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Abstract: It has been observed from previous large earthquakes that weakening the structural
foundation can reduce the damage of the structure itself by allowing a rocking motion to release the
seismic energy, and this seismic design philosophy is gradually applied to new constructions. In
this paper, a simplified model of the motion process of a rigid rocking block is proposed, the rocking
motion equation of rigid rocking block is derived, and the parameter analysis is carried out. It was
found that the height–width ratio and damping have a great impact on the rocking response of the
structure. On this basis, combined with the Winkler foundation model, the equation of motion of the
rigid rocking block considering the flexibility of the foundation is established. Through the analysis
of an example, it is found that damping plays an important role in the overturning resistance of
high-rise buildings and the soil elastic coefficient has a greater impact on the higher structure.

Keywords: rocking block; Winkler foundation; soil–structure interaction

1. Introduction

Based on the aim of sustainable development during urban regeneration, we are
increasingly concerned about whether a structure can be used effectively and sustainably. It
has been found that many buildings that can be preserved from ancient times benefit from
their own rocking motion when they encounter external vibration, such as the Yingxian
wooden tower [1] in China and the Aphaia temple in Greece [2]. These structures weaken
the connection between themselves and the foundation, release vibration energy through
their own rocking under external excitation, reduce the damage of the structure itself, and
achieve sustainability.

For the early study of rocking motion, people did not directly observe the partial lifting
of buildings, but started from some smaller and more intuitive structures or furniture. The
first person who systematically studied the problem of shaking and overturning of rigid
blocks and the good performance of some obviously unstable structures under strong
ground vibration was Housner [3]. In the Chile earthquake in May 1960, Houser observed
that a few elevated water tanks designed with a special construction similar to a hinge
joint at the bottom were almost intact after the earthquake, while other reinforced concrete
elevated water tanks that seemed more stable were seriously damaged. From this, he
proposed a theoretical model of the rigid rocking block (as shown in Figure 1), started the
analysis and research of it, and analyzed the rocking behavior of the rigid rocking block
when excited by the base. In 1978, Meek [4] carried out structural analysis through the
simplified single mode model of rocking core tube and found that the rocking core tube can
significantly reduce the dynamic response of the structure. The greater the height–width
ratio, the more significant the reduction effect of the dynamic response. In 1983, Psycharis
and Jennings [5] conducted a linear analysis of the rocking response of a rigid block on a
viscoelastic foundation. In 1985, Yim and Chopra [6] carried out research on the condition
that the bottom of the flexible structure is allowed to lift, and gave the corresponding linear
analysis method.
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Figure 1. Rigid rocking block and its motion equation.

Taniguchi’s research [7] in 2002 found that a rocking motion is a nonlinear problem,
and even simple harmonic excitation can produce many kinds of rocking motion. In 2003,
Jeong [8] conducted research on undamped rocking structures and found that periodic
motion and mixed motion are the main dynamic responses of such structures. In 2004,
Kuraffia [9] found that the earthquake damage of structures can be reduced with the struc-
tural lifting and rocking motion by studying the rocking structures with post-tensioned
tendons. In 2008, Palmeri and Makris [10] analyzed the nonlinear moment of the momen-
tum equation and found that the main factors affecting the motion of the rocking block
were the structural size, structural shape, height–width ratio, stiffness and damping of the
foundation, and energy loss in the collision process.

To create a sustainable and well-performing structural form that can rock to release
the energy input from the outside, the rationality of its assumptions in design must be fully
considered to ensure its long-term stability in practical use. The soil–structure interaction
(SSI) has long been a hot topic in earthquake engineering. At present, we usually calculate
the dynamic characteristics of the structure based on the assumption of a rigid foundation.
Considering the soil–structure interaction, the dynamic characteristics of the structure
system will be changed [11–14]. In the past, designers usually thought that the interaction
effect of soil and structure would make the structure safer and ignored the interaction effect
of the soil and structure to develop a more conservative design. However, a large number
of studies show that the soil–structure interaction is not always conservative [15]. In some
cases, the SSI effect cannot be ignored [16–18].

An actual earthquake disaster shows that the interaction between the soil and the
structure may cause the actual natural period of the structure to be larger than the calculated
value. Due to the wrong calculation of the structural period, the seismic period of the
structure is consistent with the site seismic period in the actual earthquake, resulting in
significant amplification of the building response and major damage (the Gediz earthquake
in 1970, the Mexico City earthquake in 1985, the Adana Ceyhan earthquake in 1998, etc.) [19].
George Mylonakis [20] summarized the disadvantages of the soil–structure interaction with
the structure, including increasing the natural vibration period of the structure, increasing
the seismic response of the structure, and increasing the ductility demand of the structure.

The research on the analytical solution of the simplified model of the soil–structure
dynamic interaction originated from the Boussinesq problem, in which Lamb [21] used
the transformation integral method to study the reaction of an elastic half space surface
under a vertical load in 1904. By 1936, Reissner [22] had analyzed and studied the vibration
problem of a rigid circular foundation on the surface of an elastic half space, and integrated
the solution given by Lamb, which was considered as the official start of the study of
soil–structure dynamic interactions. In the 1950s, many researchers obtained the transient
and steady analytical solutions of the translational, rotational, and torsional vibrations
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of circular and rectangular foundations under stress boundary conditions. By the mid-
1960s, Parmelee [23] had initially revealed the basic law of inertial dynamic interaction.
After that, with the continuous improvement of computer performance, the finite element
method has been used more often in the research of SSI systems. However, even today, the
analytic calculation method still has the advantages of fast calculation and a clear concept.
At present, the Winkler foundation model [24] is the most popular analytical method;
additionally, the elastic foundation beam method and the elastic continuum method [25]
are also widely used.

At present, we are not sure if SSI effect will affect the structure with a rocking motion,
which also restricts the practical engineering application of rocking structures to a certain
extent. For a structure that can rock and relax with a certain degree of constraint, the
problem of horizontal sliding hardly occurs, but bottom lifting, settlement, and structural
overturning due to overall rotation cannot be ignored. In this paper, based on the simplified
analysis model of the rocking block on the rigid ground proposed by Housner and the
linear differential equation derived by Psycharis and Jennings, the geometric nonlinear
motion equation of the two-spring rigid rocking block model is deduced and analyzed, and
the influence of the key parameters on the lifting, rotation, and overturning of the rocking
block is analyzed. Then, combined with the Winkler foundation model, the comprehensive
response of the rigid rocking block considering the foundation flexibility is studied. The
results of the above analysis can provide a reference for the design of structures with a
rocking motion.

2. Two-Spring Rocking Block Model
2.1. Model Introduction

For structures with rocking properties, such as self-centering frames and rocking
wall frame structures, they cannot be directly simplified as rocking blocks because the
relationship between them and the ground is not a simple contact, but a buffer to avoid
direct impact is set at the column bottom or at the bottom of the wall. When we assume that
this buffer is elastic and damped, without considering the sliding of the rigid block relative
to the base and the fact that the entire base cannot bear the tension, if the displacement of
the rigid block moving upward is greater than the displacement due to its own gravity (that
is, when the pressure on the spring is zero, the rigid block and the spring are separated),
the movement of the uniform rigid block is shown in Figure 2.

Figure 2. Two-spring rocking block model.
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The size of the rigid rocking block is B× H. It can be seen from theoretical mechanics
that when the center of mass of the block rotates beyond the vertical position of the long
side, the rigid block will overturn, and the overturning angle θ has the relationship seen in
Equation (1).

tan θ =
B
H

=
b
h

, sin θ =
b√

b2 + h2
=

b
R0

, cos θ =
h√

b2 + h2
=

h
R0

(1)

where B, H represent the width and height of the two-dimensional rocking block, respec-
tively; b and h represent half the width B and half the height H, respectively; and R0
represents the distance from the corners of the rocking block to the geometric center O.

Assume that the rigid block has only two degrees of freedom: vertical and rotation. It
can rotate around points L and R, but once it contacts the left or right spring supports, the
contact point will only allow vertical movement. When the displacement is small, the rigid
block is in continuous contact with the two supports L and R throughout the movement. If
the mass of the rigid block is m, when the vertical lifting of its side exceeds the displacement
of the support spring due to the dead weight of the rigid block δ = mg/2k, separation
occurs and the block is supported only on the other side. Therefore, a rigid block has four
motion states:

• Complete contact at the L point and R point;
• Only contacts the L point;
• Only contacts the R point (corresponding to the motion state in Figure 2);
• The rigid block is separated from the two points and moves freely.

Since the rigid block will not be constrained after it is separated from both supports, it
will be in a completely free motion state, so this situation should be avoided. Therefore, the
first three motion states are mainly studied here.

In Housner’s model, energy dissipates when the rigid block contacts and collides
with the rigid foundation, which will reduce the amplitude of each shaking until it finally
stops. However, after the introduction of elastic bearings, energy dissipation will not
occur automatically, and an energy dissipation mechanism must be introduced manually.
Therefore, a new damper is introduced [5], whose damping constant c∞ → ∞ . Tt is
connected in a series at the top of spring k and damper c. Because of its large damping
coefficient, the damper is essentially equivalent to a rigid link, which does not affect the
response of the system, except in the case of collision. At the moment of impact, we assume
that the rigid damper is locked, as shown in Figure 3b, for a short period of time ∆t, the
damper is moved ∆z, then the rigid damper unlocks. During this period, the spring k and
damper c are not activated, and the response is only affected by the rigid damper. Due to
the effect of this damper, the velocity of point L is reduced. After ∆t, the impact buffer is
unlocked, which has no impact on the response of the system thereafter.

Assume that ∆t→ 0 and c∞∆t is a constant and the preset collision energy dissipation
mechanism has a significant impact on the speed, but not on the displacement; then the
calculation of the velocity relationship and energy loss is as seen in Equations (2) and (3).

.
y2 + b

.
α2 = (

.
y1 + b

.
α1)e

− IO
IM

c∞∆t
m = ε(

.
y1 + b

.
α1) (2)

∆E =
1
2

m
IM
IO

(1− ε2)(
.
y1 + b

.
α1)

2 (3)

where
.

y1,
.

α1,
.

y2,
.

α2 correspond to the vertical speed and rotation angular speed before and
after the collision, b is half of the width of the rigid block, and IO, IM correspond to the
inertia moments of the rigid block around point O and point M, respectively. According
to Psycharis and Jenning’s research, 0 < ε ≤ εmax ≤1, εmax is a parameter related to the
physical characteristics of the rocking block itself and it can be calculated as Equation (4).
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Figure 3. Imposed impact damper.

εmax =
IO + mR2

0 cos(2θ)

IO + mR2
0

=
1 + µ cos(2θ)

1 + µ
(4)

where µ = mR2
0/IO, denoting the shape factor of the rigid block. For a rectangular block

(µ = 3), Equation (4) is then simplified to εmax = 1− 3sin2θ/2. Therefore, there is a limit
overturning angle θmax, as Equation (5).

θmax = arcsin

√
6

3
= 54.7◦ (5)

When the rigid block is too short and wide, H/B <
√

2/2, θ > 54.7o, the rocking will
not occur after collision, therefore the rocking block cannot be set too short.

In most practical cases, only a rocking motion occurs and neither support is separated
from the frame, and the value of the coefficient of restitution ε is close to εmax. Therefore,
the rocking response is only related to the overturning angle θ and the frequency ω of the
rigid block itself. The frequency ω can be calculated as Equation (6).

ω =

√
µ

µ + 1
g

R0
(6)

The spring support is assumed to be a viscoelastic Kelvin–Voigt model, that is,
the spring stiffness and the damping coefficient of the viscous damper are defined as
Equation (7).

k =
mω2

v
2

(7a)

c = ξvmωv (7b)

The vertical frequency coefficient ωv and damping coefficient ξv both depend on the
vertical stiffness of the supported elastic cushion. To facilitate the analysis, the scale factor
is defined as Equation (8).

β =
ωv

ω
(8)

2.2. Motion Equation of Full Contact

When both ends of the rigid block are in contact with the spring, the force analysis is
as shown in Figure 4.
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Figure 4. Force analysis of a rigid block in full contact.

The corresponding motion equation is shown in Equation (9).

m
..
x = −m

..
xg(t) + HL + HR (9a)

m
..
y = −m[g +

..
yg(t)] + NL + NR (9b)

IO
..
α = −(HL + HR)R0 cos θ cos α + R0[NL sin(θ + α)− NR sin(θ − α)] (9c)

..
x and

..
y are the horizontal and vertical accelerations of the center of the rigid block,

respectively; NL and NR are the vertical reactions of the left and right bearings, respectively;
HL and HR are the horizontal reaction force of the left and right supports, respectively;
..
xg(t) and

..
yg(t) are the time history of horizontal component and vertical component of

ground acceleration, respectively; g is the acceleration of gravity; and the other characters
have the same meanings as above.

Assume that the vertical component of the bearing I(I = L/R) is NI , and the upward
displacement and velocity are yI and

.
yI . The stress relationship is shown in Equation (10).

NI = k(δ− yI)− c
.
yI (10)

As the rigid block is in a full-contact state, both ends of the support shall meet the
requirements NI ≥ 0. Since the bearing is assumed to be free from any tension, the first
bearing will be separated from the rigid block when NI = 0 and

.
yI > 0.

Under the assumption above, the rigid block is not allowed to slide, so in fact, the
whole system has only two degrees of freedom. For convenience, the vertical displacement
y and rotation angle α of the center of the rigid block are selected. In addition, in the full-
contact state, the displacement of a point on the rigid block is actually the superposition of
the vertical displacement and the rotation displacement around the bottom center point M.
According to the motion theorem of the center of mass, the expression of the displacement
at the center of mass can be deduced as Equation (11).

x = R0 cos θ sin α = h sin α (11a)

yM = y + R0 cos θ(1− cos α) = y + h(1− cos α) (11b)
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yL = yM + R0 sin θ sin α = y + h(1− cos α) + b sin α (11c)

yR = yM − R0 sin θ sin α = y + h(1− cos α)− b sin α (11d)

Combined with Equations (7)–(11), the second-order nonlinear differential equation of
a rigid block in full-contact motion is finally obtained as Equation (12).

..
y + 2ξVβω

.
y + β2ω2y +

µβ2g
1 + µ

cos θ(1− cos α +
2ξVω sin α

β

.
α) = − ..

yg(t) (12a)

(1 + µ cos2 θ cos2 α)
..
α− µ cos2 θ sin 2θ

2
.
α

2
+ µξvβω(1− cos 2θ cos 2α)

.
α

+µβ2ω2(cos2 θ − 1+µ

µβ2 cos θ − cos 2θ cos α) sin α

+ (1+µ)β2ω2

g cos θ sin α(y + 2ξVω
β

.
y) = − (1+µ)ω2 cos θ cos α

g
..
xg(t)

(12b)

2.3. Motion Equation of a Rigid Body with One Side Detached

As described in Section 2.2, when the upward displacement of the rigid block is greater
than its sinking δ due to its own weight and upward velocity

.
yL > 0, the left side will

be separated from the support, and only the right side will bear the force, as shown in
Figure 5b. At this time, the dynamic equation can be obtained according to the force balance
conditions shown in Equation (13).

m
..
x = −m

..
xg(t) + HR (13a)

m
..
y = −m[g +

..
yg(t)] + NR (13b)

IO
..
α = −HRR0 cos(θ + α)− NRR0 sin(θ − α) (13c)

Figure 5. Force analysis of a rigid block after separation on one side.

The corresponding displacement relation is shown in Equation (14).

xR = x + R0 sin(θ − α) (14a)

yR = y− R0[cos(θ − α)− cos θ] = y− R0 cos(θ − α) + h (14b)
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Combining Equations (7), (8), (10), (13), and (14), the equation of motion after the left
end separation is obtained. Through a similar process, the equation when the right end is
separated can be obtained. By combining the two, the equation expression when only one
side is stressed can be obtained as Equation (15).

..
y + ξVβω

.
y + β2ω2

2 y + µβ2g
2(1+µ)

[cos(θ ± α)− cos θ ∓ 2ξV
.
α

βω sin(θ ± α)]

= − ..
yg(t)−

g
2

(15a)

[1 + µ cos2(θ ± α)]
..
α∓ µ sin 2(θ±α)

2
.
α

2
+ µξvβω sin2(θ ± α)

.
α

+ µβ2ω2

2 [cos θ − 1+µ

µβ2 − cos(θ ± α)] sin(θ ± α)

+ (1+µ)β2ω2

2g sin(θ ± α)(y + 2ξV
βω

.
y) = − (1+µ)ω2 cos(θ±α)

g
..
xg(t)

(15b)

The opposite signs in the equation denote that the rocking block rotates left or right.

2.4. Parameter Analysis

According to geometric analysis, the maximum rotation angle interval where the
rigid block never separates during movement is [−α, α], and the α can be calculated as
Equation (16).

α = arcsin
[

δ

R0 sin θ

]
= arcsin

[
1 + µ

µβ2 sin θ

]
(16)

The suffered unit excitation in the x-direction of the model is shown in Equation (17)
and Figure 6.

..
xg(t) = ag(t) = −g sin(2πt), 0 ≤ t ≤ 1 (17)

Figure 6. Input excitation.

Suppose that the kinetic energy recovery coefficient of the rigid rocking block is
always εmax, the effects of different height width ratios (H/B = 2.0, 4.0, 6.0), different
sizes (R0 = 1.0, 5.0, 10.0), different spring stiffness (β = 10, 20, 40), and different damping
(ξv = 0.05, 0.10, 0.20, 0.40) on the response of the rigid block are analyzed. In order to
facilitate the analysis, the clockwise rotation angle α and vertical displacement y of the two
parameters of the response are normalized and divided by the overturning angle θ of the rigid
block itself and the displacement δ generated under the self-weight condition, respectively.

The response of the structure within 10s is solved by numerical integration pro-
grammed in Matlab, and the response results are shown in Figures 7–15. In order to
indicate the separation of one end of the rigid block from the spring, the rotation angle α
when one side of the rigid block is separated is marked in the figure (two brown horizontal
solid lines). In Figures 7–15, α/θ < |α/θ| < 1 indicates the lifting of one side of the rigid
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rocking block, α/θ < 0 indicates that the rigid block rotates counterclockwise and inclines
to the left, α/θ > 1 means that the rotation angle has exceeded the overturning angle of the
rigid block itself, and the subsequent response becomes meaningless, so the overturning
time occurs at the mark in Figures 7–15.

Figure 7. R0 = 1.0, β = 10. Relative rotation angle and vertical displacement.

Figure 8. R0 = 1.0, β = 20. Relative rotation angle and vertical displacement.
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Figure 9. R0 = 1.0, β = 40. Relative rotation angle and vertical displacement.

Figure 10. R0 = 5.0, β = 10. Relative rotation angle and vertical displacement.
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Figure 11. R0 = 5.0, β = 20. Relative rotation angle and vertical displacement.

Figure 12. R0 = 5.0, β = 40. Relative rotation angle and vertical displacement.
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Figure 13. R0 = 10.0, β = 10. Relative rotation angle and vertical displacement.

Figure 14. R0 = 10.0, β = 20. Relative rotation angle and vertical displacement.
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Figure 15. R0 = 10.0, β = 40. Relative rotation angle and vertical displacement.

In Figures 7–15, each figure is the response of the structure with different height–width
ratios under a fixed rigid block size and spring stiffness. It can be found from these figures
that when the size of the rigid block and the stiffness coefficient of the bottom spring
are determined, its relative rotation response and relative vertical displacement response
increase with the increase of the height–width ratio of the rigid block. When the size of
the rigid block is big and the stiffness coefficient of the spring are small, the rigid block
may overturn in a very short time under excitation. With the increase of the height–width
ratio, the overturning time will be shorter and shorter, and the occurrence of this overturn
does not change with the different damping of the structure. When the spring stiffness at
the bottom of the structure is large, the overturning response may occur after the end of
excitation (H/B = 6.0 in Figure 11).

From the comparison between the figures, when the height–width ratio of the rigid
block and the stiffness coefficient of the spring are determined, it takes longer for the
structure to become stable under the damping effect, as the size of the structure increases.
When the height–width ratio is small, the response of the relative rotation angle and vertical
displacement of the rigid block decrease with the increase of the size of the rigid block.
When the height–width ratio is large, the response of the structure increases first, and
then decreases as the size of the structure increases. This shows that for a structure with
a larger height–width ratio, increasing the structure size may increase the response. In
general, as the size of the structure increases, the possibility of overturning decreases and
the occurrence time becomes later.

When the height–width ratio and size of the rigid block are determined, with the
increase of the stiffness of the spring, the relative angular response and displacement
response of the rigid block decrease. If the structure will overturn, the time point of
overturning will be delayed. However, the subsequent response of the rigid block will
gradually increase, or even exceed the initial response. At this time, the damping can well
reduce the subsequent response amplitude of the rigid block. When the damping is large,
the rigid block can be stabilized in a very short time.
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3. Winkler Foundation Model

In order to consider the flexibility of the foundation under the rigid rocking block, the
two-dimensional model of the Winkler foundation was used to simulate the foundation
soil. The parameters of the Winkler foundation model are essentially the same as those
of the two-spring models. The difference is that the bottom is replaced with a uniformly
distributed damper and a spring in parallel. The stiffness and damping of each spring are
k0 and c0, respectively. The displacement generated under the dead weight of the rigid
block is δ = mg/(2bk0). The model diagram is shown in Figure 16.

Figure 16. Winkler foundation model.

Assuming that the displacement and rotation angle are relatively small, the motion
equation under a full-contact state is shown in Equation (18).

m
..
y + 2bc0

.
y + 2bk0y = −m

..
yg(t) (18a)

IM
..
α +

2
3

b3c0
.
α + k0b(

2b2

3
− 2hδ)α = −mh

..
xg(t) (18b)

where IM = IO + mh2, denoting the moment of inertia of the rigid block to the bottom
midpoint M. When the left end is raised, the motion equation is shown in Equation (19).

m
..
y + c0(Ψ1

.
y + Ψ2

.
α) + k0Ψ3 = −1

2
mg−m

..
yg(t) (19a)

(
IM + mbhα)

..
α + c0(Ψ4

.
α + Ψ5

.
y) + k0Ψ6 = −(mbα + mh)

..
xg(t) (19b)

where
Ψ1 = b +

δ− y
α

(19c)

Ψ2 = − b2

2
+

(δ− y)2

2α2 (19d)

Ψ3 = −by− b2

2
α− (δ− y)2

2α
(19e)



Sustainability 2023, 15, 5095 15 of 21

Ψ4 =
b3

3
− b2h

2
α +

hδ2 + 2hδy
2α

+
hy2

2α2 +
(y + δ)3

3α3 (19f)

Ψ5 = − b2

2
+ hδ + hbα− hy +

(y− δ)2

2α2 (19g)

Ψ6 = b( 2b2

3 − 2hδ)α + hbyα− ( b2

2 − hδ)y + (y−δ)3

6α2

− hy2

2 −
b2hα2

2 + b2δ
2 −

hδ2

2

(19h)

It can be seen from the equation above that the equations of motion of the system
are uncoupled during the full contact process, and they can be solved directly. When one
side of the rigid block is separated, the equations are coupled and highly nonlinear due to
geometric complexity. The contact length S with the bottom foundation changes with y
and α, which makes the problem more complicated.

4. Rigid Rocking Body Model on Winkler Foundation
4.1. Combination of Two Models

The two-spring rigid rocking block model was combined with the Winkler foundation
model. The foundation cushion cap plate acts as a rigid body on the Winkler foundation,
and then the two-spring rigid rocking blocks act on the cushion cap plate. The combined
model is shown in Figure 17.

Figure 17. Rigid rocking block model on a Winkler foundation.

When analyzing the motion response of the upper rigid rocking block, first take the
upper part as a whole, input excitation f (t) from the Winkler foundation model to obtain the
response result of the upper whole rs1(t) and the response of the bottom foundation plate
rb(t), then input the response of the bottom foundation cap plate rb(t) as a new excitation
into the two-spring foundation model to obtain the response of the upper structure rs2(t),
and finally combine the two reactions to obtain the total response of the structure shown in
Equation (20).

rs(t) = rs1(t) + rs2(t) (20)

4.2. Equivalent 3D Frame to 2D Rigid Block

A two-dimensional rigid block model was used in the previous analysis; however, the
actual structure is a three-dimensional frame. Therefore, the 3D model should be equivalent
to the 2D rigid block before the case analysis. The schematic diagram of the equivalent
process is shown in Figure 18.
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Figure 18. Equivalence of 3D frames.

In the 2D and 3D models, R0 and R′0 both denote the distance from the geometric center
of the model to the contact point between the bottom of the structure and the foundation.
The difference is that, since most of the frame is hollow, the mass m cannot be expressed
by the original apparent volume calculation and must be appropriately reduced, and the
shape coefficient µ will also change. The Bx − H plane of the frame is equivalent to the
two-dimensional rigid body model, and the equivalent parameters can be calculated by
Equations (21)–(23).

B′ = Bx, H′ = H, R′0 = R0 =
1
2

√
B2

x + H2 (21)

µ =
(∑ mi)R2

0

∑ Ioi
=

(∑ mi)R2
0

∑ Ii + ∑ miL2
i

(22)

χ =
∑ Vi

Bx × By × H
(23)

where mi refers to the mass of the ith component (beam, column, floor, infilled wall, etc.)
of the frame; Ii and IOi respectively refer to the moment of inertia of the ith component
around its shape-center and around point O; Li refers to the distance from point O to the
shape-center of the ith component; χ refers to the space proportion; and Vi refers to the
volume of the ith component of the frame.

To simplify the calculation, assume that Bx = By, the slab thickness is taken as 0.12 m,
and the infill wall thickness is taken as 0.15 m. Table 1 shows the shape factor of the rigid
block µ and the actual space proportions χ in several different cases, in which the parameter
unit of the frame is m.

Table 1. Shape factor µ and space ratio χ in several cases.

Bx H Floors Column Width Beam Height Beam Width µ χ

3 9 3 0.25 0.25 0.20 1.685 0.153
3 14 4 0.30 0.30 0.20 0.922 0.157
3 16 5 0.35 0.35 0.30 0.672 0.180
4 9 3 0.30 0.30 0.20 1.137 0.123
4 14 4 0.35 0.30 0.20 0.643 0.129
5 15 5 0.40 0.35 0.30 0.382 0.125
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It can be seen that for common frame structures, the value µ is far less than the value of
the rectangular block (µ = 3), and the actual space of the structure χ accounts for less than
20% of the total space. Therefore, it is necessary to adjust the coefficient of the simplified
two-dimensional block.

4.3. Analysis of Numerical Examples

On the basis of the foregoing derivation, this section will analyze the free response
of the rocking structure and the response under the action of seismic waves. Considering
the three-story and six-story rocking frame structures with a structural width of 4 m, the
parameters after equivalence are shown in Table 2.

Table 2. Equivalent parameters of the frame.

Floors B′/m H′/m m/kg µ χ

3 4 9 4.58 × 104 1.153 0.127
6 4 18 9.90 × 104 0.380 0.138

The height of the base cushion cap is taken as 1/20 of the main structure, and the scale
factors β are taken as 20, 40, and 60. The damping ratio of the selected system is 0.10, and
the damping ratio of the soil is taken as 0.20.

4.3.1. Influence of Soil Elasticity and Structural Spring Stiffness on Structural
Rotation Response

Under the conditions that the initial rotation angle of the structure is 0.10 rad, the
response of the rotation angle and vertical displacement of the structure under different
soil properties were studied. The results are shown in Figures 19 and 20.

Figure 19. Rotation and displacement of the three-story frame.

It can be found from Figure 19 that the rotation and vertical displacement responses
of the three-story structure are affected very little by k0. However, in Figure 20, for a
six-story structure, when the spring stiffness of the Winkler foundation is small (β = 20),
the maximum response of the structure increases with the increase of k0, but with the
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increase of the base spring stiffness (β increase), k0 almost no longer has a large impact on
the structural rotation and vertical displacement response.

Figure 20. Rotation and displacement of the six-story frame.

Comparing the different β of the same structure, we can determine the rotation
response of the structure or the vertical displacement response of the structure. Its impact
on the initial response is very small, but it has a great impact on the subsequent response.
With the increase of the spring stiffness at the bottom of the structure, the attenuation of the
rotation response and the vertical displacement response of the structure becomes faster,
but the maximum response of the vertical displacement of the structure also increases.

Comparing different structures in the same β and k0, it can be found that the response
attenuation speed of the three-story structure is obviously faster than that of the six-story
structure, and the peak value of its rotation and vertical displacement response is also
smaller than that of the six-story structure.

4.3.2. Effect of Different Bottom Spring Stiffness of a Rocking Structure on the Response of
the Structure under Ground Motion

Since the influence of foundation stiffness on the structural response is not particularly
obvious, one soil stiffness (k0 = 9MPa) was selected, and then the seismic record of TCU128
that occurred in Jiji, Taiwan in 1999 was input into the system. The time history of the
motion and the corresponding Fourier spectrum is shown in Figure 21, taking 30–60 s
for analysis.

Figure 21. Time history and acceleration response spectrum of TCU128.
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The overturning angles of the three-story and six-story frames are θ1 = 0.418 rad and
θ2 = 0.219 rad, respectively. The response of the two frames under different base spring
stiffness was studied, and the results are shown in Figures 22 and 23.

Figure 22. Rotation response of frames under TCU128.

Figure 23. Displacement response of frames under TCU128.

Comparing the responses of the three-story structure and six-story structure, it can
be found that the response of the three-story structure is far less than that of the six-
story structure, and with the increase of the base spring stiffness, the rotation and vertical
displacement responses of the structure decrease significantly. This means that for a rocking
structure, reducing the height of the structure or increasing the stiffness of the base spring
will greatly reduce the response of the structure. Therefore, when weakening the connection
between the bottom of the structure and the foundation, it is necessary to consider that
the weakening degree should not be too large, otherwise it will produce a huge response.
For the three-story structure, the structure will not overturn during the entire event, and
the structure remains stable. For the six-story structure, when the spring stiffness at the
base is small (β = 20), the six-story structure will overturn during the event, and increasing
the spring stiffness of the base can effectively reduce the response of the structure, thus
avoiding the occurrence of overturning.

5. Conclusions

In this paper, the theoretical model of the motion of the rigid rocking block is deduced
and the parameters are analyzed based on the previous motion model of the rigid rocking
block. After that, by combining with the Winkler foundation model, the motion equation
of the rigid rocking block considering the flexibility of the foundation is derived, and the
parameter analysis is conducted with the example of a three-story frame and a six-story
frame. The main conclusions are as follows.

(1) The damping of the spring support has little effect on the initial response of the
rocking block but has a great effect on the subsequent response. The increase of
damping can effectively reduce the subsequent response of the rocking structure.
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(2) The structure size and height–width ratio have great influence on the response of the
rocking block, and increasing the size can effectively prevent the overturning of the
rocking block.

(3) When the spring stiffness of the base is small, the soil elastic coefficient has a greater
impact on the higher story structure.

(4) Under the same conditions, the attenuation speed of the response of the three-story is
faster than that of the six-story’s.

(5) For the three-story rocking frame model, the change of the soil elastic coefficient
within a certain range ( k0 = 3 ∼ 12 MPa) has no obvious effect on its initial rotation
response. However, for the six-story model, when the spring stiffness of the base is
small (β = 20), the larger k0 is, the greater its response is. When β becomes larger, the
influence of k0 becomes less obvious.

Author Contributions: Conceptualization, P.L. and Z.Z.; methodology, D.H. and P.L.; writing—
original draft preparation, P.L. and D.H.; writing—review and editing, D.H. and P.L. All authors have
read and agreed to the published version of the manuscript.

Funding: Financial support from the National Natural Science Foundation of China (51978524) is
highly appreciated.

Institutional Review Board Statement: The study did not require ethical approval.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, T.T. Exploration on the Origin of Architectures Murals—Analysis on Geographical Features of Song, Liao and Jin Dynasty in

Shanxi. Adv. Mater. Res. 2014, 838–841, 2870–2874. [CrossRef]
2. Makris, N.; Vassiliou, M.F. Planar Rocking Response and Stability Analysis of an Array of Ffree-standing Columns Capped with

a Freely Supported Rigid Beam. Earthq. Eng. 2012, 45, 31–39.
3. Housner, G.W. The Behavior of Inverted Pendulum Structures During Earthquakes. B. Seismo. Soc. Am. 1963, 53, 403417.

[CrossRef]
4. Meek, J.W. Dynamic Response of Tipping Core Buildings. Earthq. Eng. Struct. Dyn. 1978, 6, 437–454. [CrossRef]
5. Psycharis, I.N.; Jennings, P.C. Rocking of Slender Rigid Bodies Allowed to Uplift. Earthq. Eng. Struct. Dyn. 1983, 11, 57–76.

[CrossRef]
6. Chopra, A.K.; Yim, S.C.S. Simplified Earthquake Analysis of Structures with Foundation Uplift. J. Struct. Eng. 1985, 111, 906–930.

[CrossRef]
7. Taniguchi, T. Non—Linear Response Analyses of Rectangular Rigid Bodies Subjected to Horizontal and Vertical Ground Motion.

Earthq. Eng. Struct. Dyn. 2002, 31, 1481–1500. [CrossRef]
8. Jeong, M.Y.; Suzuki, K.; Yim, S.C.S. Chaotic Rocking Behavior of Freestanding Objects with Sliding Motion. J. Sound. Vib. 2003,

262, 1091–1112. [CrossRef]
9. Kuraffia, Y.C.; Shen, Q. Posttensioned Hybrid Coupled Walls under Lateral Loads. J. Struct. Eng. 2004, 130, 297–309.
10. Palmeri, A.; Makris, N. Response Analysis of Rigid Structures Rocking on Viscoelastic Foundation. Earthq. Eng. Struct. Dyn. 2008,

37, 1039–1063. [CrossRef]
11. Veletsos, A.S.; Meek, J.W. Dynamic Behaviour of Building-foundation Systems. Earthq. Eng. Struct. Dyn. 1974, 3, 121–138.

[CrossRef]
12. Bielak, J. Dynamic Behaviour of Structures with Embedded Foundations. Earthq. Eng. Struct. Dyn. 1974, 3, 259–274. [CrossRef]
13. Kim, S.; Stewart, J.P. Kinematic Soil-Structure Interaction from Strong Motion Recordings. J. Geotech. Geoenviron. Eng. 2003, 129,

323–335. [CrossRef]
14. Mylonakis, G.; Nikolaou, S.; Gazetas, G. Footings under Seismic Loading: Analysis and Design Issues with Emphasis on Bridge

Foundations. Soil Dyn. Earthq. Eng. 2006, 26, 824–853. [CrossRef]
15. Veletsos, A.S.; Prasad, A.M.; Tang, Y. Design Approaches for Soil-Structure Interaction; NCEER: Buffalo, NY, USA, 1988.
16. Chopra, A.K.; Gutierrez, J.A. Earthquake Response Analysis of Multistorey Buildings including Foundation Interaction. Earthq.

Eng. Struct. Dyn. 1974, 3, 65–77. [CrossRef]
17. Novak, M. Effect of Soil on Structural Response to Wind and Earthquake. Earthq. Eng. Struct. Dyn. 1974, 3, 79–96. [CrossRef]
18. Constantinou, M.C.; Kneifat, M.C. Dynamics of Soil-base-isolated Structure Systems. J. Struct. Eng. 1988, 114, 211–221. [CrossRef]

http://doi.org/10.4028/www.scientific.net/AMR.838-841.2870
http://doi.org/10.1785/BSSA0530020403
http://doi.org/10.1002/eqe.4290060503
http://doi.org/10.1002/eqe.4290110106
http://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(906)
http://doi.org/10.1002/eqe.170
http://doi.org/10.1016/S0022-460X(02)01087-8
http://doi.org/10.1002/eqe.800
http://doi.org/10.1002/eqe.4290030203
http://doi.org/10.1002/eqe.4290030305
http://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(323)
http://doi.org/10.1016/j.soildyn.2005.12.005
http://doi.org/10.1002/eqe.4290030106
http://doi.org/10.1002/eqe.4290030107
http://doi.org/10.1061/(ASCE)0733-9445(1988)114:1(211)


Sustainability 2023, 15, 5095 21 of 21

19. Hamza, G.; Pala, M. On the Resonance Effect by Dynamic Soil-structure Interaction: A Revelation Study. Nat. Hazards 2014, 72,
827–847.

20. Mylonakis, G.; Gazetas, G. Seismic Soil-Structure Interaction: Beneficial or Detrimental. J. Earthq. Eng. 2000, 4, 277–301. [CrossRef]
21. Lamb, H. On the Propagation of Tremors over the Surface of an Elastic Solid. Philo. Trans. Roy Soc. Ser. A 1904, 203, 1–42.
22. Reissner, E. Stationäre, axialsymmetrische, durch eineschütte lndeMasse erregte Schwingungeneines homogenen elastischen

Halbraumes. Ing. Archiv. 1936, 7, 381–396. [CrossRef]
23. Parmelee, R.A. Building Foundation Interaction Effects. J. Eng. Mech. Div. 1967, 93, 131–152. [CrossRef]
24. Clelland, B.M.; Focht, J.A. Soil Modulus for Laterally Loaded Piles. Transactions 1958, 123, 1049–1086.
25. Yan, B.; Wang, Z.Q.; Wang, J.J. Review of Winkler Foundation Beam Model on Pile-soil Interaction Research Area. Build. Struct.

2011, 41, 1363–1368.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1080/13632460009350372
http://doi.org/10.1007/BF02090427
http://doi.org/10.1061/JMCEA3.0000834

	Introduction 
	Two-Spring Rocking Block Model 
	Model Introduction 
	Motion Equation of Full Contact 
	Motion Equation of a Rigid Body with One Side Detached 
	Parameter Analysis 

	Winkler Foundation Model 
	Rigid Rocking Body Model on Winkler Foundation 
	Combination of Two Models 
	Equivalent 3D Frame to 2D Rigid Block 
	Analysis of Numerical Examples 
	Influence of Soil Elasticity and Structural Spring Stiffness on Structural Rotation Response 
	Effect of Different Bottom Spring Stiffness of a Rocking Structure on the Response of the Structure under Ground Motion 


	Conclusions 
	References

