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Abstract: University building energy consumption is an important proportion of the total energy
consumption of society. In order to work out the problem of poor practicability of the existing
benchmarking management method of campus building energy consumption, this study proposes an
evaluation model of campus building energy consumption benchmarking management. By analyzing
several types of feature data of buildings, this study uses random forest method to determine the
building features that have outstanding contributions to building energy consumption intensity and
building classification, and uses the K-means method to reclassify buildings based on the building
features obtained after screening, to obtain a building category that is more in line with the actual use
situation and to solve the problem that the existing building classification is not in line with the reality.
Compared with the original classification method, the new classification method showed significant
improvement in many indexes, among which DBI decreased by 60.8% and CH increased by 3.73
times. Finally, the quart lines of buildings in the category of new buildings are calculated to obtain the
low energy consumption line, medium energy consumption line and high energy consumption line of
buildings, so as to improve the accuracy and practicability of energy consumption line classification.

Keywords: building energy consumption; benchmarking; data mining; random forest model; factor
analysis; K-means cluster

1. Introduction

The energy crisis and climate change have resulted in higher requirements for urban
energy conservation and emission reduction [1]. Large-public buildings, which have high
rates of energy consumption and great energy-saving potential, are an indispensable part of
reducing urban carbon emissions. In 2019, the United States used 16% of end-use energy in
the residential sector, and 12% in the commercial sector, implying that energy efficiency in
buildings has made and can still make a substantial impact on energy conservation efforts as
a whole [2]. In China, campus buildings are important examples of large-public buildings,
accounting for 19% of the total buildings constructed from 2001 to 2020 [3]. With the growth
of the campus scale, the energy consumption of campus buildings is also increasing, which
is of great significance regarding the progress towards carbon neutrality [4].

The current study of building energy consumption mainly includes the following
aspects. The first method establishes a benchmark model of building energy consumption
through simulation calculation. Common building dynamic simulation tools such as
Department of Energy 2(DoE-2) and EnergyPlus consider various specific characteristics of
buildings for dynamic simulation [5,6]. Zhang Xu [7] also calculated the all-round energy
consumption of typical residential buildings in Shanghai by using the Bin method and
calculated the influence of factors such as the heat transfer coefficient of exterior walls
and windows, design parameters of indoor air conditioning and energy efficiency ratio
on building energy consumption by changing some parameters. The dynamic energy
consumption simulation method considers all kinds of indoor and outdoor perturbations
more carefully, and the results are more accurate; however, the dynamic simulation project
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is very complicated. With the help of the computer, it is convenient to dynamically calculate
the cooling and heating load of buildings under the action of changing outdoor parameters.

In the second method, multiple fitting regression technology is used to establish
the benchmark model of building energy consumption, which is mainly used to forecast
building energy consumption through regression analysis to obtain the benchmarking of
architecture energy consumption [8–10]. However, most of the analysis and studies on
building energy intensity obtained by linear regression model lack accuracy, and there
may be multicollinearity among explanatory variables. The Energy Star project in the
United States also sets up a regression model and a scoring system to let users know the
energy consumption level of the building. However, this method does not consider other
characteristics such as equipment and operation plan, which will also affect the energy-
saving performance of the building [11], and requires a lot of data. Input data may not
be available in the simulation, which further increases its complexity. In recent years, the
study of building energy consumption by machine learning method has attracted much
attention, and some studies have adopted the data-driven machine learning method to
examine problems. For example, random forest algorithm (RF) [12], support vector (SVM)
algorithm [13] and artificial neural network algorithm (ANN) [14] are all adopted to deal
with the research on building energy conservation. Bu, Shao and Wang used the support
vector machine (SVR) model to estimate the energy consumption of hotel buildings [15].
In their study, RBF kernel function was selected as the kernel function of SVR, and the
accuracy of model prediction was improved by optimizing kernel parameters. In another
study, Kim, Jung and Kang used a residential energy consumption prediction model based
on neural network [16]. During the modeling process, South Korean residential building
information and user characteristics were taken into account. Their study discusses the
share of influencing parameters, that is, the number of external walls, housing orientation,
housing size, years of residence, number of family members and occupation of the head
of household, on energy estimates. Their results show that the neural network model has
high accuracy in predicting energy consumption. These machine learning approaches are
currently a hot topic for data-driven models.

The third method mainly uses other methods to study building energy consumption
quota, which is achieved by evaluating the energy performance of buildings relative to
similar buildings of the same type or geographical area. Among them, the “Government
Energy Efficiency Best Practice Project” in the United Kingdom classifies the same type
of building twice and evaluates the level of energy consumption and energy cost, respec-
tively [17]. The building energy consumption evaluation standard VDI3807 in Germany
evaluates the energy consumption level of the building by comparing the overall energy
consumption of the building with the reference value. Using the upper quartile as the target
energy consumption level of this type of building [18], Santamouris [19] et al. classified
the energy consumption of campus buildings in Greece, involving electricity and heating
energy, and used the equal frequency method to calculate the cumulative frequency of
the statistical samples as 20%, 40%, 60%, 80% and 100%. Building energy consumption is
defined as the five types of building energy consumption benchmarking namely A, B, C, D
and E; Hernandez [20] et al. used the quartile method to study the energy consumption
of primary schools in Ireland; they obtained the cumulative distribution curve of energy
consumption of 88 primary schools, and found that the average energy consumption index
was 96 kW·h/m2, which was taken as the benchmarking of building energy consumption,
and obtained the first quartile of 65 kW· h/m2. As a building energy consumption reference
line. Salah Vaisi and Pouya Varmazyari et al. [21] developed a top-down energy benchmark
based on actual energy consumption within large government office buildings. Through
a survey of 26 office buildings in cold climates, four general benchmark levels were de-
veloped, including “Best practices,” “good practices,” “Benchmark,” and “bad practices.”
Paola Marrone, Paola Gori and Francesco Asdrubali et al. [22] conducted a cluster analysis
of the stock of school buildings in Italy, aiming to provide a method to identify the best
energy retrofit interventions from a cost-effective perspective, and relate them to the specific
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characteristics of educational architecture. It also provides a model that can be developed
into a useful tool for public administration to set priorities in planning for the new energy
retrofit of existing school buildings. Research in this approach focuses on comparing energy
performance between buildings and identifying potential areas for improvement.

There are plenty of buildings in the campus of colleges and universities. According to
the benchmarking line measurement method of many buildings, it is important to study
the classification of buildings [3,22]. Now, the study of campus energy consumption bench-
marking is few, which cannot be used in actual energy conservation research. According to
their main functions, buildings on university campuses can be divided into two categories:
residential buildings and public buildings. Since the living buildings in colleges and uni-
versities account for an important proportion of staff dormitories and family buildings,
and these two categories are generally not calculated for campus energy consumption
quota [23], the research object of this paper is public buildings in colleges and universities,
and the goal is to obtain the energy consumption reference line of college buildings. Accord-
ing to the existing studies [24–29], the EUI of a building is not only limited by the building
function, but also affected by the number of floors, number of degree days and other factors.
Therefore, the same types of buildings also have a big difference in energy use mode due to
the different building characteristics. The traditional method also puts this type of building
in the scope of transformation when defining energy consumption benchmarking, which is
inconsistent with our original intention of setting building energy consumption benchmark.
To solve this problem, it is proposed to reclassify the buildings. At the same time, there
is the phenomenon of building function combination in the university campus, that is, a
building has more than one function at the same time. Due to the different proportions
and types of each functional area, the composite functional buildings have different energy
use rules, therefore, they have different amounts of energy saving potential. Under this
premise, traditional building classification methods cannot classify buildings according to
specific functions, and the obtained building energy consumption benchmarking cannot
meet the demand for energy conservation benchmarking.

The purpose of this study is to obtain the overall energy consumption benchmark of
different buildings. Benchmarking refers to the energy consumption index of a building and
the limit value of the energy consumption level of a building within a certain limited range,
which is used to guide the energy conservation work of a building. This paper selects
building energy intensity (EUI), which can best represent the overall level of building
energy consumption. To solve the problems of inaccurate and poor practicability of the
existing campus architecture energy consumption benchmarking, this paper puts forward
a new evaluation method of campus building energy consumption benchmarking, which
mainly includes the following aspects:

(1) The classification in the original campus building classification model is inconsistent
with the reality. Influenced by the number of floors, degrees and other factors, and
based on the data-driven idea, through the random forest mining of important features
affecting building energy consumption and classification, with the building EUI and
the original building classification label as targets, we build a random forest model
and determine the importance ranking of each building feature.

(2) Factor analysis is adopted to reduce the dimension of the studied features according
to the importance of architectural features, and several common factors affecting
architectural classification are extracted to reduce subsequent clustering errors. Then,
K-means clustering method is used to cluster the extracted common factors of ar-
chitectural features, and a new architectural classification is obtained. Compared
with the original classification method, the new classification method has significant
improvement in many indexes.

(3) On the basis of the above methods, based on the study of building energy consumption
factors by the second type of benchmark research method, we do not directly obtain
specific energy consumption lines, but use the statistical method in the third type of
energy consumption benchmark research to compare the target building with the same
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type of building, so as to delimit the low, medium and high energy consumption lines,
and to make the energy consumption benchmark more practical. A more accurate
and practical reference line for energy consumption of campus buildings is obtained
by calculating the quartile line among the buildings of the same type.

2. Benchmarking Assessment of Building Energy Consumption
2.1. New Campus Building Benchmarking Assessment Method

Buildings with different uses differ greatly in terms of building feature data, such
as weekly working hours, external structure, internal number of elevators and internal
number of computers [30]. Therefore, one potential solution is to divide buildings into
new building classification according to relevant characteristics to solve the problem at
hand, namely that the original building classification does not meet the reality; thus, the
actual energy consumption reference line will be able to be obtained on the basis of the
new classification. This paper presents a new method for measuring the reference line of
building energy consumption.

2.2. Random Forest Algorithm to Determine the Importance of Features

The random forest algorithm is an integrated learning algorithm based on decision
tree and random subspace theory. The basic idea is to construct several base learners with
different levels of performance, and combine the prediction results of base learners through
certain strategies [31]. Random forest improves the prediction accuracy without significant
increase in the amount of computation. Random forest is not sensitive to multivariate
collinearity, and the results are relatively robust to missing data and unbalanced data. It
can accurately predict the effects of up to thousands of explanatory variables, and is known
as one of the best algorithms at present.

Random forest is a classification model designed to build forests in a random manner.
The forest consists of a number of decision trees, each of which is unrelated to the other.
After the random forest model is obtained, when the new sample enters the random forest,
each decision tree in the random forest is judged separately. After the results are obtained,
the category or one of the most voted categories is usually used as the final model output.
In order to avoid the inaccuracy and collinearity caused by the linear method, this paper
chooses the random forest model to solve the problem. Since both EUI and building
classification are correlated with building characteristics in building energy consumption
data [32], the random forest model can be used to determine which important features
affect building EUI and building classification.

The random forest model structure diagram of Figure 1. Ref. [33] is established in this
paper. Firstly, a new training sample set is generated by randomly sampling and repeated
random sampling of N samples, and then N classification trees are generated according
to the self-sample set to form a random forest. For each node, m features are randomly
selected, and the decision of each node in the decision tree is determined based on these
features. According to these m features, the optimal splitting mode was calculated [34].
Each tree will grow intact without pruning, and then all N trees will be averaged to reduce
the overall model variance [35].

In this paper, due to the excessive variables studied, it is not conducive to further
analyze the problem; therefore, it is necessary to rank the importance of building features
that affect building EUI and building classification, so as to provide a reference basis for
removing unimportant features to obtain decisive features. According to the contribution
of each feature obtained by the random forest algorithm, the importance ranking of each
feature to the building feature is obtained, and the features that have an important impact
on the research target are screened out, which also provides a reference for the subsequent
dimension reduction.



Sustainability 2023, 15, 5211 5 of 16Sustainability 2022, 14, x FOR PEER REVIEW 5 of 16 
 

Dataset

Sample1 Sample2 Sample3 … … Samplen

… … 

Class1 Class2 Class3 … … Classn

Randomize

Select the best classification result by 
voting  

Figure 1. Random forest structure diagram. 

In this paper, due to the excessive variables studied, it is not conducive to further 
analyze the problem; therefore, it is necessary to rank the importance of building features 
that affect building EUI and building classification, so as to provide a reference basis for 
removing unimportant features to obtain decisive features. According to the contribution 
of each feature obtained by the random forest algorithm, the importance ranking of each 
feature to the building feature is obtained, and the features that have an important impact 
on the research target are screened out, which also provides a reference for the subsequent 
dimension reduction. 

2.3. Factor Analysis Is Used to Extract Common Factors of Building Features 
After obtaining the feature importance ranking that affects building EUI and building 

classification, we understand the influence degree of each building feature studied on 
building EUI and classification. However, clustering algorithm cannot be used to divide 
clustering clusters at this time, for the following reasons: First, the building data without 
extracting common factors are clustered according to K-means, which may lead to the 
buildings in the building cluster only having mathematical connection but no practical 
connection. Secondly, there may be correlations among the building features involved in 
the clustering. If there is correlation, the results will also be biased, because it increases 
the weight of a certain type of feature virtually, which is difficult to avoid when screening 
features. In order to solve the above problems, the method of factor analysis is used to 
extract the common factor. In this paper, principal component analysis method is selected 
to extract the factor. This is carried out not only to reduce the original building data di-
mension, but also to complete its common extraction, and discover the actual relationship 
between different building features. Factor analysis mainly includes the following steps. 

In order to solve the above problems, the method of factor analysis is used to extract 
the common factor. In this paper, the principal component analysis method is selected to 
extract the relevant factor. It not only completes the dimensionality reduction in the orig-
inal data but also carries out the generic extraction to discover the actual connection be-
tween different features. Factor analysis mainly includes the following steps: 
(1) Correlation investigation among variables. Factor analysis requires a strong correla-

tion between original variables. Commonly used tests include the Kaiser–Meyer–Ol-
kin (KMO) test for correlation coefficient and partial correlation coefficient between 
variables and Bartlett spherical test for independence. The calculation formula of 
KMO is as follows: 

Figure 1. Random forest structure diagram.

2.3. Factor Analysis Is Used to Extract Common Factors of Building Features

After obtaining the feature importance ranking that affects building EUI and building
classification, we understand the influence degree of each building feature studied on
building EUI and classification. However, clustering algorithm cannot be used to divide
clustering clusters at this time, for the following reasons: First, the building data without
extracting common factors are clustered according to K-means, which may lead to the
buildings in the building cluster only having mathematical connection but no practical
connection. Secondly, there may be correlations among the building features involved in
the clustering. If there is correlation, the results will also be biased, because it increases
the weight of a certain type of feature virtually, which is difficult to avoid when screening
features. In order to solve the above problems, the method of factor analysis is used to
extract the common factor. In this paper, principal component analysis method is selected
to extract the factor. This is carried out not only to reduce the original building data
dimension, but also to complete its common extraction, and discover the actual relationship
between different building features. Factor analysis mainly includes the following steps.

In order to solve the above problems, the method of factor analysis is used to extract
the common factor. In this paper, the principal component analysis method is selected
to extract the relevant factor. It not only completes the dimensionality reduction in the
original data but also carries out the generic extraction to discover the actual connection
between different features. Factor analysis mainly includes the following steps:

(1) Correlation investigation among variables. Factor analysis requires a strong corre-
lation between original variables. Commonly used tests include the Kaiser–Meyer–
Olkin (KMO) test for correlation coefficient and partial correlation coefficient between
variables and Bartlett spherical test for independence. The calculation formula of
KMO is as follows:

εKMO =

∑
i

∑
j(i 6=j)

r2
ij

∑
i

∑
j(i 6=j)

r2
ij + ∑

i
∑

j(i 6=j)
s2

ij
(1)

where sjj and rij are the correlation coefficient and partial correlation coefficient of
variable X, respectively. The closer the value of the KMO test is to 1, the more
suitable for factor analysis, whereas a value less than 0.5 is considered not suitable
for factor analysis. Additionally, Bartlett’s null hypothesis is the identity matrix of
the correlation coefficient matrix. The statistic is obtained from the determinant of
this matrix. According to whether its significance level less than 0.05, to determine
whether it is suitable for factor analysis.

(2) Principal component extraction. By solving the eigen value (λ1 ≥ λ2 ≥ . . . λp)
of the correlation coefficient matrix of the original variable and the corresponding
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orthonormal eigenvectors (u1, u2, . . . , up), and selecting the previous eigenvector with
eigenvalues greater than 1 as the principal component of the original variable for
analysis.

(3) Factor load matrix calculation. The factor load matrix determined by each principal
component is defined as shown in Equation (2),

(
λ1 ≥ λ2 ≥ . . . λp

)
are the eigenvalue

of the correlation coefficient matrix, (u1, u2, . . . , up) are the corresponding eigenvector.

A =


u11
√

λ1 u12
√

λ2 · · · u1p
√

λp
u21
√

λ1 u22
√

λ2 · · · u2p
√

λp
· · ·

up1
√

λ1 up2
√

λ2 · · · upp
√

λp

 (2)

(4) Factor rotation. According to the elementary load matrix, the contribution rate of
each common factor is calculated, and m principal factors are selected. By rotating the
extracted factor load matrix, the matrix B = AmT (where Am is the front m column of
A, and T is the orthogonal matrix) is obtained, and the factor model is constructed.

(5) Calculate the factor score. Using the regression method, the common factor F and
variables (X1, X2, X3..), make the regression, establish regression equation and then
substitute variable values into the regression equation. The relationship between the
factor and the original variable is shown in Equation (3). a is each element of the load
matrix, which is essentially the correlation coefficient between the common factor and
the original variable. The factor score is obtained according to Equation (4).

X1
X2
. . .
Xm

 =


a11 a12 . . . a1p
a21 a22 . . . a2p
. . . . . . . . . . . .
am1 am2 . . . amp




F1
F2
. . .
Fm

 (3)


F1
F2
. . .
Fm

 =


b11 b12 . . . b1p
b21 b22 . . . b2p
. . . . . . . . . . . .

bm1 bm2 . . . bmp




X1
X2
. . .
Xm

 (4)

2.4. Building Evaluation Cluster Analysis Based on K-Means

Cluster analysis is a statistical method that creates a group of objects or clusters in
which the objects in one cluster are very similar and the objects in different clusters are very
different. For numerical data, a cluster is usually a set of numbers in which each number is
closer to its average, that is, the average of all the numbers in the clustering, than to the
average of any other cluster. The goal is to minimize the sum of the difference between
each number and its closest average. This algorithm is based on the clustering of centers or
prototypes. The K-means algorithm is a typical partitioning-based clustering algorithm [36].
Its basic idea is that a given sample set is divided into K clusters according to the distance
between the given samples. The samples in each cluster have levels of similarity, whereas
the similarity of different clusters is low. Supposing that the data of the cluster are divided
into (C1, C2, . . . , Ck), our goal is the to minimize the squared error E:

E =
k

∑
i=1

∑
x∈Ci

‖x− µ‖2
2 (5)

where µi is the mean vector of cluster Ci, also known as the center of mass:

µi =
1
|Ci| ∑

x∈Ci

x (6)
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The schematic diagram of the K-means clustering algorithm in this paper is shown in
Figure 2. The specific steps of the algorithm are as follows:

(1) Randomly set K feature space points as the initial building clustering center;
(2) Calculate the distance between the points corresponding to other buildings and K

centers, and select the nearest cluster center point as the marker category for the
unknown points;

(3) Place the points corresponding to each building against the labeled cluster center, and
recalculate the new center point of each cluster;

(4) If the calculated new center point is the same as the original center point, the algorithm
will be terminated; otherwise, return to the second step.
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We use the factor analysis method to obtain the common factors of building features.
On this basis, the K-means clustering method is used to divide the building set into
several clustering clusters, and a new building classification is obtained, which should
be able to better meet the needs of demarcating the new benchmarking in line with the
actual situation.

2.5. Evaluation of Clustering Effect

Clustering involves randomness; thus, it is difficult to judge the effect of clustering.
The clustering effectiveness index can help us measure the clustering effect after clustering
a group of data, and then make a judgment according to the actual significance of the data.
We usually judge the effect of clustering by the compactness of cluster and the degree of
separation between cluster. Compactness is a measure of whether the sample points in
a cluster are compact enough, such as the average distance from the cluster center. The
degree of separation is a measure of whether the sample is far enough away from other
clusters. We choose two indexes to judge the clustering results. Respectively, they are
Davide-Bouldin index (DBI) and Calinski-Harabasz index (CH), where a smaller DBI means
smaller intra-class distance and larger inter-class distance. The formula is:

DBI =
1
k

k

∑
i=1

max

(
avg(Ci) + avg

(
Cj
)

dc
(
µi, µj

) )
(7)

where k represents how many clusters there are in the cluster, µi represents the center point
of the ith cluster and avg(Ci) represents the average distance between all data in the ith
cluster and the center point of the ith cluster. dc

(
µi, µj

)
represents the distance between the

center of the ith cluster and the center of the jth cluster.
The larger the CH index is, the closer the class itself is and the more dispersed among

classes, which means better clustering results. The formula is:
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CH =
tr(Bk)

k− 1
/

tr(Wk)

N − k
(8)

where k represents the number of cluster categories and N represents the total number of
data. tr(Bk) is the variance between classes, tr(Wk) is the variance within classes.

3. Methods
3.1. Data Preprocessing

The database used in this study comes from Commercial Building Energy Consump-
tion Survey (CBECS) [37] data and includes a sample of buildings across most of the United
States, representing commercial buildings in all 50 states and the District of Columbia.
CBECS is a national sample survey that collects information on the commercial building
stock in the United States, including energy-related building characteristics and energy
use data.

Database data collection consists of two phases. The first stage is the building survey,
which collects building features and energy usage data (annual consumption and cost)
from respondents through interviews or web-based questionnaires. The second stage is the
Energy Supplier Survey (ESS), which is a follow-up survey to the energy supplier of the
building that responded to the first stage. Suppliers of electricity, natural gas, heating oil
(including fuel oil, kerosene and diesel) and district heating (steam or hot water) provide
monthly data on the energy use of each building [38]. For most buildings, these files
contain information such as building dimensions, year of construction, type of energy used,
energy consumption and expenditure. Since the database contained incomplete building
information, data filtering was applied to overcome technical limitations. The screened
data include partially missing data, missing data that are not applicable after interpolation
and identical data. At the same time, because the object of the study is campus buildings,
non-campus buildings are removed and only campus buildings are retained according to
the owner category and building type in the sample features [39].

These more than 200 building samples were obtained after data filtering. In this paper,
some types of buildings are selected for discussion because of the content to be studied.
Since the database contains too many features with a low correlation to building energy
consumption, features should be selected. According to experience, features unrelated
to university buildings should be excluded. Meanwhile, the distinguishing variables are
selected based on experience, as shown in Table 1.

Table 1. Building features and serial numbers.

No. Feature

1 One activity in building

2 Area

3 Building shape

4 Exterior glass ratio

5 Number of floors

6 Year of construction

7 Month used

8 Working hours

9 Office equipment

10 CDD

11 HDD

12 Heat percent
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Table 1. Cont.

No. Feature

13 Cool percent

14 Number of elevators

15 Number of computers

After obtaining the subsets of the building data studied, in order to eliminate the
dimensional influence among the indicators, a data standardization processing is needed to
solve the comparability among the data indicators. The numerical features in the original
data were treated with Z-Score standardization, as shown in Equation (9).

xnew =
x− µ

σ
(9)

where µ is the mean and σ is the standard deviation of the sample data.
In addition, such features are also included in the building features to illustrate

whether the building is a multifunctional composite building and the occupied area pro-
portion of various functions, as shown in Table 2.

Table 2. Cases of functional characteristics of buildings.

Feature
Sample

1 2 3

Single function No No Yes

First function Office Education Office

First percent 60 60 100

Second function Education Auditorium None

Second percent 40 40 0

The type of the building sample is the type of the maximum functional area. For
example, the first function of sample 1 is an office building, then the label of the building
sample is an office building. However, the above table can only obtain the area proportion
of each functional area but not the actual energy consumption of each functional area.
Therefore, the maximum functional area in the database statistics may not represent the
actual function of the building. This phenomenon also exists in practice, that is, the original
label of the building is not a good classification of the building. Therefore, the building
samples need to be reclassified.

3.2. Screen Building Features through Random Forest

In order to obtain a new building classification, we first built a random forest model
according to the data set, in which 70% of the original data were divided a into training set
and 30% into a test set, the target value was set as the EUI of the building and the power
consumption, area, building shape, exterior glass ratio, number of floors, building year,
service months and weekly working hours were set as inputs. The importance ranking of
building features obtained through the construction of random forest model is shown in
Figure 3.
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The EUI factor is an important indicator of building energy consumption. However,
since all the characteristics of the building cannot be collected during the building infor-
mation collection stage, the collected characteristic information may only show part of the
building information. Therefore, only referring to EUI factor analysis may lead to the final
result being only responsible for building EUI while ignoring other factors. There was only
a mathematical connection between the results and no consideration of the actual working
form of the building; thus, we considered taking other factors into account. During the
analysis stage of this paper, we believe that the original label of a building may not be
completely consistent with reality, but we also believe that the original label of a building
is related to the initial design purpose of the building; therefore, it has a certain reference
value for the classification of buildings. Buildings with the same label may not be classified
into one category, but many of them have a certain degree of similarity. Therefore, this
paper considers this factor, sets the target value as the original label of the building, and sets
the input as power consumption, area, building shape, exterior glass ratio, floor number,
building year, service months and weekly working hours. The importance ranking of
building features obtained by the random forest model is shown in Figure 4.
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the building.

After combining the two feature importance rankings, we obtained seven features
that have important contributions to building EUI and the original label of buildings: the
number of floors, the proportion of exterior glass, the area, the load of office equipment, the
number of computers, the power consumption and the building year, while ignoring the
features that only have an important impact on a certain factor to make our consideration
more practical and specific. The research of this paper continues on this basis.
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3.3. Reduces the Dimension of the Remaining Building Features by Factor Extraction

We have obtained building features that have a great impact on building EUI and
the original classification of buildings, as shown in Table 3. However, at this time, the
clustering algorithm cannot be used to divide clustering clusters, because large errors may
be generated at this time. Therefore, factor analysis was carried out on the data. Principal
component analysis was used for factor extraction, and variance maximum rotation method
was used for rotation.

Table 3. Building features after screening.

No. Feature

1 Office equipment

2 CDD

3 Area

4 Exterior glass ratio

5 Number of floors

6 Working hours

7 Number of computers

The common factor was extracted for the remaining features, the KMO test statistic was
greater than 0.5 and the Bartlett sphericity test p-value < 0.05, consistent with the premise
of factor extraction. According to the lithotripsy diagram, the optimal number of common
factors is 2, and the factor load matrix after rotation and the two principal components
whose initial eigenvalue is greater than 1 is extracted to obtain the principal components
F1 and F2. Therefore, they can be identified as the two global principal components to be
extracted. At the same time, the score of each factor can be calculated according to the
factor score coefficient and the standardized value of the original variable, to extract the
principal component of the obtained factor.

3.4. Cluster the Extracted Common Factors by K-Means

After the above steps are completed, the principal component extracted from factor
analysis is taken as the clustering feature, and the building data in the case are clustered
using the K-means algorithm.

The K value in the k-means algorithm is given in advance, and the initial clustering K
value in most kinds of literature is randomly drawn up according to experience, but the
size of the K value is difficult to estimate in general, and different K values often lead to
widely different clustering results. In this paper, the silhouette coefficient method and sum
variance value (SSE) is used to determine the initial K value. Among them, the closer the
silhouette coefficient is to 1, the better the clustering effect is, and the larger the SSE value
is, the larger the error is. However, in practice, the “elbow” of the SSE is often taken as the
optimal case, that is, the SSE changes the most before and after this point. The silhouette
coefficients under different K values were obtained as shown in Figure 5, and the SSEs
under different K values are shown in Figure 6.
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We know that the silhouette coefficient reaches its maximum when K is 3, which is the
“elbow” of the SSE value graph; thus, the optimal K value is 3. Therefore, the optimal cluster
number is determined to be 3. The clustering results are shown in the following figure, and
the clustering results are shown in Figure 7. According to the figure, the teaching building
and office building in the case can be better divided into three categories. This may meet
the classification needs of buildings.
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3.5. New Building Energy Benchmarking

We compared buildings within each building category in order to obtain energy
benchmarks for that building category. We use the quartile method to measure the building
energy consumption benchmark for the new building classification, as shown in Figure 8.
At this point, the median line defined by the quartile line can represent most levels of
the building. Since our building classification is more realistic, the energy consumption
baseline we obtained is obviously more realistic than the baseline drawn on the basis of
the original building classification. After clustering by the K-means method, the original
mixed-function buildings are also divided, and the reclassification diagram is shown in
Figure 9.
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4. Results and Discussion

After the clustering is complete, we have a new classification of buildings. We com-
pared the original classification with the methods proposed in this paper. To evaluate
the performance of the two methods, we calculated the CH and DBI indices of the two
grouping methods, respectively. As shown in Table 4, the results show that DBI is smaller
and CH is larger in the proposed method. This confirms that the clustering results of the
proposed method have higher similarity in intra-group building and greater differences
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between different clusters than those based on the original classification. Therefore, the
energy consumption benchmarking is more in line with the actual situation.

Table 4. Cluster evaluation index.

Index Original Classification New Classification

DBI 1.647 0.645

CH 81.263 355.391

Therefore, the benchmarking of building energy consumption obtained solves the
problems that the classification of the original campus buildings in the classification model
is inconsistent with reality, affected by the number of floors, degree days and other factors,
and that mixed-function buildings are not well classified according to the actual situation.
The new energy baseline can meet the need for energy conservation benchmarks. The
energy consumption quartile lines of three types of buildings are shown in Table 5. In
addition, we use the Quartile1, Quartile2 and Quartile3 as the low, medium and high
energy benchmarks of building energy consumption.

Table 5. Energy consumption quartile lines of the building.

Building
Classification

EUI/(KW·h/m2)

Quartile 1 Quartile 2 Quartile 3

Class 1 51.93 87.02 160.24

Class 2 115.79 145.54 186.90

Class 3 153.16 176.38 191.46

5. Conclusions

In this study, we analyzed the energy consumption data of more than 200 buildings in
colleges and universities, aiming to provide some help for the determination method of
energy consumption benchmarking. At the same time, the case of this paper also provides
information to support the energy consumption benchmarking of colleges and universities.
Specifically speaking, this paper includes the following contents:

(1) The random forest model was used to determine several main characteristics affecting
building energy consumption and building classification. Considering building EUI
and building the original classification label as double objectives, the random forest
model was constructed successively to obtain the importance ranking of building
features’ contribution to building EUI and building original classification, so that the
buildings in the obtained clustering result not only adhere to mathematical laws of
relation but also have the necessary similarities in practical work. In this way, the
building features that have an important influence on both the EUI of buildings and
the original classification of buildings can be obtained, which lays a foundation for
further making improving a fine energy-saving benchmarking.

(2) The dimensionality of the important building features obtained in the above steps
is reduced to the building cluster type to eliminate errors by factor analysis. The
K-means method is adopted for cluster analysis of the building set, and the common
factors extracted from the campus buildings are clustered to remove the influence
of each building feature on the energy consumption level in the classification. We
aimed to solve the main problem, which was that the original building classification
is not practical. Thus, the energy consumption reference line measured by the quartile
method is more practical value. For each kind of building, three levels of low, medium
and high energy consumption level are proposed, respectively. It makes the method
of evaluating the energy use level and energy saving potential of campus buildings
much more reasonable.
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We analyzed the data on the energy consumption of campus buildings, provided a
reference for the delineation of energy consumption lines of campus buildings in the future
and also provided case support for the energy consumption benchmarking of universities.
On the basis of the research results obtained in this paper, future research can extend
the data-driven building energy consumption assessment technology to more building
features and more building classification, and obtain the key influencing factors of energy
consumption of different types of buildings through data mining technology at a higher
dimension, so as to obtain more accurate energy consumption benchmarking.
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