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Abstract: Tensor networks have been recognized as a powerful numerical tool; they are applied
in various fields, including physics, computer science, and more. The idea of a tensor network
originates from quantum physics as an efficient representation of quantum many-body states and
their operations. Matrix product states (MPS) form one of the simplest tensor networks and have
been applied to machine learning for image classification. However, MPS has certain limitations
when processing two-dimensional images, meaning that it is preferable for an projected entangled
pair states (PEPS) tensor network with a similar structure to the image to be introduced into machine
learning. PEPS tensor networks are significantly superior to other tensor networks on the image
classification task. Based on a PEPS tensor network, this paper constructs a multi-layered PEPS
(MLPEPS) tensor network model for image classification. PEPS is used to extract features layer by
layer from the image mapped to the Hilbert space, which fully utilizes the correlation between pixels
while retaining the global structural information of the image. When performing classification tasks
on the Fashion-MNIST dataset, MLPEPS achieves a classification accuracy of 90.44%, exceeding
tensor network models such as the original PEPS. On the COVID-19 radiography dataset, MLPEPS
has a test set accuracy of 91.63%, which is very close to the results of GoogLeNet. Under the same
experimental conditions, the learning ability of MLPEPS is already close to that of existing neural
networks while having fewer parameters. MLPEPS can be used to build different network models by
modifying the structure, and as such it has great potential in machine learning.

Keywords: tensor networks; image classification; multi-layered projected entangled pair states

1. Introduction

Due to the development of the internet, different forms of massive datum have been
generated, resulting in the need for big data analysis methods to be formed. Systems have
been developed to make processing these large amounts of data possible [1]. Among big
data sources, multimedia data make up the majority [2]. In order to obtain the useful infor-
mation from image data, computer vision has become an increasingly important method [3].
Image classification is a fundamental method in computer vision for classifying images
into one of several predetermined classes, forming the foundation for computer vision
tasks such as image segmentation [4]. From manually labeling features for classification to
deep learning, many image classification algorithms have been developed [5–9]. Tensor
networks, which originate from quantum physics, are gradually being applied to image
classification tasks [10–13].

Tensor networks are representations of quantum many-body states based on their
local entanglement structures [14]. A tensor network expresses higher-order tensors as
multiple low-order tensors in the form of contractions [15], thereby avoiding the “curse of
dimensionality” problem [16]. These lower-order tensors can be combined in different ways
to obtain different tensor networks. After the typical datasets are embedded into a quantum
state, they plays a role analogous to that of the area law in quantum physics [17,18]. This
allows tensor networks to be gradually introduced into image classification [10,19–21].
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Tensor networks based on MPS have not achieved very good results in image classifi-
cation tasks due to the loss of image structure information [10,20]. In order to better obtain
the global information of the image, the PEPS tensor network [20], which uses the same
geometric structure as the natural image, has been introduced for image classification; PEPS
can directly obtain the structural information of the whole image, although it sometimes
ignores the correlation between local pixels. In deep learning, great achievements have
been made through the hierarchical method. For example, after the convolutional neural
network [22–24] extracts abstract features through more layers of convolution, the fully
connected layer can achieve better classification results. The idea of hierarchical methods
has been introduced for tensor networks as well [11,13,25].

In this work, we use the hierarchical method to build a hierarchical PEPS tensor
network that can obtain the global information of the image without losing the local
correlation between pixels; we call this the MLPEPS tensor network. MLPEPS is composed
of multiple PEPS layers, with each PEPS layer potentially being composed of multiple PEPS
blocks. All PEPS blocks in each PEPS layer have the same structure, and the PEPS layer
structure can be changed by modifying the size of the PEPS block, making the model more
variable. The lower-layer PEPS is used to obtain the local abstract information of the image,
while the upper-layer PEPS classifies the images according to the output of the lower-layer
PEPS. We use the boundary MPS method [26] to approximately contract all PEPS blocks in
MLPEPS, and all parameters are optimized by backpropagation algorithm [27]. We verified
the learning ability of MLPEPS using the Fashion-MNIST dataset, on which its test set
accuracy reached 90.44%. In comparison with the existing tensor network model, the test
set accuracy of MLPEPS surpassed all other tensor networks and the AlexNet convolutional
neural network. On the COVID-19 Radiography dataset, the test set accuracy of MLPEPS
was much higher than that of single-layer PEPS. Moreover, MLPEPS can obtain results close
to those of mature neural networks while requiring fewer parameters. Our experiments
have shown that while MLPEPS has strong learning ability, its generalization performance
needs to be improved. A wide variety of MLPEPS models can be formed by changing the
basic PEPS block structure, which greatly compensates for the relatively poor scalability of
previous tensor network models.

The rest of this paper is organized as follows. Section 2 introduces the relevant research
on neural networks and tensor networks in image classification. Section 3 presents methods
for performing image classification using tensor networks. Section 4 details the method for
constructing MLPEPS. Section 5 introduces the results of MLPEPS on image classification
and compares them with those of other methods. Finally, Section 6 concludes the paper
and discusses more ways to use MLPEPS.

2. Literature Review

The construction of the ImageNet [28] project has promoted the development of image
recognition technology and has become the standard for image classification algorithm eval-
uation. Currently, convolutional neural networks are the most effective method for image
classification tasks, and there are many useful algorithms. A major development in deep
learning, AlexNet [29] promoted the key step of neural network from shallow layer to deep
layer, and proved that abstracting features layer by layer through a hierarchical method
can obtain better classification performance than manually extracting features. VGGNet [9]
explored the impact of depth on the accuracy of convolutional neural networks for image
classification tasks, proving that deeper networks can achieve better classification results
on ImageNet. By combining convolution kernels of different sizes, GoogLeNet [5,6,30] im-
proved the accuracy of classification while reducing computational complexity. GoogLeNet
achieves good performance thanks to its hierarchical network structure. ResNet [7] and
DenseNet [31] have both been able to achieve better classification accuracy by constructing
residual blocks and dense blocks. This allows them to precisely use the hierarchical method
to build a deeper convolutional network model. Based on these developments, deep convo-
lutional neural networks uses the hierarchical methods to achieve great achievements. This
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demonstrates the validity, and even the necessity, of using a hierarchical method. Although
deep convolutional neural networks have achieved good results in image classification
tasks, many problems arise as well; for example, better performance requires very deep
networks, which lead to excessive parameter volume and computational complexity. At
the same time, with increasing network depth various problems begin to appear in the
optimization algorithm of the model, such as gradient disappearance and gradient explo-
sion [32]. Therefore, methods that are wholly different from convolutional neural networks
have been gradually introduced into image classification; for instance, transformer-based
methods have been widely used in image classification recently, achieving a great suc-
cess [33]. The tensor network method originating from quantum physics has been widely
used in image classification due to its own advantages [10].

An MPS composed of third-order tensors is the simplest tensor network used as a
machine learning model for image classification [10]. By performing classification on the
MNIST dataset, MPS has demonstrated the feasibility of tensor networks for image classi-
fication. The main method is to use MPS for classification after mapping the data to the
Hilbert space. Many MPS-based tensor networks have been applied to image classification.
Generative tensor network classification (GTNC) [21] is a generative MPS tensor network
model that achieves 98.2% test accuracy on the MNIST dataset by learning the probability
distribution of the dataset. The Locally-orderless Tensor Network (LoTeNet) [25] is a hier-
archical MPS tensor network that uses MPS to extract useful features from locally orderless
small regions in images, enabling larger images to be handled without losing information
on the global structure. Multi-layered tensor network (MLTN) [11] is a powerful supervised
learning model that consists of hierarchical MPS blocks and implements a linear classifier
in high-dimensional space. The reported literature indicates that the success of these ten-
sor networks is mostly due to the introduction of hierarchical methods, proving that the
usefulness and power of such methods extends to tensor networks. However, when using
MPS-based approaches for image classification, the image needs to first be converted into a
one-dimensional vector, which can lead to loss of global structural information. To avoid
this issue, tensor networks that can obtain image structure information have been proposed
and applied to image classification.

The 2D Multi-scale Entanglement Renormalization Ansatz (MERA) [12] model is a
tensor network that is essentially a cascade of isometries and disentanglers. This model
can be directly applied to two-dimensional images; it is able to obtain coarse-grained data
layer-by-layer through the hierarchical structure and obtain more abstract information
while retaining image structure information. It uses the entanglement entropy theory
to achieve results similar to a CNN in tiny object classification tasks. A Tree Tensor
Network (TTN) [13] uses 2D unitary tensors to form a hierarchical tensor network similar
to MERA. Using a layer-by-layer feature abstraction method similar to a deep convolutional
neural network, TTN achieves superior performance on two-dimensional image datasets.
A Deep Convolution Tensor Network (DCTN) [34] uses tensors instead of convolution
kernels, which greatly reduces the amount of parameters required by the model. Its
performance is affected by the network depth. Even for these two-dimensional tensor
networks, performance gains result from using the hierarchical method.

The PEPS [20] tensor network uses the advantages of its own structure to obtain
state-of-the-art performance on the MNIST and Fashion-MNIST datasets, which proves
the advantages of two-dimensional tensor networks. Although this tensor network has
achieved great success, there remains a large gap in its image classification performance
compared to mature neural networks. This paper combines the advantages of PEPS and
the hierarchical method in an effort to further reduce the gap between tensor networks and
neural networks; our experimental results prove that MLPEPS can achieve the performance
on par with complex neural networks.
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3. Tensor Network for Image Classification

Supervised learning is a very common method in machine learning, and has been
widely used for a variety of tasks [10]. Image classification is a simple supervised learning
task. In image classification tasks, each data sample x contains a ground-truth label
y ∈ {1, 2, · · · , T} to represent different classes of data. For a grayscale image sample
x ∈ RL0×L0 , the main purpose of image classification is to learn a classifier function f that
makes ypred = f (x) closer to y.

The main method of tensor network image classification is to use the tensor network
as the classifier function. The prediction results ypred are obtained by contracting the entire
tensor network and the image feature vector. Various tensor network models have been
used as classifiers in image classification, such as MPS [10], TTN [13], and PEPS [20]. When
the tensor network is used as a classifier, an output index is included as the prediction
result, as shown in Figure 1.

(a) MPS

(b) TTN

(c) PEPS

Figure 1. (a) MPS, (b) TTN, and (c) PEPS. The upward index in each tensor network represents the
output index, while the downward index is the physical index.

For an image x ∈ RL0×L0 consisting of N = L0 × L0 pixels, each pixel is mapped to a
feature vector of the Hilbert space through a feature map φ(xi) ∈ Rd(i = 1, 2, · · · , N) prior
to classification using a tensor network, where d is the dimension of feature vector [18].
The feature vector of all pixels contracts with the physical indices of the tensor network,
as shown in Figure 2b. The prediction result is provided by the output index. The feature
map of the full image can be defined as

Φ(x) = φ(x1)⊗ φ(x2)⊗ · · · ⊗ φ(xN). (1)

A simple feature map function with d = 2 is

φ(xi) =

(
cos
(πxi

2
)

sin
(πxi

2
)) ∈ R2. (2)

The feature map transforms an L0 × L0 image to an L0 × L0 × d tensor, as shown in
Figure 2a.

We denote the tensor network classification model by W ; then, the predicted label of
the image can be defined as

f (x) = W ·Φ(x). (3)

After obtaining the predicted label for the image, the cost function is used to measure
the distance between the predicted label f (x) and the ground-truth label y, as follows:

L =
1
M

M

∑
i=1

l( f (xi), yi) (4)

where yi is the ground truth for image xi, M is the total number of images in the dataset,
and l is the loss function.
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The weight tensor W is randomly initialized; the cost can be optimized using the
stochastic gradient descent algorithm to obtain the parameter of W , which minimizes the
cost function.

(a) feature map

(b) PEPS Classifier

Figure 2. (a) Each pixel in the image receives a feature vector through feature map; (b) the physical
indices of PEPS contract with each feature vector. All of the indices that connect adjacent tensors are
virtual indices.

4. MLPEPS Classifier
4.1. PEPS Classifier

The PEPS classifier is a two-dimensional tensor network supervised learning model [20]
with a similar structure to that in the image above. When using PEPS for image classi-
fication tasks, W denotes the PEPS tensor network, as shown in Figure 2b; this can be
represented using a composition of tensors A[i], as follows:

W T,s1,s2,··· ,sN = ∑
σ1σ2···σK

As1
σ1,σ2 As2

σ3,σ4,σ5 · · · A
si ,T
σk ,σk+1,σk+2,σk+3 · · · A

sN
σK−1,σK (5)

where T represents the output index, si denotes the physical indices, and σk denotes the
virtual indices.

In Figure 2b, the upward index in W represented by PEPS is the output index T. All
of the downward indices that contract with Φ(x) are the physical indices s, and all of the
indices that connect adjacent tensors in W are the virtual indices σ. All virtual indices
contract with the corresponding virtual indices of their adjacent tensors.

Then, the predicted label can be written as

f [T](x) = W T,s1,··· ,sN · φs1(x1)⊗ · · · ⊗ φsN (xN). (6)

The physical indices si in PEPS contract with their corresponding feature vectors. The
result of this contraction is a T-dimensional vector, where the i-th element in the vector
represents the probability that a given image x belongs to class i. The index corresponding
to the element with the largest value in the output vector is used as the final prediction
class result.

4.2. MLPEPS Classifier

In this work, we introduce the hierarchical method [11,25] into the PEPS tensor net-
work to obtain an MLPEPS tensor network classifier. While maintaining the natural
structure of the image, it obtains more abstract features of the image through MLPEPS,
which has better performance than single-layer PEPS.
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As shown in Figure 3, MLPEPS consists of multiple PEPS layers. Each PEPS layer
consists of multiple identical PEPS blocks that form a square lattice. The output vectors of
all PEPS blocks in the lower layers are used as the input vectors of the PEPS block in the
upper layer. The input data pass through each PEPS layer in turn, and the output index of
the single highest-layer PEPS is used as the prediction result. As in single-layer PEPS, the
result is a vector and the index of the largest element is the predicted class.

(a) PEPS block

(b) MLPEPS

Figure 3. (a) PEPS block of size m = 3 and (b) two-layer PEPS classifier. Each layer consists of several
PEPS blocks. Each PEPS block contains an output index. The output vectors of the lower-layer PEPS
are used as the input vector of the upper-layer PEPS. In this figure, L1 = 6, L2 = 3; m1 = 2, m2 = 3;
N1 = 9; N2 = 1.

In MLPEPS, all PEPS blocks in the same PEPS layer have the same structure, meaning
that we can express the overall structure as a set of variables. For the i-th layer of H-layer
MLPEPS, the size of each PEPS block is termed mi and the number of input vectors is
Li × Li; thus, the number of PEPS blocks Ni in this layer is Li/mi × Li/mi. Figure 3b shows
a two-layer PEPS along with the values of various parameters. In addition, we denote the
physical index dimension of each PEPS block as pi and the output index dimension of each
PEPS block as oi. Because the output vector of each lower-layer PEPS block is used as the
input vector of the adjacent upper-layer PEPS block, the physical index dimension in the
upper layer PEPS block should be equal to the output index dimension of the adjacent
lower-layer PEPS block; that is, pi+1 = oi. Furthermore, the number of input vectors of the
upper-layer PEPS is the same as the number of adjacent lower-layer PEPS blocks; that is,
Li+1 × Li+1 = Li/mi × Li/mi.

For the first PEPS layer, the number of input vectors L1 × L1 and the dimension p1
of physical indices in the PEPS block depend on the size L0 × L0 of the input image and
the dimension d of the feature map. In order to obtain more region information, we first
apply a squeeze operation [25] to the input image. The squeeze operation is intended
to sequentially divide the image into pixel blocks of size k× k. After performing feature
mapping on each pixel in a pixel block, the tensor product of the feature vectors of all pixels
is used to obtain the feature vector representing the pixel block. If the dimension of the
feature map is d, for a pixel block of size k× k the dimension of the feature vector of the
pixel block is dk×k. Therefore, for an image of size L0 × L0, pixel blocks L0/k× L0/k are
obtained after the squeeze operation. The feature vector of each pixel block contracts with
the physical index of the PEPS block, meaning that the number of input vectors of the first
PEPS layer is L1 × L1 = L0/k× L0/k and the dimension of the physical index of each PEPS
block is p1 = dk×k. The squeeze operation is not required. When the squeeze operation is
not performed, it is equivalent to k = 1. In this case, L1 × L1 = L0 × L0, p1 = d.

It is worth noting that for other PEPS layers there is no squeeze operation or feature
map; thus, as mentioned above, pi+1 = oi.
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4.3. Model Optimisation

In MLPEPS, the W parameter contains all PEPS blocks; here, we optimize the parame-
ters by minimizing the cross-entropy loss function composed of the predicted labels and
the ground-truth labels:

L = − 1
M

M

∑
i=1

log
[
softmax

(
f [yi ](xi)

)]
(7)

where

softmax
[

f [yi ](xi)
]
=

e f [yi ](xi)

∑T
t=1 e f [t](xi)

(8)

with f [t] denoting the t-th element in the output vector.
The entire MLPEPS contracts each PEPS layer sequentially from bottom to top, finally

obtaining a vector f (x) representing the result. However, when the size of the PEPS block
is too large exact contraction leads to exponential increase of the internal virtual index
dimension of the PEPS blocks. Instead, we use the boundary MPS method to approximate
exact results in order to avoid this problem [26]. This method regards the top and bottom
tensor rows as an MPS and the tensors of the remaining rows as matrix product operator
(MPO), meaning that the contraction of the entire PEPS can be regarded as the operators
continuously being applied to the MPS. The key to this process is to truncate the dimension
of the virtual index to χ after each MPO is applied to the MPS. By controlling the dimension
of χ, the exponential increase of the virtual index can be avoided within the allowable
error [35]. In this way, the exponential computational complexity can be reduced to the
polynomial level.

Singular Value Decomposition (SVD) is required to truncate the virtual index di-
mension. When backpropagating SVD through Pytorch, we encountered the problem of
numerical instability in the PEPS classifier [20]. To solve this problem, we used a custom
SVD backpropagation process [36].

5. Experiments

Because image classification is the main application of tensor networks in computer
vision, deep learning has realized great achievements in image classification. For better
comparison, we primarily validated MLPEPS on image classification tasks. The hardware
environment we used is a Xeon(R) Platinum 8255C processor and NVIDIA GeForce RTX
2080Ti 11G, while the memory size is 45G. The experiment used Ubuntu 18.04 and Python
3.8.3 as the basic environment; the development environment is CUDA 11.2, PyTorch 1.11.0,
and TorchVision 0.12.0.

To evaluate the capability of MLPEPS for image classification tasks, we conducted
experiments on two datasets. The Fashion-MNIST dataset [37] is used to compare single-
layer PEPS and MLPEPS in order to illustrate the learning ability of MLPEPS. This can be
compared with the performance of existing TN models. In addition, we verify the learning
ability of MLPEPS on the COVID-19 Radiography dataset [38,39] and used well-known
neural networks in a comparison to verify its generalization ability. Figure 4 shows the
flowchart of the experiment.
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Figure 4. Flowchart of MLPEPS for image classification. The feature vectors of the input image are
first obtained through a squeeze operation and feature mapping. Afterwards, the feature vectors are
contracted by each layer of the MLPEPS in turn, with the output vector of the last layer used as the
prediction result.

5.1. Fashion-MNIST Dataset

The Fashion-MNIST dataset consists of grayscale images of size 28× 28, and contains
ten classes of clothing. There are 60,000 training images and 10,000 test images in the
dataset. Example images are shown in Figure 5a.

(a) Fashion-MNIST Dataset

(b) Covid-19 Radiography Dataset

Figure 5. Example images from the Fashion-MNIST and COVID-19 Radiography datasets. Each
column of images belongs to the same class.

Different MLPEPS structures can be formed by modifying the size of the PEPS block
and the number of PEPS layers. Because the images in Fashion-MNIST are relatively small,
we only build a two-layer PEPS for the experiments. By changing the size of each layer of
PEPS blocks, we find that the structure with the best results is the first-layer PEPS block
with size m1 = 2 and the second-layer PEPS block with size m2 = 7. The detailed structure
is provided below.

The size of all images in Fashion-MNIST is L0 × L0 = 28× 28; after the k = 2 squeeze
operation, 14× 14 pixel blocks are obtained. Each pixel block can obtain a dk×k = 22×2 = 16
dimensional feature vector through feature mapping based on Equation (2) and the tensor
product, that is, L1 × L1 = 14× 14, p1 = 16. Each PEPS block of m1 = 2 corresponds
to the adjacent 2× 2 feature vectors as input; thus, there are N1 = L1/m1 × L1/m1 =
14/2× 14/2 = 7× 7 PEPS blocks in the first layer.

In the second layer, the number of input vectors is L2 × L2 = L1/m1 × L1/m1 =
14/2× 14/2 = 7× 7; because there is only one PEPS block, its size is m2 = 7. The physical
index dimension of this PEPS block is the same as the input dimension of the first layer
PEPS block, that is, p2 = o1.
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Figure 6. Classification accuracy of two-layer PEPS on Fashion-MNIST test dataset when choos-
ing different sizes of D and o1; the test set accuracy exceeds that of the single-layer PEPS under
all conditions.

In our experiments, we find that modifying the output index size of the PEPS block
o1 in the first layer affects the prediction results. The output index size of the PEPS
blocks corresponds to how much lower-layer information is retained; thus, we set o1 as a
hyperparameter. The output of the second-layer PEPS is used as the prediction result, and
o2 = 10 is set for the Fashion-MNIST experiment.

As the dimension of the virtual index σ in each PEPS block has a great influence on
the learning ability of the model, we use virtual index dimension D as a hyperparameter.
The learning rate is set to 0.0001 in all experiments.

Figure 6 shows a comparison of the test set accuracy with D and o1 selected with
different sizes. When D = 3, the test set accuracy of two-layer PEPS exceeds that of
single-layer PEPS (not shown in the figure). As D increases, the two-layer PEPS sees
greater improvement compared to the single-layer PEPS. MLPEPS obtains more abstract
features by adding PEPS layers, meaning that better classification results are achieved.
In this experiment, we find that the accuracy of the two-layer PEPS on the training set
reaches 100% when D = 5 and o1 ≥ 10, while the single-layer PEPS fails to achieve it under
any conditions [20]. This result proves that MLPEPS achieves better learning ability by
introducing the hierarchical method.

Table 1 lists the comparison of the highest test accuracy between MLPEPS and other
models on the Fashion-MNIST dataset. MPS-based tensor network models, such as MPS
and Multi-scale TNs, need to expand the image into one dimension, which may lead to the
loss of structural information, so there is a large gap in accuracy compared to MLPEPS.
It can also be seen from the results that the accuracy of MLPEPS exceeds that of the
classic machine learning model XGBoost and the deep convolutional neural network model
AlexNet, which shows the powerful learning ability of MLPEPS. It cannot be ignored that
the performance of MLPEPS still has some gaps compared to a more mature neural network
such as GoogLeNet. But as a new approach to machine learning, MLPEPS has shown
great potential. Because the network structure of MLPEPS has many possibilities, with
the attempts of different structural models, a model with stronger learning ability may
be obtained.
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Table 1. Accuracy comparison on the Fashion-MNIST test dataset. MLPEPS outperforms all compared
tensor networks as well as a number of other well-known machine learning models.

Model Test Accuracy

MLPEPS 90.44%
PEPS [20] 88.30%
MPS [27] 88.00%
Multi-scale TNs [19] 88.97%
DCTN [34] 89.38%
XGBoost [19] 89.80%
AlexNet [40] 89.90%
GoogLeNet [40] 93.70%

5.2. COVID-19 Radiography Dataset

The COVID-19 radiography dataset contains four chest X-ray images for 3616 COVID-
19 positive cases along with 10,192 normal, 6012 lung opacity (Non-COVID-19 lung in-
fection), and 1345 viral pneumonia images. The size of each image is 299× 299. In order
to simplify the experiment, the image size is resized to 32× 32 for our experiment. For
comparison, we selected the first 1345 images from each class to form a balanced four-
class dataset. In the experiment, all the images are divided into a training set and test set
according to a ratio of 8:2.

First, we use a two-layer PEPS for the classification task and set k = 2, m1 = 2,
m2 = 8. As in the Fashion-MNIST experiment, we find the best MLPEPS hyperparameters
by setting o1 and D of different sizes. As a comparison, we conduct the same experiment
on single-layer PEPS, GoogLeNet [5], AlexNet [29], and VGG-16 [9]. Due to the limitations
of Pytorch, in the AlexNet experiment the image size is set to 63× 63. The learning rate is
set to 0.0001 in all experiments, and the cross-entropy loss function is used.

Figure 7 shows the best test set accuracy within 300 epochs for all comparative experi-
ments. The solid line in the figure shows the variation of the test classification accuracy
with the change of D and o1 in the single-layer PEPS and two-layer PEPS experiments. It
can be seen from the results that the classification accuracy of the two-layer PEPS on the test
set far exceeds that of the single-layer PEPS in all cases; indeed, the accuracy of two-layer
PEPS with D = 3 exceeds that of single-layer PEPS with D = 5. In PEPS, the dimensionality
of the virtual index D affects the learning ability of the model. The fact that MLPEPS with
D = 3 far exceeds the performance of single-layer PEPS with D = 5 proves the stronger
learning ability of two-layer PEPS. It can be seen from the figure that the changes in o1 and
D have no great impact on the classification accuracy of MLPEPS, showing that MLPEPS is
more robust than that of single-layer PEPS. On complex datasets such as the COVID-19
Radiography dataset, the gap between single-layer PEPS and MLPEPS is further amplified.
This proves that MLPEPS can achieve better learning ability than single-layer PEPS by
acquiring the abstract image features through a layer-by-layer process.

Table 2 shows the best results on the training and test sets for all models. In these
experiments, we find that when D ≥ 3 the training set accuracy of the two-layer PEPS can
reach 100% in all conditions, while when D ≥ 4 the accuracy of the single-layer PEPS on
the training set can reach 100%. However, all neural networks fail to achieve 100% accuracy
on the training set, and the training set accuracy of VGG-16 is only 99.07%. This highlights
the better fitting ability of tensor networks for data, and proves the potential of tensor
networks for machine learning.
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Figure 7. Comparison of classification test set accuracy of different models on the COVID-19 Radiog-
raphy dataset. The horizontal axis indicates the virtual index dimension D of different sizes in the
single-layer PEPS and two-layer PEPS experiment. The figure plots the change in classification accu-
racy of two-layer PEPS for different o1. The classification accuracy of the two-layer PEPS far exceeds
that of the single-layer PEPS, and there is only a small performance gap to mature neural networks.

Table 2. Comparison of the best training set and test set accuracy of single-layer PEPS, two-layer PEPS,
and neural networks. Two-layer PEPS achieves the highest test set accuracy when o1 = 8, D = 4,
and its accuracy is very close to that of GoogLeNet. The training set accuracy of two-layer PEPS
outperforms the other models, reaching 100% in all cases.

Model Train Accuracy Test Accuracy

single layer PEPS (D = 5) 100% 87.08%

2-layer PEPS (o1 = 8, D = 4) 100% 91.63%

GoogLeNet 99.95% 92.75%
AlexNet 99.72% 93.95%
VGG-16 99.07% 94.50%

It can be seen from Table 2 that when o1 = 8, D = 4, the test set accuracy of the
two-layer PEPS is already very close to GoogLeNet. Figure 8 shows the confusion matrix
of the test set classification results at this point. It cannot be ignored that although MLPEPS
has better performance on the training set, its test set accuracy has gaps compared to
AlexNet and VGG-16 on the COVID-19 radiography dataset. This shows that although
MLPEPS has very strong learning ability, its generalization ability remains relatively weak.
The accuracy of MLPEPS on the training set reached 100% and surpassed that of the neural
networks; however, its accuracy on the test set is far behind that of the neural networks.
This is most likely due to overfitting. Compared with neural networks, tensor networks
represent a new machine learning model, and there is currently no mature method for
avoidance of overfitting. In view of the extant methods for avoiding overfitting in neural
networks, this is a problem worth studying in the context of tensor networks, and can help
further exploit the huge potential of such networks.

Although neural networks have an advantage in accuracy on the test set compared to
MLPEPS, the parameters required by the two-layer PEPS are greatly reduced compared to
the neural networks. Table 3 shows a comparison of the number of parameters required
by the different models. Two-layer PEPS achieves impressive performance with only 1/90
the parameters of VGG-16. As mentioned above, tensor networks can approximate higher-
order tensors through lower-order tensors, meaning that tensor networks can use fewer
parameters to represent more information. According to this characteristic, tensor networks
have been widely used in low-rank approximation and data compression [41,42].
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Figure 8. Confusion matrix of the classification results of the two-layer PEPS on the test set of the
COVID-19 Radiography dataset with o1 = 8, D = 4.

To further verify the learning ability of MLPEPS, we construct a deeper PEPS tensor
network for the COVID-19 radiography dataset four-class classification task. For an image
size of 64× 64, we construct three-layer, four-layer, and five-layer PEPS networks. The
experimental results and hyperparameters of each network are shown in Table 4. It is
found that the accuracy of MLPEPS on the test set gradually decreases with increasing
depth. Similar to deep learning, an increase in the number of network layers may cause
problems with overfitting, gradient disappearance, and gradient explosion, resulting in
decreased model performance. Therefore, the impact of a deeper PEPS tensor network
model on performance may require further exploration. In addition, the degradation of
model performance may be due in part to an inappropriate network structure. Because
changing the PEPS block size can lead to completely different model structures, the model
we construct in our experiments may not be the best model for the current dataset. These
results are provided simply to illustrate the learning ability of MLPEPS. In future attempts,
it is possible that more suitable structures for this task may be discovered.

Table 3. Comparison of the number of parameters of different models. Two-layer PEPS has a
relatively smaller number of parameters; when D = 3, it has only 1/90 the amount of parameter of
VGG-16. Compared with neural networks, MLPEPS has a great advantage in terms of the number
of parameters.

Model Parameter Ratio

single layer PEPS(D=4) 1,064,964 0.76
2-layer PEPS(o1 = 12, D = 3) 1,394,102 1.00
2-layer PEPS(o1 = 12, D = 4) 4,404,102 3.16
2-layer PEPS(o1 = 12, D = 5) 10,750,902 7.71
GoogLeNet 5,604,004 4.02
AlexNet 57,020,228 40.90
VGG-16 134,276,932 90.32
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Table 4. Deeper PEPS models are used to compare the test accuracy on the four-class COVID-19
Radiography dataset; the i-th element in m and o represents the block size and output index size,
respectively, of the i-th layer PEPS.

Model m o D Test Accuracy

3-layer PEPS [4, 2, 4] [6, 6, 4] 4 90.33%
4-layer PEPS [4, 2, 2, 4] [8, 8, 8, 4] 4 89.12%
5-layer PEPS [4, 2, 2, 2, 4] [8, 8, 8, 8, 4] 4 88.84%

6. Conclusions

By extending the single-layer PEPS model to multiple layers, in this paper we have
constructed the MLPEPS model for image classification. We use stochastic gradient descent
to update the parameters of the model. By abstracting the image information layer-by-layer
through multiple PEPS layers, MLPEPS achieves better classification results on image
classification tasks compared to single-layer PEPS. In order to verify the learning ability
of MLPEPS, experiments are first performed on the Fashion-MNIST dataset, proving that
MLPEPS has better performance than existing tensor networks; moreover, the accuracy of
MLPEPS on the test set exceeds that of several existing neural networks. In addition, we
verify the generalization ability of MLPEPS on the more complex COVID-19 Radiography
dataset. The results prove that MLPEPS has better performance on real datasets than that
of single-layer PEPS. However, its generalization ability is not as good as that of mature
neural networks. MLPEPS does achieve accuracy close to that of the neural networks with
a far smaller number of parameters. Thus, as a new machine learning method, MLPEPS
shows great potential for image classification tasks.

The biggest advantage of MLPEPS is that it can be composed of different structures by
modifying the size of the PEPS blocks; in future research, we intend to further explore the
application of MLPEPS with different structures. Our experiments suggest that the use of
different structures may have a very large impact on MLPEPS results. Therefore, the best
MLPEPS structures for different tasks is a topic that can be further explored. In addition,
deeper PEPS structures currently have relatively poor generalization ability. Therefore,
there is a need to study ways of avoiding overfitting in order to improve generalization
ability with more PEPS layers. This could be achieved by using the regularization mecha-
nism from deep learning. Ideas from well-known deep neural networks can be applied
to MLPEPS, which could constitute residual MLPEPS, dense MLPEPS, etc. Recently, the
development of portable devices has made lightweight networks [43] a very important
research direction. In this domain, MLPEPS can be used to compress the parameters of
lightweight networks by taking advantage of its very low parameter requirements.
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