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Abstract: The increased interest in renewable-based microgrids imposes several challenges, such as
source integration, power quality, and operating cost. Dealing with these problems requires solving
nonlinear optimization problems that include multiple linear or nonlinear constraints and contin-
uous variables or discrete ones that require large dimensionality search space to find the optimal
or sub-optimal solution. These problems may include the optimal power flow in the microgrid, the
best possible configurations, and the accuracy of the models within the microgrid. Metaheuristic
optimization algorithms are getting more suggested in the literature contributions for microgrid
applications to solve these optimization problems. This paper intends to thoroughly review some
significant issues surrounding microgrid operation and solve them using metaheuristic optimization
algorithms. This study provides a collection of fundamental principles and concepts that describe
metaheuristic optimization algorithms. Then, the most significant metaheuristic optimization al-
gorithms that have been published in the last years in the context of microgrid applications are
investigated and analyzed. Finally, the employment of metaheuristic optimization algorithms to
specific microgrid issue applications is reviewed, including examples of some used algorithms. These
issues include unit commitment, economic dispatch, optimal power flow, distribution system recon-
figuration, transmission network expansion and distribution system planning, load and generation
forecasting, maintenance schedules, and renewable sources max power tracking.

Keywords: metaheuristics; optimization; electrical engineering; renewable energy; microgrid opera-
tion; performance enhancement

1. Introduction

Because of the excessive use of fossil fuels for energy generation, global interest is
going to the environmental crisis. As a result, a transformation to clean alternative energy
is necessary to avert economic and environmental problems. Thus, the transition from the
current power system’s dependency on conventional fossil-based energy resources to an
energy mix that includes renewable energy resources (RESs) is required [1]. These RESs
(wind, solar, water, biomass, geothermal, and other non-fossil energies) are characterized as
cleaner and more sustainable power sources [2]. The development and usage of RESs have
increasingly become the sole solution to assure social and sustainable development [3].
Renewable energy often necessitates the utilization of distributed generating technologies
(DG) [4]. DG technology, as opposed to the traditional centralized power network, is
designed and used in accordance with the geographical distribution features of RESs
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and loads. Nonetheless, an increase in grid permeability can damage the distribution
network in terms of loss in active power, harmonic, power flow, short circuit current,
voltage flicker, and dynamic and transient stabilities [5]. Hence, the traditional power
system is not built to accommodate new generating sources, posing technical and economic
hurdles in maintaining stability, extending durability, and maximizing economic viability.
To accommodate these problems, microgrids (MGs) are suggested by the Consortium
for Electric Reliability Technology Solutions (CERTS) [6]. According to the (CERTS), the
microgrid paradigm involves the interconnection of loads and micro-sources working as
a single system delivering electricity and heat. Most of these sources must be combined
with power electronic converters to give the flexibility necessary to operate correctly with
enhanced reliability and security. MGs based on RESs are installed near end consumers to
help reduce greenhouse gas emissions, eliminate transportation losses, enhance economic
benefits, enhance power quality and safety, flexibly operate in grid or island mode, and
ensure power supply in the event of a primary grid outage [7]. Furthermore, this technology
is suitable for electrifying islands and rural and isolated zones [8]. However, the complexity
of MG operation might make assuring a safe and economic power supply more difficult [9].
A microgrid may function as a controlled unit for large power grid systems since it has
variable operating modes and schedulable performance. It can function autonomously in
case of grid black-out, or the power quality does not satisfy the criteria. To summarize,
microgrids tackle the challenge of large-scale access, maximize their benefits, and achieve
an efficient, safe, clean, and stable energy supply.

Energy management must optimize the combination and integration of RESs, hybrid
energy storage systems (ESSs), and controlled and non-controlled loads while taking into
account energy and market projections, user demands, and operational restrictions [10].
In addition, the demand response has to be fulfilled by the implemented management
strategy [11]. Other options can be included, such as minimizing the oscillations in the
produced renewable power, controlling power resources to accommodate microgrid re-
strictions in near real-time, optimizing power flows, and providing ancillary services [12].
With the continued expansion of microgrid technologies, research on optimizing microgrid
energy management has theoretical value and importance [13]. As a result, various studies
and review papers have been published recently. Cagnano et al. [14] outlined the major
design aspects of current microgrids, partly based on their experience with the Prince
Lab microgrid in Italy. Shuai et al. [15] conducted a thorough study on power system
stability while taking into account the microgrid operating states, induced disturbance, and
operating time. A study of demand response (DR) modeling in MG operation has been
proposed by Hosseini et al. [16], focusing on time-based DR applications. Rebollal et al. [17]
examined 23 DGs for microgrid standards, concentrating on grid connection and operating
technical criteria. Carpintero-Rentera et al. [18] conducted a study of the literature on
microgrids concerning several issues like economic performance, standards, emissions,
infrastructure, control plans, and operation. A review that highlights the advancements in
DC microgrids planning, operation, and control has been suggested by Saleh Al-Ismail [19].

Adequately addressing these fundamental tasks depends upon solving nonlinear
optimization problems that include multiple linear or nonlinear restrictions and continuous
or discrete variables that may involve a large dimensionality search space to achieve the
optimal or sub-optimal solution. Metaheuristic optimization algorithms (MOAs) are getting
more suggested in the literature contributions for microgrid applications to solve these
optimization problems satisfactorily [20,21]. Using metaheuristic optimization algorithms
to solve these problems seems an excellent solution [22]. Despite MOAs’ success in ad-
dressing larger problems, they cannot handle all optimization problems, and on average,
all MOAs perform equally (no free lunch theorems [23]). In other words, no algorithm can
be regarded as the best one. Then, the NFL theorem encourages the development of new,
effective optimizers. This study depicts and analyzes the recently developed MOAs and
examines how they might be used to improve renewable-based microgrids. This paper
began with an overview of MOAs, concentrating on the principal steps for their application:
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framing the optimization problem within the heuristics, the definition of the search space,
constraints, initial positions generation, best individuals’ selection, and whole individuals’
movement based on iterative process according to the inspiration behavior. Then, the
following section review several published works in the context of microgrids. Unfortu-
nately, there is a limited number of comprehensive review papers that covers microgrid
optimization approaches and strategies. As a result, this study analyzes existing works on
microgrid operation optimization in several aspects.

This paper reviews the optimization of microgrid issues that can be considered in
the electrical engineering field. This paper provides multiple contributions. First and
foremost, this paper includes the basics of MOAs and the presentation and explanation of
several most used MOAs. Second, a detailed review concentrating on microgrid operating
optimization is provided in the paper. Last, this paper includes the deployment of MOAs
on other related MG applications. Compared to the other published review papers, this
paper presents a complete review between the metaheuristic optimization algorithms and
several microgrid issues that the metaheuristic optimizers will resolve. This paper include
recently published sources that reflect the current tendency in the studied topic.

2. Metaheuristic Optimization Algorithms
2.1. Overview

Metaheuristics are approximation techniques that integrate fundamental heuristic ap-
proaches to provide a more effective exploration of the search space [24]. A metaheuristic is
described by Voßet al. [25] as a repetitive process that leads and changes the tasks using sub-
ordinate heuristics to simplify generating high-quality optimal or near-optimal solutions.
At each iteration, the MA can operate with single or multiple solutions with a minimization
or maximization procedure. The essential features of metaheuristics, according to [26], can
be listed as

1. They are algorithms used to “guide” the search phase.
2. They aim to efficiently explore the search space in order to achieve the optimal or

sub-optimal solution.
3. The methods employed to encompass various algorithms, from basic searches to

complicated learning technics.
4. Mechanisms to prevent the local optimum may be included.
5. They are not limited to specific issues.
6. They may employ domain-specific information via local heuristics.

In terms of the phrase “metaheuristic,” the term “heuristic” refers to a tool that aids in
discovery, while “meta” is often included to denote the existence of higher-level technics
that helps in the tracking of optimal solutions [27]. The foundation of many metaheuris-
tics is converting an inspiring phenomenon into algorithms [28]. The coordination of
exploration and exploitation search schemas enables the metaheuristics’ robust searching
mechanism. While exploitation (intensification) tends to explore new regions, exploration
(diversification) is accountable for looking at the locations closest to the best solutions.

Technically, each MOA employs unique mechanisms. The availability of several
algorithms presents an important question: are all of the MOAs utilized truly distinct
from each other? A set of common fundamental conceptions were raised to respond to
this question [29]. These conceptions, on the other hand, contain structural distinctions
across methods.

• Parallelism: This concept is used in population-based algorithms, where various
individuals are dispatched at the same time to execute one function, and the outcomes
are compared. Further concepts are used based on the comparison to determine
individuals’ evolution in the swarm (population) or to generate new individuals.

• Acceptance: It appears in three cases: 1. Accept temporary solutions that impair
objective function because of search space extension, 2. handling of the cost function’s
restrictions (objective function). The restrictions can be dealt with in 2 methods. The



Sustainability 2023, 15, 4982 4 of 27

first method rejects any solutions that include any violation. This method is employed
when the initial conditions match any feasible solution. The second method is applied
if a numerical value can be assigned to any solution. All solutions are automatically
enrolled in this scenario, and the initial conditions may match infeasible solutions,
3. Adding limits to the accepted solutions that enhance the existing best solution by
at least the limiting threshold. This method helps avoid numerical problems when
comparing numbers derived from earlier calculations.

• Elitism: In repetitive population-based algorithms, the best solution must be preserved
from one iteration to another. The elitism principle is used to do this by keeping the
individual with the best-discovered solution and using it as a reference for the next
iteration or updating it if another best solution is discovered. The concept of elitism
may also be used for multiple individuals, forwarding an élite set of individuals to the
following iteration.

• Selection: It is a probability-based mechanism that allows generating of new random
individuals from the available individuals. This mechanism may include weights to
the probabilistic selection where random individuals are selected to generate new in-
dividuals.

• Decay (or Reinforcement): It enables larger initial flexibility, followed by progressive
flexibility restrictions. This concept is based on a multiplicative factor of less than one
that is performed at each iteration. In certain circumstances, Reinforcement is used
similarly by employing a multiplicative factor greater than one.

• Immunity: it is used by discovering some aspects of the solutions that lead to suitable
configurations. Immunity prioritizes solutions with features comparable to those traits.

• Self-Adaptation: it is a mechanism that allows updating the algorithms’ parameters
according to the optimization evolution.

• Topology: it is used if the analyzed problem must be submitted to specific constraints.

These concepts are summarized in Figure 1. This figure presents the characteristics of
each concept, which makes understanding them easier.

The MOAs can be classified as follows:

• Source of inspiration.
• The number of solutions used in the algorithm’s iterations.
• Type of objective functions used.

The MOAs algorithms are classified according to the number of solutions into two
types [30]:

• Single solution-based type: a series of solutions is calculated, and only if each new
one meets a set of criteria is the solution updated. These algorithms are also named
trajectory algorithms.

• Population-based type: many individuals work at the same time to address one task.
These collective actions are simulated to connect the whole population, and the best
individual is selected for the next search step.

According to the source of inspiration, the population-based algorithms may be
classified based on their inspiration into four categories [31,32]: evolutionary (EA), Physics-
based (PA), Human-based (HA), and swarm intelligence-based MAs (SIA).

• EAs like Genetic Algorithm (GA) [33], Differential Evolution (DE) [34], and Biogeography-
Based Optimizer (BBO) [35] mimic biological evolutionary processes such as recombina-
tion, mutation, and selection. These methodologies efficiently deal with a wide range of
issues by combining prior knowledge into an evolutionary search-yielding process that
quickly examines a search space. Individuals who are weak and inactive are disregarded
and replaced by superior ones. Nonetheless, EAs cannot develop a global solution
to various problems. Numerous academics have merged these algorithms with other
optimizers to improve their results.
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• PAs such as Central Force Optimization (CFO) [36], Big-Bang Big-Crunch (BBBC) [37],
Gravitational Search Algorithm (GSA) [38], and Gradient-based optimizer [39] are
inspired by physical laws such as gravity, magnetic force.

• HAs, including Socio Evolution and Learning Optimization (SELO) [40], Social Net-
work Search (SNS) [41], and Human Felicity Algorithm (HFA) [42], are inspired by
human activities and behaviors.

• SIAs like Particle Swarm Optimization (PSO) [43], Salp Swarm Algorithm (SSA) [44],
and COOT algorithm [45] mimic the social behaviors of animals or organisms living
in swarms, communities, or packs [46]. Each individual can improve their fitness by
moving from one position to another. The swarm is continually investigating new
positions inside the search space to discover the global solution rapidly. On the other
hand, collective movement may induce a mass collapse in a local solution, and the
difficulty of leaving this zone may result in the expedition being ended early.

Figure 1. MOAs common fundamental conceptions.

In addition, when evaluating the number of optimization objectives, MAs can be
classified following the type of objective function:

• A single objective: only one objective function is considered for minimization or maxi-
mization.

• Multi-objective: the algorithm includes two or more functions for minimization or
maximization. When objectives conflict with one another, decision-making processes
benefit significantly from using optimization techniques based on Pareto-dominance.
If no other solution does exist that is superior for each of the distinct goal functions,
that solution is said to be non-dominated. The Pareto front comprises the compromise
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of a set of non-dominated alternative solutions from which the decision-maker can
select the best one.

The MAs classification is presented in Figure 2. The number of OF means the number
of the objective function, where the single OF includes only one objective function to
handle. The multi OF reflects the multi-objective optimization algorithms that involve
multiple problems. The solution type reflects the algorithm nature population or single
point optimizer. The last case presents the classification according to the inspiration type.

Figure 2. MAs classification according to solution type, number of objective functions, and inspira-
tion type.

2.2. Examples of Recent Optimization Algorithms
2.2.1. Marine Predator Algorithm (MPA)

The Marine Predators Algorithm (MPA) is a newly created nature-inspired metaheuris-
tic optimization algorithm by laws that govern a marine creature’s ideal foraging behavior
and encounter rate policy [47]. MPA mimics the behavior of aquatic predators in their hunt
for food. Three phases are used in this process. Phase 1 is involved if the iteration t is in the
first third of tMax. It can be modeled as:

Di = RB ⊗ (Elitei − RB ⊗ Preyi)
Preyi+1 = Preyi + 0.5·R⊗ Di

(1)

where Di is the step size of the ith predator, RB is a vector generated using Brownian
motion’s distribution, R represents random numbers [0, 1], and. The notation ⊗ shows
entry-wise multiplications. If t is in the second third of tMax, phase 2 is involved. This phase
is separated into two subphases. If t is less than half of tMax, this phase can be expressed as:

Di = RL ⊗ (Elitei − RL ⊗ Preyi)
Preyi+1 = Preyi + 0.5·R⊗ Di

(2)

where RL is a vector generated using Lévy motion’s distribution; if t is greater than half of
tMax, this phase can be expressed as:

Di = RL ⊗ (RL ⊗ Elitei − Preyi)
Preyi+1 = Elitei + 0.5·CF⊗ Di

CF = [1− (t/tMax)]
2t/tMax

(3)
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The last phase can be modeled as:

Di = RL ⊗ (Eliteei − RL ⊗ Preyi)
Preyi+1 = Preyi + 0.5·R⊗ Di

(4)

The MPA flowchart is presented in Figure 3.

Figure 3. MPA flowchart.

2.2.2. Bald Eagle Search Algorithm (BES)

The bald eagle search (BES) algorithm is a modern, nature-inspired MOA that simu-
lates bald eagles’ hunting strategy or intelligent social behavior when looking for fish [48].
This algorithm has approved its efficiency for a large number of applications. BES hunting
is separated into three stages. An eagle chooses the space with the most outstanding
amount of prey in the first step (selecting space). The eagle goes inside the designated
space to look for prey in the second stage (searching in space). The eagle swings from the
best position discovered in the second stage to choose the optimum spot to hunt in the
third stage (swooping). Swooping begins at the best place, and all subsequent motions are
geared toward it. The first stage is modeled as:

x(t + 1) = xbest + α·r·(xmean − x(t)) (5)
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where α is a constant [1.5,2], and r is random. The second stage can be modeled as follows:

xi(t + 1) = xi(t) + Yi(xi(t)− xi+1(t)) + Xi.(xi(t)− xmean) (6)

where X and Y are directional coordinates calculated as follows:

Xi =
rx(i)

max(|rx |) ; rx(i) = r(i)· sin(θ(i))

Yi =
ry(i)

max(|ry|) ; ry(i) = r(i)· cos(θ(i))

θ(i) = β1·π·r; r(i) = θ(i)·R·r

(7)

where β1 is a constant [5, 10], and R is a constant gain [0.5, 2]. The last stage can be
expressed as follows:

xi(t + 1) = r·xbest + X1i(xi(t)− r1·xmean) + Y1i(xi(t)− r2·xbest)

X1i =
rx(i)

max(|rx |) ; rx(i) = r(i)·sinh(θ(i))

Y1i =
ry(i)

max(|ry|) ; ry(i) = r(i)· cosh(θ(i))

θ(i) = β2·π·r; r(i) = θ(i)

(8)

The BES flowchart is illustrated in Figure 4.

Figure 4. BES flowchart.

Table 1 presents a comparison of the characteristics of some reported MOAs. This
table includes the advantages and drawbacks of each optimizer.
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Table 1. MOAs characteristics.

MOA Advantages Drawback

PSO [43]
Simple
Reduced number of parameters
Simple updating mechanism

Limited performance for a large
number of optimization issues
Weak escaping ability

SSA [44]

Simple and small size of the code
Reduced number of parameters
Simple updating mechanism
Easy to implement

Low accuracy in several applications
due to the leaders’ stochastic
movement.

GWO [49] High performance due to the three
leading points.

The dependency of the whole
population on the three leading
wolves.

AEO [50] Good performance with enhanced
accuracy.

Reduced performance with a low
number of iterations.
Large size of code.

MPA [47]

Enhanced accuracy.
Good escaping mechanization due to
the implementation of Brownian and
Levey stochastic distributions.

Reduced performance with a low
number of iterations.
Large size of code.

JSO [51]

Enhanced code size, which
accelerates the computation time.
Stochastic escaping mechanism which
prevents it from falling into local
solutions

Achieving the optimal value is
challenging due to the increased
stochastic behavior.

BES [48]
Complexed of three sub-algorithms
which significantly improve the
performance.

Large code size.
Large computing time.
Difficult to implement, especially for
online applications.

2.3. MOA Summary

This section presents a summary of recent and most well-known MOAs. Table 2
presents the most well-known algorithms. This table includes the publication year and the
inspiration source.

Table 2. Most well-known MOAs.

MOA Abbrev Year Inspiration Source

Evolutionary MOAs

Genetic algorithm [33] GA 1992 Bio-inspired by chromosome representation

Differential Evolution [34] DE 1997 Darwin’s theory of evolution

Harmony Search [52] HS 2001 The observation that music aims to search for a
perfect state of harmony

Biogeography-based optimizer [35] BBO 2008 Bio-inspired by the geographical distribution of
biological organisms

Monkey king evolution [53] MKE 2016
Nature-inspired by the actions of the Monkey King,
a character in the well-known Chinese legendary
tale Journey to the West.

Corona virus optimization [54] CVO 2020 Bio-inspired by Coronavirus vulnerable infectious
elimination model

Coronavirus herd immunity optimizer [55] CHIO 2021 Bio-inspired by the herd immunity notion as a
strategy to combat COVID-19.

Carnivorous plant algorithm CPA 2021
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Table 2. Cont.

MOA Abbrev Year Inspiration Source

Swarm intelligence MOAs

Particle swarm optimization [43] PSO 1995 Nature-inspired by particle swarm behavior

Ant colony optimization [56] ACO 1999 Nature-inspired by the collective behavior of ants

Artificial bee colony [57] ABC 2007 Nature-inspired by social behavior of bees

Grey wolf optimizer [49] GWO 2014 Nature-inspired by grey wolf’s hunting behavior

Whale optimization algorithm [31] WOA 2016 Nature-inspired by Humpback whale hunting
behavior

Salp swarm algorithm [44] SSA 2017 Nature-inspired by collective behavior during
navigating and foraging of salps

Spotted hyena optimizer [58] SHO 2017 Nature-inspired by collaboration and social
relationships among spotted hyenas

Coyote optimization algorithm [59] COA 2018 The social organization of coyotes and their
adaptability to their environment

Butterfly optimization algorithm [60] BOA 2018 Bio-inspired by butterfly foraging and mating
behavior

Harris hawks optimization [61] HHO 2019 Nature-inspired by Harris hawks hunting behavior

Marine predators algorithm [47] MPA 2020 Nature-inspired by predators’ foraging strategies in
maritime habitats

Bald eagle search optimisation
algorithm [48] BES 2020 Nature-inspired by bald eagles hunting behavior

Jellyfish search optimizer [62] JSO 2021 Nature-inspired by collective behavior during the
foraging of jellyfish

Physic based MOAs

Big-Bang Big-Crunch [37] BBBC 2006
Inspired by the Big Bang-Big Crunch theory, it
creates arbitrary points in the Big Bang stage and
compresses them to a unique representative point

Gravitational search algorithm [38] GSA 2009 Inspired by Newton’s gravity law

Charged system search [63] CSS 2010 Inspired by the controlling Coulomb law of
electrostatics and Newtonian principals

Water cycle algorithm [64] WCA 2012 Inspired by real-world observations of the water
cycle and how rivers and streams flow to the sea

Ray optimization algorithm [65] ROA 2012
Inspired by Snell’s light refraction law. When light
moves from a lighter to a darker space, it refracts,
and its direction changes.

Black hole [66] BH 2013 Inspired by the black hole phenomenon during
pulling stars and galaxies.

Electromagnetic field optimization [67] EFO 2016 inspired by the behavior of various polarity
electromagnets (positive, negative, and neutral)

Sine cosine algorithm [68] SCA 2016 Inspired by the mathematical models of sine and
cosine functions.

Central force optimization [36] CFO 2017 Inspired by the gravitational kinematics metaphor

Chemical reaction optimization
algorithm [69] CRO 2017

Inspired by the transformation of reactants (or
molecules) into products through a series of
reactions

Artificial electric field algorithm [70] AEFA 2020 Inspired by Coulomb’s law of electrical force and
Newton’s equation of motion



Sustainability 2023, 15, 4982 11 of 27

Table 2. Cont.

MOA Abbrev Year Inspiration Source

Gradient-based optimizer [39] GBO 2021 Inspired by Newton’s gradient-based technique

Human based MOAs

Social cognitive optimization [71] SCO 2002 Inspired by human intelligence with the social
cognitive theory (SCT).

Teaching–learning-based optimization [72] TLBO 2011 Inspired by the influence of a teacher on his learners

Soccer league competition algorithm [73] SLO 2013 Inspired by soccer leagues and centered on team and
player tournaments.

Social group optimization [74] SGO 2016 Inspired by the notion of human social interaction in
order to solve a challenging problem

Socio evolution and learning optimization
[40] SELO 2018 Inspired by human social learning behavior

structured as families in a social setting

Group teaching optimization algorithm
[75] GTO 2020

Inspired by the group teaching mechanism based on
four simple rules (the teacher allocation phase,
ability grouping phase, teacher phase, and student
phase)

Social Network Search [41] SNS 2021
Inspired by social network users to achieve
popularity by mimicking users’ moods (imitation,
conversation, disputation, and innovation).

Human Felicity Algorithm [42] HFA 2022 Inspired by human society’s aspirations to achieve
happiness via a shift in human mentality

3. Microgrid Structure

A microgrid (MG) is a multisource system that incorporates several distributed gener-
ators (DGs), such as RESs, ESSs, loads (both controllable and non-controllable), and grid
equipment, such as control and protection systems [76,77].

1. DGs: they can include new-generation technologies like combined heat and power sys-
tems (CHP) [78], fuel cell systems (FCs) [79], and photovoltaic generators (PVGs) [80].
DGs also include classic generators like induction and synchronous generators. Be-
cause of its great efficiency, adaptability, scalability, and lack of polluting emissions,
fuel cell technology is one of the most promising fields of study. Proton exchange
membrane FC (PEMFC), alkaline FC (AFC), phosphoric acid FC (PAFC), molten car-
bonate FC (MCFC), solid oxide FC (SOFC), and direct methanol FC are some of the
forms of FC technologies (DMFC).

2. ESSs: their primary role is maintaining the power balance and energy demand within
the MG [81]. In addition, they have to improve power quality against demand varia-
tions or intermittent RES and provide the necessary power for a smooth transition
from grid-connected to island-based MG operation. Existing energy storage technolo-
gies suitable for MG applications include batteries, flywheels, and supercapacitors [82].
Batteries, because of their high energy density, can give excellent performance for
this application.

3. MG loads: A MG may power a wide range of load types, including residential,
commercial, and industrial. Commercial and industrial loads, in general, are critical
that demand power quality and stability. As a result, the MG must control the loads
by performing the following activities [83]:

• Load shedding for non-critical loads optimizes the imported/exported power in
grid-connected mode.

• Voltage and frequency in off-grid mode by enabling load shedding.
• Reduces the peak load.
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4. DG interfacing systems: Most DGs need power electronic converters to adapt their
output power to a common bus-compatible power (AC or DC). Filters, measuring
components, and protective systems will be included in the power electronic inter-
face [24].

DC and AC typical microgrids are illustrated in Figure 5. As described in this figure,
all the sources are connected in parallel to the common bus through the power electronic
converter. The microgrid is connected to the primary grid through the point of common
coupling (PCC).
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4. Microgrid Operation and Management Optimization

Metaheuristic optimization algorithms are widely utilized in the microgrid domain to
tackle numerous problems related to operating, planning, forecasting, controlling, durabil-
ity, safety, identification, and demand response. A group of issues solved with MOAs has
been taken into account in the literature. These issues include unit commitment, economic
dispatch, system reconfiguration, optimal power flow, planning, forecasting, system identi-
fication, and maintenance schedule [84]. Below are some instances of how MOAs can be a
feasible solver (or a more practical choice than) available mathematical solving tools for
tackling a lot of optimization issues in the microgrid and power domain.

1. Unit Commitment: This issue entails arranging generation units to meet predicted
demand in the future (e.g., from a single day to a week) while reducing overall
generation costs. The output is a timetable for starting and stopping these units [22].
The issue involves integer and continuous variables, as well as a complicated set
of restrictions for the units, including minimum up and down timings and start-up
dynamics. This issue has typically been addressed using mathematical and stochastic
programming approaches [85,86]. Using MOAs, such as GA [87], can provide better
performance in binary coding that represents the on/off switching states for each unit.
Evolutionary optimization algorithms are used to solve this issue better, as reported
in [88]. PSO gained large popularity for this application [89]. Multiple versions of
PSO, such as Binary PSO, Improved binary PSO, PSO with Lagrangian relaxation,
and hybrid PSO–GWO [90], have used this problem. The ACO is also used for this
application [91,92].

2. Economic Dispatch: The ED issue aims to reduce the operating costs of the microgrid.
This issue is handled one step at a time considering system constraints such as power-
generating boundaries and transmission line capacity. Classical programming tools
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such as dynamic programming [93] and the interior point method [94] have been
used. MOAs such as GA [95,96] and PSO [97] have been utilized to tackle the ED issue
in recent decades, addressing special issues caused by the domain non-convexity of
the definition of the variables. More recent solutions have been developed, such as
interior point and DE [98] or hybrid versions based on PSO with other approaches [97].
Recent MOAs such as MPA [99] and BES [100] are also used.

3. Optimal Power Flow: It is a nonlinear and non-convex mixed-integer problem. De-
pending on which attributes are taken into account, the OPF problem can be expressed
in a variety of ways (e.g., including reactive power-related aspects). There are a variety
of constraints connected to the network and the DGs, as well as constraints related to
contingencies. Many tools are used to solve the OPF problem, including a full set of
mathematical programming tools that are also utilized to address difficult real-time
OPF problems [101]. Interior point approaches [102] have emerged as the most ef-
ficient solutions. The nature of the OPF problem, on the other hand, makes MOAs
suitable for giving effective solutions. GA, PSO, and DE are the most used MOAs [103].
The differential evolutionary particle swarm optimization (DEEPSO) [104], SSA [79],
and African Vulture Optimization Algorithm (AVOA) [105] are other examples of the
practical application of MOAs in this kind of application.

4. Distribution System Reconfiguration: This issue is about deciding which network
branches to maintain open to produce a radial network and optimize a preset objective
function. The principal limitations include the requirement to run a radial network,
the equality restriction on power balancing, and inequality constraints involving node
voltages, branch currents, short circuit currents, and others [106]. The problem’s
nature makes identifying a neighborhood of solutions and other regularities that
may drive mathematical programming techniques challenging. As a result, MOAs
can provide a suitable solution to this problem. GA [107], Plant Growth Simulation
Algorithm (PGSA) [108], Bacterial Foraging Optimization Algorithm (BFOA) [109],
and TLBO [110] are some examples of employing MOAs for solving this problem.

5. Transmission Network Expansion Planning: Resolving this issue aims to reduce the
costs associated with transmission infrastructure and enhance its reliability consid-
ering load loss. Installing new lines, repowering the generator (or inserting new
generators), and incorporating new technologies like FACTS are all possible activi-
ties. During cost optimization, modern solutions must consider uncertainties in the
generation, load, market, and technology developments. The ideal set of investments
is decided by considering the power balance (equality constraint), the maximum
number of lines to be installed, their capacity, and the capacities of the various genera-
tors (inequality constraints). Optimizing this task is much easier using MOAs [111].
GA [112], ACO [113], PSO [114], HS [115], SFLA [116], and Multi-Verse Optimizer
(MVO) [117] are some MOAs that are used in this application.

6. Distribution System Planning: This issue encompasses both expansion and opera-
tional planning strategies. The distinction between them is the number of system
nodes, which remains constant when the operational planning strategy is used but can
change in case of expansion. Different time horizons can be considered for expansion
planning: short-term (1–4 years), long-term (5–20 years), and horizon-year planning
(>20 years) [118]. The DSP is a nonlinear mixed-integer problem where binary opti-
mization variables express either the installation of a new device or the upgrade of the
existing one [119]. The principal objective of the DPS is to reduce the installation and
operational costs, considering the technical and operational constraints. The MOAs
are simple to employ and are especially beneficial for multi-objective DSP solving.
Due to their binary coding of the information that permits the handling of potential
on/off states of the components that are thought to be potential candidates to be
included in the distribution network, GA is particularly suitable [120]. PSO can also
provide competitive performance for this application [121].
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7. Load and Generation Forecasting: forecasting the electrical loads and renewable gen-
eration is a long-standing issue that has been addressed using a variety of techniques,
from statistical techniques to artificial intelligence-based techniques, particularly ar-
tificial neural network (ANN) and support vector machine (SVM), or more recently,
techniques based on deep learning (DL) [122,123]. The growth in energy produc-
tion from RESs has brought even more significant unpredictability, depending on
the weather and energy costs. As a result, techniques that address the uncertainties
in generation forecasting are required. Hybrid techniques have been developed by
incorporating a MOA that enhances the parameter adjustment during the training
stage into ANN technics. These hybridizations have taken into account MOAs such
as GA, PSO, and SA [124]. These hybrid forecasting techniques are rising as effective
tools, combining several forecasting methodologies to get higher accuracy in the
outputs [125].

8. Maintenance Scheduling: The MS issue seeks to determine the appropriate time inter-
val between maintenance interventions on DGs and microgrid components in order
to retain their performance while minimizing the system’s operational costs [126].
Two maintenance types are existed: DGs maintenance scheduling (DGMS) and trans-
mission maintenance scheduling (TMS). GMS determines the length of DG outage in
terms of time and duration, taking into account the reliability of the system where
the DGs are located, human availability, and the dynamic restrictions of the DGs to
return to ordinary operation. The TMS objective is to ensure that network component
maintenance does not interfere with system functionality. Hence, the limitations are
typically the same as in DGMS. After reconstructing the power system, the two issues
may conflict since generators prefer to intervene when electricity prices are low. Thus,
an iterative procedure is necessary to adjust scheduling periods while considering
the generators’ and network operators’ requests [22]. MOAs have been used to solve
this problem. To solve this mathematically, dynamic programming, mixed-integer
programming, branch-and-bound, Benders decomposition, and Lagrangian relaxation
have been employed [126]. Nevertherless, the nonlinearity of the system reduces their
performance. MOAs have been introduced to provide better performance. GA, PSO,
SA, and tabu search (TS) are the most common ones [127].

9. RESs MPPT: Due to the weather conditions dependency of RESs, their outputs are
subjected to fluctuations which may decrease their performance. Resolving this
problem using MPPT has been discussed widely in the literature. There are mainly
three common types of MPPT: classical such as P&O and IC, intelligent-based fuzzy
logic, and optimal MPPT strategies. The last type strategies have provided excellent
performance using MOAs for wind [128] and PV systems [129]. The most promising
MOAs are listed in Table 3. This table includes the authors, the publication year, and
the used MOA.

Table 3. A set of MOA for MPPT applications.

Reference Year Used MOA

PV MPPT

S. Kinattingal et al. [130] 2014 Artificial Bee Colony Algorithm (ABC)

C. Kumar et al. [131] 2016 Whale Optimization Algorithm (WOA)

S. Mohanty et al. [132] 2016 Grey Wolf Optimizer (GWO)

S. Titric et al. [133] 2017 Ant Colony Optimization (ACO)

D. Teshome et al. [134] 2017 Modified Firefly Algorithm (mFFA)

H. Li et al. [135] 2019 Particle Swarm Optimization (PSO)
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Table 3. Cont.

Reference Year Used MOA

A. Mirza et al. [136] 2019

Particle Swarm Optimization (PSO),
Cuckoo Search Optimization (CS),
Artificial Bee Colony Algorithm (ABC),
Hybrid PSO and Gravitational Search Optimization (PSOGS)

J. Shi et al. [137] 2019 Moth Flame Optimization (MFO)

M. Eltamaly et al. [138] 2020 Improved Cuckoo Search Algorithm (ICSA)

A. Mirza et al. [139] 2020 Salp Swarm Algorithm (SSA)

WT MPPT

B. Yang et al. [140] 2018 Democratic Joint Operations Algorithm (DJOA)

Y. Mokhtari et al. [141] 2018 Ant Colony Optimization (ACO)

M. Qais et al. [142] 2018 Grey Wolf Optimizer (GWO)

A. Fathy, O. El-baksawi [143] 2019 Grasshopper Optimization Algorithm (GOA)

O. Maroufi et al. [144] 2020 Bat Algorithm (BA)

M. Qais et al. [145] 2020 Enhanced Whale Optimization Algorithm (IWOA)

M. Qais et al. [146] 2020 Salp Swarm Algorithm (SSA)

T. Anh Nguyenet al. [147] 2021 Equilibrum Optimizer (EO)

M. Hannachi et al. [148] 2021 Particle Swarm Optimization (PSO)

P. Rajesh et al. [149] 2021 Tunicate Swarm Algorithm (TSA)

10. DG parameters identification: Several elements are exposed to degradation, which
may reduce the overall performance of the microgrid. The ESS is one of the elements
that alternate continually due to its electrochemical aspect. The bidirectional migration
of the ions between the cathode and the anode generates electricity. However, some
of these ions sometimes stack in deep discharge or overcharge, forming a solid
layer. This will lead to capacity degradation [150]. Fuel cells also are exposed to
degradation. Several factors, such as the membrane degradation for the PEMFC type,
cause this [151]. Photovoltaic panels also can degrade due to operating conditions
and manufacturing materials [152]. To ensure the proper operation of the microgrid,
the management system may require an exact DG model. Hence, identifying the
actual parameters for each system is required. MOAs are excellent choices to address
this task. Table 4 presents some of the MOAs used to extract the parameters of a
Lithium-ion battery. Table 5 offers some of the MOAs used to extract the parameters
of a PEM fuel cell, and a set of MOAs used to extract the parameters of a PV panel are
presented in Table 6. These tables include the authors, the publication year, the used
model, and the used MOA.

Table 4. A set of MOA for Li-ion battery identification.

Reference Year Used Model Used MOA

Li-ion battery identification

J. Forman et al. [153] 2012 Doyle-Fuller-Newman (DFN)
model Genetic Algorithm (GA)

V. Sangwan et al. [154] 2016
Genetic Algorithm (GA),
Particle Swarm Optimization (PSO),
Ageist Spider Monkey Optimization (ASMO)
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Table 4. Cont.

Reference Year Used Model Used MOA

M. Rahman et al. [155] 2016 Electrochemical model Particle Swarm Optimization (PSO)

X. Lai et al. [156] 2019 Equivalent circuit models

Particle Swarm Optimization (PSO),
Genetic Algorithm (GA),
Grey Wolf Optimizer (GWO),
Ant Colony Optimization (ACO),
Firefly Algorithm (FFA),
Multi-Verse Optimization (MVO)
Whale Optimization Algorithm (WOA)

H. Chun et al. [157] 2019 Electrochemical model Harmony Search (HS)

S. Zhou et al. [158] 2020 Equivalent circuit models Hybrid Simulated Annealing Particle Swarm
Optimization (PSO-SA)

M. Jusoh et al. [159] 2020 Tremblay’s model
Particle Swarm Optimization (PSO),
Gravity Search Algorithm (GSA),
Genetic Algorithm (GA)

A. Lorestani et al. [160] 2020 Equivalent circuit models evolutionary-particle swarm optimization
(E-PSO)

S. Ferahtia et al. [161] 2021 Shepherd model

Particle Swarm Optimization (PSO),
Salp Swarm Algorithm (SSA),
Political Optimizer (PO),
Artificial Eco-system Optimization (AEO),
Equilibrium optimizer (EO)

S. Ferahtia et al. [162] 2021 Shepherd model Salp Swarm Algorithm (SSA)

J. Kim et al. [163] 2022 Electrochemical model Artificial Neural Network with Genetic
Algorithm (ANN-GA)

E. Houssein et al. [164] 2022 Shepherd model modified Coot Algorithm (mCOOT)

A. Fathi et al. [165] 2022 Shepherd model Balde Eagle Search Algorithm (BES)

S. Ferahtia et al. [166] 2022 Shepherd model modified Balde Eagle Search Algorithm
(mBES)

T. Pan et al. [167] 2022 Electrochemical model WOA

Y. Cheng [168] 2022 Equivalent circuit models

Particle Swarm Optimization (PSO),
Grey Wolf Optimizer (GWO),
Harmony Search (HS),
Golden Eagle Optimization (GEO)

R. Rizk-Allah et al. [169] 2022 Tremblay’s model hybrid Manta ray foraging optimization and
PSO (MRFO-PSO)

Table 5. A set of MOA for PEM fuel cell identification.

Reference Year Used MOA

A. Askarzadeh et al. [170] 2011 modified Particle Swarm Optimization (mPSO)

Z. Sun et al. [171] 2015 hybrid Adaptive Differential Evolution Algorithm (ADA)

M. Ali et al. [172] 2017 Grey Wolf Optimizer (GWO)

A. El-Fergany [173] 2018 Salp Swarm Algorithm (SSA)

A. Fathi et al. [174] 2018 Multi-Verse Optimization (MVO)

G. Zhang et al. [175] 2020

Chaos Owl Search Algorithm (COSA),
Bat Algorithm (BA),
Firefly Algorithm (FFA),
Multi-Verse Optimization (MVO)
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Table 5. Cont.

Reference Year Used MOA

A. Diab et al. [176] 2020 Marin predator Algorithm (MPA),
Political optimizer (PO)

F. Qin et al. [177] 2020 improved Fluid Search Optimization Algorithm (IFSO)

S. Menesy et al. [178] 2020 modified Artificial Eco-system Optimization (mAEO)

Y. Cao et al. [179] improved Whale Optimization Algorithm (IWOA)

E. Houssein et al. [180] 2021

enhanced Archimedes Optimization Algorithm (eAOA),
Archimedes Optimization Algorithm (AOA),
Whale Optimization Algorithm (WOA),
Moth Flame Optimization (MFO),
Sin Cosin Algorithm (SCA),
Particle Swarm Optimization (PSO),
Harris Hawks Optimization (HHO),
Tree-Seed Algorithm (TSA),

A. Fathi et al. [181] 2021 LSHADE-EpSin

Y. Zhu et al. [182] 2021 Adaptive Sparrow Search Algorithm (ASSA)

E. Houssein et al. [183] 2022 modified Artificial Electric Field Algorithm (mAEFA)

H. Rezk et al. [184] 2022

Gradient-Based Optimizer (GBO),
Salp Swarm Algorithm (SSA),
Heap-Based Optimizer (HBO),
Differential Evolution (DE),
Whale Optimization Algorithm (WOA),
Moth Flame Optimization (MFO),
Sin Cosin Algorithm (SCA),
Harris Hawks Optimization (HHO)

T. Wilberforce et al. [185] 2022

Grey Wolf Optimizer (GWO),
Particle Swarm Optimization (PSO),
Slime Mould Algorithm(SMA),
Harris Hawks Optimization (HHO),
Artificial Eco-system Optimization (AEO)

H. Rezk et al. [186] Balde Eagle Search Algorithm (BES)

Table 6. A set of MOA for PV identification.

PV Identification

Q. Zhang et al. [187] 2016 Single diode model (SDM),
Double diode model (DDM) Fireworks Explosion Optimization (FEO)

Z. Wu et al. [188] 2019 Single diode model (SDM),
Double diode model (DDM) improved Lion Swarm Optimization (ILSO)

S. Ebrahimi et al. [189] 2019 Single diode model (SDM),
Double diode model (DDM) flexible Particle Swarm Optimization (FPSO)

H. Chen et al. [190] 2020 Single diode model (SDM),
Double diode model (DDM) Harris Hawks Optimization (HHO)

H. Zhang et al. [191] 2020 Single diode model (SDM),
Double diode model (DDM) Moth Flame Optimization (MFO)

I. Ahmadianfar et al. [192] 2021 Single diode model (SDM),
Double diode model (DDM) Gradient-Based Optimization (GBO)

D. Yousri et al. [193] 2021
Single diode model (SDM),

Double diode model (DDM),
Triple diode model (TDM)

Artificial Eco-system Optimization,
Harris hawks Optimizer (HHO),
Gray Wolf Optimizer (GWO),
Salp Swarm Algorithm (SSA)
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Table 6. Cont.

PV Identification

X. Ye et al. [194] 2021 Single diode model (SDM),
Double diode model (DDM) modified Whale Optimization Algorithm (mWOA)

L. Sun et al. [195] 2021
Single diode model (SDM),

Double diode model (DDM),
Triple diode model (TDM)

Grouped Beetle Antennae Search (GBAS)

M. Abdel-Basset et al.
[196] 2021 Single diode model (SDM),

Double diode model (DDM) Teaching-Learning-Based Optimization (TLBO)

M. Naeijian et al. [197] 2021
Single diode model (SDM),

Double diode model (DDM),
Triple diode model (TDM)

Whippy Harris Hawks Optimization Algorithm
(WHHO)

W. Lei et al. [198] 2022
Single diode model (SDM),

Double diode model (DDM),
Triple diode model (TDM)

Improved Honey Badger Algorithm (IHBA)

M. El-Dabah et al. [199] 2023
Single diode model (SDM),

Double diode model (DDM),
Triple diode model (TDM)

Northern Goshawk Optimization (NGO)

A. Beşkirli, I. Dağ [200] 2023
Single diode model (SDM),

Double diode model (DDM),
Triple diode model (TDM)

Tunicate Swarm Algorithm (TSA)

5. Discussion

Integration and monitoring of RES present important problems for microgrids in terms
of safe and efficient operation, as well as enhancing technical and economic efficiency and
sustainability. Moreover, uncertainty in renewable generation, microgrid islanding, local
energy community adoption, or demand-side management complicates decision-making.

The microgrid management system must align with current communication and
optimization trends to handle the big data, discrete and continuous limits of any added
equipment, and the requirement to integrate it to respond and make optimization choices
more quickly. MOAs can address them effectively. Additionally, the scheduling of DGs,
microgrid reconfiguration, planning, and forecasting can help to achieve certain operational
goals that are frequently handled utilizing MOAs. Figure 6 summarizes the main tasks that
are handled by employing optimization approaches. This figure includes the microgrid
issues to be resolved and the most used MOA for each one.

A large number of new MOA is due to the necessity to discover excellent answers
to tough optimization problems involving complicated systems and search areas with
limited time and computing cost. Comparing them is a complex undertaking, as confirmed
by the No Free Lunch (NFL) theorem(s) [23]. The NFL theorems basically argue that no
MOA produces the optimum performance for all issues. In other words, if one algorithm
outperforms another on a specific number of issues, the other algorithm should exceed
the first on a corresponding number of problems. This encourages using more MOAs for
resolving the microgrid problems.

Hover, there are critical limitations and difficulties in the existing studies that must be
overcome in order to expand the acceptance and application of MOAs to microgrid applica-
tions:

• A wide range of MOAs makes selecting suitable algorithms for specific microgrid opti-
mization issues challenging. The MOAs model the individuals and search space while
taking into account the application limitations, the initialization of the optimization
variables, and updating them towards the target based on its mathematical model
that explains the inspiratory behavior. As a result, determining their benefits and
drawbacks when examining their application in specific circumstances connected to
microgrids is challenging.
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• There are no standard testing procedures or benchmarks. Benchmarks are required
to assess the performance and outcomes of each MOA used for microgrid operating
and management optimization. These benchmarks must include microgrid config-
urations, the testing data, and the study kinds that must be carried out, including
analysis and statistics about convergence, sensitivity, flexibility, exploitation, and
exploration performances.

• The balance between exploring and exploiting phases in the optimization process
considering the operational constraints of the microgrid. The challenging task here is
efficiently managing the exploration and exploitation of the search space.

• The increased size of some MOA codes can be a drawback for real word applications,
where the calculator’s physical limits should be taken into consideration. In addition,
reducing the code size for some algorithms can affect their performance.

• The utilization of new advanced analyzing tools, such as Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) group guidelines [201], to bet-
ter help in describing the identification, screening, eligibility, and inclusion criteria.
PRISMA is designed to improve the reporting of systematic reviews and meta-analyses.
This will assist in analyzing the performance of the metaheuristic optimization algo-
rithms for such applications.

Figure 6. Microgrid optimization tasks and the main used MOAs.

The future works may focus on two parts: the creation of specified benchmark testing
functions that can be used to assess the performance of the MOA for solving the microgrid
issues. In the second part, the researchers may focus on profiting from some current MOAs
to make them more suitable for microgrid applications. They may benefit from the abilities
of the actual algorithms to create new ones or enhance the current ones by customizing
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heuristics [202], hybridization [203], adaptive and self-adaptive algorithms, learning-based
algorithms, modified algorithms [166], reduced code size algorithms, etc.

6. Conclusions

This paper has contributed to the discussion on using a metaheuristic optimization
algorithm to solve global optimization problems related to renewable-based microgrids.
This paper gives a general overview of how to provide optimum microgrid solutions to
accomplish several goals while taking operational restrictions into account. Starting from
reviewing the metaheuristic fundamentals, concepts, and classifications. Then, a review of
several published articles on metaheuristic algorithms was presented. These algorithms
include the most well-known and recent ones. Microgrid basic structure has been revised
as well as its main optimization problems such as power flow optimization and planning.
The primary literature concerning microgrid optimization with metaheuristic optimization
algorithms has been reviewed. Deciding on an algorithm’s superiority over another method
is challenging, as the no-free-lunch theory explains. On the other hand, a set of fundamental
principles has been presented and discussed to systematically describe the properties
of the metaheuristic optimization algorithms and find potential connections between
the numerous algorithms suggested. The deployment of the metaheuristic optimization
algorithms can be more emphasized by responding to several challenging tasks, such as
the ones presented at the end of this paper.
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