollutants at lag days 0–2; however,
for cardiorespiratory causes, a secondary maximum is present at lag 6. Concerning O3, a
lag of up to 3 days depicts a large increase in excess risk, which results in higher values
of cardiorespiratory deaths. At days 5–6, a smaller increase is evident for both causes of
death, indicating a prolonged impact.

The dose–response relationships for the natural and cardiorespiratory mortalities for
PM10 and O3 (not shown here) were found to be linear, as noted in previous studies [46,47,73].
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Figure 2. Overall effect of PM10 on all-cause mortality (a) and cardiorespiratory mortality (b); overall
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2006–2016.

3.3. Total Effect Analysis

We present the evidence of the positive association of natural all-cause and cardiores-
piratory deaths with PM10 and O3 in Table 3.

A 10 unit increase in PM10 is associated with a 2.3% (95% CI: 0.8–3.8) increase in natural
all-cause mortality and a 2% (95% CI: 0.1–4.5) increase in cardiorespiratory mortality; O3
causes a 3.9% (95% CI: 2.5–5.3) increase in all-cause mortality and a 5.4% (95% CI: 3.1–7.7)
increase in cardiorespiratory mortality. Neither of the two air pollutants are associated with
cerebrovascular outcomes, as confirmed in similar studies [62,70].

Due to the significant differentiation of the lag selection, there is no uniformed way
to compare our results with other studies. PM10 levels are generally associated with
increases of 0.8–4.3% in all-cause mortality, 0.12–6.6% in cardiovascular mortality, and
0.47–4.2% in respiratory mortality, respectively [21,57–61,65,66,74]; the RR estimations in
the present study are found to be within the range demonstrated above. Thessaloniki
is underrepresented in similar publications; ref. [47] linked exposure to PM10 to a 1.75%
increase in cardiovascular deaths (lag 0–6) but found no link to respiratory mortality.

Many studies [15,16,46,60,62,63,75] have reported positive associations between O3
and increases in all-cause (0.33–2%), cardiovascular (0.45–2.5%), and respiratory mortalities
(0.6–2.8%.), and correlations are evident in the present analysis. In particular, ref. [62]
indicated higher impacts of O3 on respiratory and cardiac mortality than on all-cause
mortality, which is also confirmed by our results. However, the excess risks estimated here
are higher compared with those obtained in other studies.

It is worth noticing, however, that the estimates from single-city studies tend to be
higher compared with pooled multi-city results as the model specification utilized in the
studies focused on individual cities could result in an overestimation of the outcome [59,76].

When comparing the effect of O3 and PM10 on different causes of mortality, we
document more severe impacts from the former than the latter. This consistent behavior is
evident in similar studies covering various areas worldwide and various time spans, e.g.,
South Africa (2006–2015) [75], Russia (2003–2005) [77], and China [78].

Susceptible population subgroups are often separately considered in order to account
for the specified behavior of these groups to environmental stressors. In the present work,
we developed a dedicated DLNM model for assessing the impact of PM10 and O3 on
the elderly.

Elderly mortality is affected by both PM10 and ozone; a 3.2% RR increase (95% CI:
1.5–5) per 10 unit increase of PM10 and a 4.4% raise (95% CI: 2.9–6) per 10 unit increase of
O3 are evident. Similar results are verified in [11,15,62,77]. The air pollution in Thessaloniki
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has been found to demonstrate a more intense impact on elderly mortality than on the
all-cause mortality for all ages, as found in [77].

Additionally, 5% of elderly deaths are attributed to PM10 and 2.6% are attributed to
O3 (a total of 4750 deaths out of 62,482). This corresponds to 284 and 146 annual deaths
due to PM10 and O3, respectively, for people aged 65 years and older.

Table 4 presents the attributable mortality and attributable fraction of mortality based
on the PM10–mortality and O3–mortality relationships. We estimate that 3.6% of total mor-
talities and 3.2% of cardiorespiratory causes were attributed to PM10, while the respective
percentages for O3 are 2.3% and 3%. These estimates correspond to 242 annual premature
all-cause mortalities from PM10 and 170 from O3, respectively. On an annual basis, 82 car-
diorespiratory deaths are related to elevated PM10 levels, and another 80 cardiorespiratory
deaths are related to O3 levels. Overall, in Thessaloniki, 412 deaths are recorded annually
due to PM10 and O3 pollution, out of which 162 are attributed to cardiorespiratory causes.

Table 4. Attributable mortality (AM, number of deaths) and attributable mortality fraction (AF, %)
for different causes of mortality.

PM10 O3

Mortality AM AF Average
Annual Deaths AM AF Average

Annual Deaths

All-cause 2664 3.6 242 1865 2.3 170
Cardiorespiratory 914 3.2 82 876 3 80

Elderly 3146 5 284 1604 2.6 146

Our results are similar to previous studies, where the attributable fraction of natu-
ral mortality fluctuated between 1.35% and 6% and cardiovascular mortality fluctuated
between 1.63% and 6.89% due to PM10 pollution [71,74]. Ref. [60] reported that 1.96% of
cardiovascular mortality is attributed to O3 and 6.6% to PM10, while [79] found that 3.2%
of cardiovascular and 6.2% of respiratory mortality is attributed to O3. According to [80],
2% of cardiovascular mortality, 5.6% of respiratory, and 1.5% of total mortality is attributed
to O3 levels.

3.4. Suitability of Studied Scenarios in Terms of Health Benefits

We present an examination of the suitability of two mitigation measures in terms of
their health benefits for the urban area of Thessaloniki. The first case study (scenario 1)
corresponds to a full abidance to EU limits concerning daily PM10 values (<50 µgr/m3),
whereas the second case study (scenario 2) horizontally reduces PM10 concentrations by
20%, a case that is more realistically applicable as shown in [44].

Table 5 displays the RR, AF, and AM for scenarios 1 and 2, respectively. Reducing PM10
concentrations by 20% would result in 2368 deaths and a 3.2% AF value with respect to total
mortality. Full compliance with EU environmental legislation leads to a 1.8% attributable
all-cause mortality, which corresponds to 710 deaths. When comparing the scenarios, the
RR increases from 1.7% (scenario 1) to 2.1% (scenario 2). It is obvious that radical measures
positively affect human health to a larger degree than moderate ones.

Table 5. RR (%), AM (number of deaths), and AF (%) of total mortality for different PM10 scenarios.

Scenarios RR AM AF

1—Full EU
compliance 1.7 710 1.8

2—20% reduction 2.1 2368 3.2

When comparing the results of Tables 3 and 4, the mortality burden decreases when
mitigation measures are implemented. The AF is reduced by 0.4% and 1.8% compared with
the original PM10 dataset for the 20% reduction and full compliance scenarios, respectively.
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Thessaloniki would count 27 less deaths on an annual basis if the PM10 concentration were
reduced by 20% and 177 less annual deaths if under full EU compliance.

Thus, even with the more moderate abatement scenario, the health impact of PM10
concentration on the local population could be significantly lower.

4. Discussion

In the international literature, the interaction between human health and air quality
is well-defined [81] with respect to morbidity and mortality [82]. The adverse impact of
deteriorated air quality has also raised international concern with respect to the natural
environment [30] and economy [83]. Cities in the Mediterranean area are frequently
experiencing elevated levels of air pollution [29] under the additional pressure of the
climate crisis. Thessaloniki, Greece, is particularly impaired with respect to the air pollution,
especially due to PM10 and O3 levels [28,39]. Although some recent studies have quantified
the impact of temperature on mortality [84,85], there is insufficient evidence concerning air
quality, thus pointing a gap in relevant knowledge.

The present study aimed to address this vacancy by presenting an evaluation of the
short-term changes in daily mortality counts as associated with the concentrations of
daily air pollutants from 2006 to 2016 in the urban area of Thessaloniki. We analyzed the
associations between the daily maximum values of PM10 and O3 levels and cause-specific
mortality, and we investigated this effect on the susceptible elderly subgroup with the
use of DLNMs. To quantify the mortality burden, we used relative risk changes for every
10 µg/m3 increase in air pollution concentrations as the primary effect estimates [86,87].
After conducting a specific analysis using a lag structure, which has great heterogeneity
among literature, we determined thes most suitable lag for this work to be defined at
days 0–6, similar to other studies [62,64].

Based on our results, a 10 unit increase (µgr/m3) in PM10 concentration is associated
with a 2.3% (95% CI: 0.8–3.8) increase in natural all-cause mortality and 2% (95% CI: 0.1–4.5)
increase in cardiorespiratory mortality. O3 causes increases of 3.9% (95% CI: 2.5–5.3) in
all-cause mortality and increases of 5.4% (95% CI: 3.1–7.7) in cardiorespiratory mortality.
Meanwhile, neither of the two air pollutants is associated with cerebrovascular outcomes.
Considering the assigned attributable fraction of mortality for the various investigated
causes, it is noted that overall, 3.6% of total mortalities are attributable to PM10 and 2.3%
are attributable to O3. PM10 levels are responsible for 3.2% of cardiorespiratory mortality
(3% for O3). These estimations correspond to 242 annual premature all-cause casualties due
to PM10 and 170 due to O3.

The direct comparison of our findings with similar studies in this field is particularly
challenging due to the differentiation of the lag selection and underrepresentation of the
specific area. Nevertheless, both RR estimates and attributable mortalities are in agreement
with comparable research [15,61,62,66,74]. It is worth noting that [47] linked exposure to
PM10 to a 1.75% increase in cardiovascular deaths (lag 0–6) but found no link to respiratory
mortality in the Thessaloniki area.

Elderly mortality is also affected by the 10 unit increase in the air pollutants to an even
larger degree than the mortality accounting for all ages, which was also confirmed in [77].
We report that excess risks increase by 4.4% and 3.2% due to O3 and PM10, respectively,
while 284 annual deaths are attributed to PM10 and 146 are attributed to O3, corresponding
to a 5% and 2.6% attributable mortality, respectively. Studies on elderly people, such
as [11,15], report sismilar results.

The need to abide by EU environmental legislation is crucial for reducing the negative
impact of air pollutants on public health [44]; thus, high-resolution, location-specific infor-
mation on the association of human morbidity and mortality to environmental stressors is
of utter importance. Appropriate mitigation actions should be taken to decrease the popula-
tion’s exposure to pollutants and to further explore how location-specific factors contribute
to this vulnerability. An innovative aspect of this work is the quantification of the health
benefits as a result of two PM10 abatement scenarios, which was conducted for the first
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time in the study’s urban area. The first case study (scenario 1—full abidance to EU limits,
50 µgr/m3) yields 177 less annual deaths, and the second case study (scenario 2—horizontal
reduction by 20%) results in 27 less casualties compared with the baseline.

The above findings of the present study clearly indicate that local residents are at
risk from the current levels of PM10 and ozone. O3 is found to have a more severe impact
than PM10, and the elderly are particularly frail to poor air quality in the area. If the two
proposed mitigation measures were implemented, the attributed mortality fraction would
decrease by 0.4% and 1.8%, respectively.

It should be noted that this study is limited by the fact that no confounding effects
(e.g., temperature and humidity) were considered during the modeling process.

Future work should be conducted to include more air pollutants such as PM2.5 and to
further study the synergy between thermal stress and air pollution on health so as to draw
decisive conclusions. Examining the impact of climate change and projected air quality
conditions on mortality patterns could be a crucial next step.

5. Conclusions

While there is considerable literature on the impact of air pollution on human health,
the case of Thessaloniki, Greece, is considerably under-studied, despite it being a city with
significantly deteriorated air quality. By exploring the link between short-term exposure
to air pollutants and cause-specific mortality, the current study offers proof of a positive
association between daily mortality from natural and cardiorespiratory causes and exposure
to PM10 and O3. However, no connections were identified between these pollutants and
cerebrovascular mortality. The study indicates that the elderly population is particularly
vulnerable to the effects of PM10 and O3. To further contribute to policy-making-associated
knowledge for a sustainable environment for humans, the study quantified the health
benefits that resulted from two air pollution abatement scenarios and found a significant
reduction in total excess mortality. The respective results demonstrate significant decreases
in air quality-related mortality, highlighting the importance of appropriate civil protection
actions based on scientific expertise tailored to local populations for the development of
proper health and air quality plans.
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Abbreviations

AF Attributable fraction
AM Attributable mortality
DLNM Distributed lag non-linear model
ICD-10 International Classification of Diseases, 10th Revision
O3 Ozone
PM10 Particulate matter with aerodynamic diameter less than or equal to 10 µm
RR Relative risk
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