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Abstract: The demand for humanitarian supply chains grows daily as the incidence of calamities
rises. Typhoons cause thousands of casualties each year. As a result, policymakers and govern-
mental authorities must develop effective readiness and response measures as part of pre-disaster
plans. This paper proposed a stochastic model for multi-objective location-routing for creating a
humanitarian network for pre-disaster response. The model aims to minimize the overall costs of
the network’s setup, the time required to travel through it, and the number of vehicles necessary
for transferring affected individuals to evacuation centers. The model concentrates on pre-disaster
scenarios in uncertainty. The provided model was implemented in an actual scenario in one of the
Philippines’ provinces and solved using Multi-Objective Particle Swarm Optimization (MOPSO),
which is also contrasted with Multi-Objective Simulated Annealing (MOSA) and the ε-constraint
approach. According to empirical findings, the model can be used to identify distribution hubs and
evacuation centers and choose the best routes in unexpected and actual disaster scenarios. Given
that the ideal number, location, and capacity of DCs and ECs are known in advance, government
decision-makers can solve any potential shortages and problems during the disaster.

Keywords: multi-objective optimization; humanitarian supply chain; MOPSO; pre-disaster
planning; scenario

1. Introduction

Every year, people worldwide are impacted by disasters such as floods, earthquakes,
storms, droughts, wars, and more. These natural disasters seriously harm nations all over
the world. Each year, there are over 599 disasters that affect more or less 200 million people
and result in the deaths of close to 75,000 individuals. [1]. Unfortunately, it is predicted
that in the coming years, ecological and human-made disasters will increase five times [2].
Due to the increasing incidence of accidents, many scholars have set their sights on disaster
management (DM). Disaster management is the art of efficiently planning for and acting in
response to disasters [3]. Resources must be systematically arranged in order to lessen the
harm caused by disasters. The management of the duties associated with disaster preven-
tion, readiness, response, and recovery also entails a systematic approach. DM intends to
assist at-risk individuals in mitigating or recovering from disaster consequences [4]. The

Sustainability 2023, 15, 4882. https://doi.org/10.3390/su15064882 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15064882
https://doi.org/10.3390/su15064882
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-4914-9204
https://orcid.org/0000-0003-3520-5260
https://orcid.org/0000-0002-7310-2708
https://orcid.org/0000-0002-8141-1957
https://doi.org/10.3390/su15064882
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15064882?type=check_update&version=1


Sustainability 2023, 15, 4882 2 of 33

four stages of DM are mitigation, preparedness, response, and recovery. Humanitarian
logistics is one of the operations responsible for implementing the three stages of disaster
management: preparation, response, and recovery. In the context of disaster prevention,
humanitarian logistics refers to the process of transporting individuals from crisis-affected
areas to secure locations. Emergency response planning has advanced significantly over
time to lessen the effects of these catastrophes. Planning for safe shelters should begin
before the crisis arises to protect the public from harm [5,6].

The Philippines ranks third among countries which are most susceptible to disasters
because of its geographical location. The country usually experiences typhoons, earth-
quakes, floods, volcanic eruptions, landslides, and fires, to name just a few. Between 1900
and 2012, it experienced 531 catastrophes, affecting more than 160 million people and
resulting in losses of USD 10.5 billion. In 2013, Typhoon Haiyan (Yolanda), which affected
26 million people and killed at least 8000 people, struck the Philippines and caused the
most devastation. Typically, 20 tropical cyclones hit the waters of the Philippines yearly;
typhoons are often the most devastating natural catastrophes to hit the nation [7].

Over the past few years, the Philippines has paid close attention to and made advance-
ments in disaster risk reduction. Numerous organizations and stakeholders have spear-
headed projects and activities to strengthen the initiatives. To reduce the socio-economic
and ecological effects of disasters, especially those caused by climate change, Republic Act
10121, passed in May 2010, recognizes the need to implement a disaster risk reduction and
management approach that is general, inclusive, cohesive, and practical. It also encourages
the involvement and participation of all districts and stakeholders concerned at all tiers,
particularly the residents [8]. After the onslaught of Typhoon Haiyan (Yolanda) in the
Philippines in 2013, the government and aid organizations have concentrated on disaster
risk reduction and preparedness.

With the frequency of typhoons in the country, the use of schools as evacuation shelters
is prevalent in the Philippines. However, this is no longer advisable in light of the Department
of Interior and Local Government (DILG) Memorandum Circular No. 122 series of 2018 [9].
It urges each local government unit (LGU) to prioritize the construction of robust, secure,
and appropriately designed evacuation facilities. It must meet the nation’s building safety
standards and be receptive to potential users’ needs. In response to this DILG Memo-
randum Circular, each LGU shall assign an evacuation center in each barangay in their
municipality. However, most barangays allocated either the barangay hall or covered court
as the designated evacuation center, which does not fulfill the national building safety
regulations and needs to be more responsive to their potential users’ needs.

Despite the availability of many research studies related to humanitarian supply
chains and humanitarian network designs, topics on facility location, network design, and
evacuation planning are each dealt with separately, when in fact they should be treated with
high degree of inclusivity. Also, the majority of models created to quantify decisions made
in relation to evacuation travel take place in developed nations, where decision-making
factors such as culture, capacity, and resources are different from those in developing
nations [10]. Furthermore, very limited studies have been conducted in the Philippines on
these topics. The majority of the literature on humanitarian logistics in the Philippines is
concerned with the sustainability of the humanitarian supply chain, in general, as well as
the study of evacuation travel behavior [10–13]. Gutierrez and Mutuc [14] proposed a model
for humanitarian supply chain in Marikina City using linear programming, employing
the Center of Gravity Method. Though the Center of Gravity Method locates the facilities
where it displays similarity between volume and distance of demand throughout a network
of consumer locations. Its application is limited to regions with no bodies of water. Further,
it only considers the location of distribution hubs, not the location of evacuation centers or
temporary shelters. This investigation was conducted under this framework. The number
and location of local distribution centers must be decided upon before the start of the
disaster. This pre-positioning action is a component of disaster preparedness [15]. At the
same time, evacuation centers (or temporary shelters) and their locations need to be taken
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into account because they act as places where evacuees can get food, medical attention,
and lodging [16]. These two facilities should be taken into account during the pre-disaster
phase. In order to assist in pre-disaster preparation, the study establishes the number of
distribution and evacuation centers as well as their locations depending on the context in
the Philippine conditions.

This study suggested the utilization of the model in response to the need for practical
mathematical modeling and how it might contribute to the sustainability of government
initiatives for disaster response in the Philippines. Initially, the number of DCs and ECs to
be constructed to reduce the infrastructure cost is determined. Should the government make
a significant investment, it is crucial to ascertain how many of these facilities are needed at
the location. Furthermore, the facility’s site must be secured and free from hazards. Second,
the evacuation route must be planned to place the facilities in areas requiring the fewest
response vehicles and have the shortest travel distances. Finally, various scenarios must
be taken into account to consider the worst-case and most likely outcomes. The scenarios
were developed based on the survey conducted [12], which showed that risk perception
directly impacted preparedness intentions and actions. Similarly, this study considered the
scenarios used by [17] where the scenarios reflect the various levels of disaster intensity.
Hence, the scenarios were created based on the time and severity of the typhoon.

The metaheuristics technique is employed to achieve these objectives. The creation of
heuristic optimization algorithms can be guided by a set of rules or strategies provided by a
metaheuristic, an advanced, algorithmic framework independent of constraints. It applies
a heuristic optimization technique to a particular problem in accordance with the rules of a
metaheuristic framework [18]. Numerous other metaheuristics exist, but some noteworthy
to mention are ant colony optimization, tabu search, simulated annealing, variable neigh-
borhood search, and genetic/evolutionary algorithms. The most popular metaheuristics,
according to Santana Robles [19], are simulated annealing (SA), particle swarm optimization
(PSO), and genetic algorithm (GA). The goal of this study is to determine how well MOPSO
handles location-routing problems for planning humanitarian evacuations. Additionally,
the performance of the model and the MOPSO heuristic procedure is also evaluated with
those of other broadly utilized methods.

This research paper is structured as follows: Section 2 reviews the studies on multi-
objective models and humanitarian evacuation planning. Recent trends and issues on
humanitarian supply chains (HSCs) were also discussed to establish the research gap.
Section 3 discusses the development of the mathematical model and the solution method;
Section 4 presents the empirical case, the numerical results and analysis, and some practical
implications of the study; and Section 5 provides the conclusions and future research
undertakings from the findings of the study.

2. Literature Review

According to Habib et al. [5], the three main areas of study in the field of humanitarian
supply chain (HSC) are facility location, network design and relief distribution, and mass
evacuation.

2.1. Humanitarian Supply Chain Facility Location

A relief distribution channel, consisting of warehouses, regional relief distribution
centers, and central distribution hubs, is created with the intention of giving relief to the
affected people following a disaster. The difficulty in this procedure is locating these
facilities such that the needs of the entire disaster-affected area are met with the least
amount of delivery cost and the highest degree of service. Some authors take into account
resource allocation from central distribution hubs to depots and local distribution centers
in addition to planning the location of the facility. These problems are referred to as
location-allocation problems [5].

In order to maximize the coverage of relief supplies in the disaster target region,
Dekle et al. [20] developed a model to position the disaster recovery facilities in the pre-
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disaster environment. A model for supply distribution in a municipal inundation disaster
scenario was created by Chang et al. [21] with the goal of minimizing transportation costs,
facility setup expenses, and hauling costs of rescue paraphernalia. The authors took into
account the position of the depot, arrangement of facility distribution, scarcity, and excess
penalties. A facility location problem was proposed by Balcik and Beamon [15] for the post-
disaster situation. The problem is a maximal covering location model variant with economic
and facility considerations. To accommodate the demand, they decided on a number of
distribution center locations and the amount of relief goods needed at each location. The
approach used by Abounacer et al. [22] was one of exact solutions. The authors created
a way to deliver the assistance from and to the demand sites in a location-transportation
problem by first determining the location and number of distribution facilities. A location-
allocation model with goal programming was proposed by Barzinpour and Esmaeili [23]
with the aims of expanding population collective coverage and reducing overall cost.

2.2. Humanitarian Supply Chain Network Design and Relief Distribution

In the domain of network design and relief distribution for the HSC, numerous
mathematical models have been created with slight modifications in objective functions
and constraints. In their study on the location-routing problem (LRP), some researchers
took the routing problem and the distribution facility’s location into consideration [5].
LRP is a method that can address the problem of simultaneously resolving the locations
of facilities and vehicle paths. LRP prevents the optimization process from becoming
stuck in the sub-optimal solution brought on by choosing the locations of facilities and
vehicle paths independently. Because LRP can combine facility location problems (FLP)
and vehicle routing problems (VRP), it may be of interest to researchers [24]. A model
for multiple-depot location-routing was proposed by Ahmadi et al. [25]. To get the relief
supplies from local depots to the afflicted individuals, they identified the locations of local
warehouses and created a routing model. They created a neighborhood search algorithm
and added a feature for implications for network failure, such as highway destruction
and costs associated with unmet needs. LRP models have been widely implemented in a
variety of fields, including parcel delivery by Bruns et al. (2000) and Wasner and Zapfel
(2004); telecom network design by Billionnet et al. (2005); medical by Pourreza (2018);
and environment by Toro et al. (2017). In general, cost reduction is included as one of
the objective functions in most LRP models in addition to the other criteria that must
be satisfied.

According to Berger et al. [26], the LRP form of the problem, in which there are no
facility or vehicle limits, is as follows:

Let J be the set of potential facility locations and I be the set of customer locations. A
graph can be defined as G = (N, V), where N = I ∪ J or J ⊆ I the set of points and V = N ×
N is the set of edges. Along with Pj, which is the set of viable routes for facility j, we can
define k as a feasible route that departs from facility j, travels to a subset of nodes, and then
returns to facility j. The IP formulation for the problem is

Minimize : ∑
jεJ

f jxj + ∑
j∈J

∑
k∈Pj

cjkyjk (1)

subject to : ∑j ∑k aijkyjk= 1 , ∀i

xj≥ yjk , ∀j, ∀k

xj, yjk= {0, 1}

(2)

where
f j: Fixed cost of facility j
cjk: Cost of transportation in route k associated with facility j
xj: 1 if facility j is chosen, 0 otherwise
yjk: 1 if route k is connected with facility j is chosen, 0 otherwise
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aijk: 1 if route k is connected with facility j visits client i, 0 otherwise.
When each client is supplied by a single facility (constraint 1), the objective function

optimizes both the fixed costs and the routing costs, making sure that only routes of selected
facilities are chosen (constraint 2).

Metaheuristic methods can be used to address complex problems using large amounts
of information. The metaheuristic approach allows for the production of near-optimal
solutions, or good enough solutions, even while finding an optimal solution is not guaran-
teed. However, because computing will be done more quickly when using metaheuristic
approaches, time can be saved. As a result, metaheuristic methods are ideal for use in
complex situations involving vast volumes of data.

There has been extensive use of metaheuristic techniques using LRP models. This is
due to a model that is getting more complicated and has multiple constraints and data
applied. Bouhafs et al. [27] decide the facilities to be opened using hybrid simulated
annealing (SA) and ant colony optimization (ACO). They also determine the path to be
traveled, which is determined by the ACO. Finally, Prins et al. [28] employ the randomized
extended Clarke and Wright algorithm (RECWA) to build an initial solution. The memetic
algorithm with population management (MA|PM) was then employed by the authors to
get a conclusion.

One of the extensively used metaheuristic techniques is particle swarm optimization
(PSO). According to Hussain et al. [29], PSO is frequently used since it is simple to apply and
productive in both research and business. Marinakis [30] also used surveys on issues with
vehicle routing to illustrate the applicability of PSO. The assessment of 100 publications
yielded the conclusion that PSO can offer top-notch solutions for various VRP variants.
Multi-objective particle swarm optimization (MOPSO) is one sort of PSO. A variant of the
PSO known as MOPSO is used to handle multi-objective optimization problems (MOOP).
Liu and Kachitvichyanukul [31] previously used MOPSO on MLRP cases and a Pareto
base. According to the authors, MOPSO has a superior Pareto front quality compared to
NSGA II.

2.3. Mass Evacuation

The majority of the mass evacuation area models were created for public transportation
evacuation. In their model of an integrated emergency supply network, Sheu and Pan [32]
took into account public evacuation. They took into account psychological cost, operational
cost, and trip distance minimization in their approach. To establish a coordinated network
for emergency supplies, they combined distribution, evacuation, and medical networks.
Governments remove the populace from dangerous locations ahead of time whenever a
disaster such as a flood is expected. The lack of an adequate supply of bus drivers is the
main issue in such circumstances. In order to calculate how many extra drivers would
be necessary during an emergency evacuation operation, Morgul et al. [33] proposed two
stochastic models, with the aim of reducing the costs associated with both the unmet
demand and the expenses associated with the hiring of additional board employees. In
their bus-based evacuation model, Naghawi and Wolshon [34] also assessed how a transit
bus-based evacuation might affect the functionality of a regional road network.

In light of the above literature, this study provided a multi-objective location-routing
model to address the pre-disaster phase by optimizing the location of distribution and
evacuation centers and managing mass evacuation within the required response time
(golden time). It is accomplished through the use of several objective functions. The model’s
objectives included minimizing investment costs for distribution hubs and evacuation
centers and maximizing the coverage of these shelters to adjacent residential zones. The
model ensured that evacuees are evacuated within the required response time during
the evacuation process. This work aimed to offer a multi-objective, multi-level facility
location-routing model for disaster management (DM) operations in the early aftermath
of a disaster. The proposed model was divided into two stages: (1) identifying the ideal
location of distribution hubs to allow for the shortest response time possible, followed
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by (2) determining the optimal allocation of individuals to evacuation centers with the
shortest response time possible. In focus, the model’s objectives included minimizing
the cost of creating distribution hubs and evacuation centers by selecting an adequate
number of facilities. The second phase employed an optimization approach to identify the
ideal location-allocation for evacuees in evacuation centers while maintaining the shortest
response time possible, considering the evacuation centers’ capacity and the population of
each community shown in Figure 1.
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The current study offers four contributions: it offers two different types of facilities,
namely distribution hubs and evacuation centers, as its first contribution. Most studies
only offer one specific type of facility. Second, the model aimed to create the humanitarian
network with the shortest response time, both in terms of evacuation and relief distribution,
at the lowest investment cost. Third, it takes both scenario-based and stochastic uncertainty
into account at the same time. Finally, it is the only paper, to the best of our knowledge,
that utilizes hazard map in modeling humanitarian facilities decisions.

3. Methodology

The succeeding sections explain the steps undertaken in this research to fit the purpose
of the study.

3.1. Research Framework

The research methodology is displayed in Figure 2. In the first step, the fundamental
infrastructures that will be affected by a typhoon are identified, and their interactions are
established. The stochastic parameter distribution functions are then generated. The mathe-
matical model for the pre- and post-disaster phases is presented in the second stage. In order
to minimize costs, response times, and maximize vehicle usage, the location, allocation, and
routing must be planned. The proposed stochastic mathematical model is then translated to
a deterministic model as the next stage. Finally, MOPSO is used to solve and optimize the
model. MOPSO’s solutions are evaluated with those of multi-objective simulated annealing
(MOSA) and the ε-constraint approach. The Multi-Objective Simulated Annealing (MOSA)
approach is a subset of simulated annealing extensions to multi-objective optimization that
builds an estimated Pareto front by assembling nondominated solutions discovered while
examining the feasible domain. An archive is seen as being used to maintain such effective
solutions [35]. The ε-constrained method is an algorithm transformation technique that can
change algorithms for unconstrained problems into algorithms for constrained problems
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by comparing search points based on their objective values and violations of constraints at
the epsilon level [36].
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3.2. Mathematical Model

In this study, the proposed scenario-based multi-objective location-routing model is a
hybrid of the facility location model (FLM) and vehicle routing problem (VRP). The model
utilized the scenario-based approach to create a network design that locates and deter-
mines the minimum number of distribution centers and evacuation centers to minimize
evacuation and relief distribution time.

3.2.1. Problem Description and Assumptions

The humanitarian network is presumptively made up of the following: (1) disaster-
stricken areas; (2) safe shelters at evacuation centers (ECs); and (3) distribution centers
(DCs). The flow is determined by the vehicles that take evacuees from the afflicted areas to
ECs. This study considered the likelihood that the routes would be destroyed or closed
after the typhoon. The likelihood that the routes may be destroyed or blocked by landslides,
downed trees, or flooding will depend on how strong the typhoon is. This parameter’s
values will change depending on the kind of scenario and the time and typhoon signal.
After the disaster, there is a finite window of time within which the relief and rescue
effort must be completed. This window is known as the “golden time” [37]. This study
proposed the ideal location of distribution centers (DCs) and evacuation centers (ECs) for
construction during the pre-disaster period. Additionally, the evacuation flow (from the
afflicted area to the EC), the evacuation’s best paths (routes), and the distribution of vehicles
to these flows are all determined by the model.

Before formulating the mathematical model, the following assumptions were made of
the model:

1. The infrastructure cost of the facilities is known and constant in all areas;
2. Homogeneous fleet vehicle routing with a single type of vehicle and a constant

capacity is taken into account;
3. The pick-up point is the affected area where the victims are located;
4. The likelihood that disruptions at individual edges are known a priori and indepen-

dent of one another.

3.2.2. Model Formulation

There are provided sets and indices, which can be found in Table 1a–c.
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Table 1. (a) Sets and indices. (b) Parameters’ definition and metrics. (c) Decision variables and their
definition.

(a)

Index Definition

D The set of locations damaged by the disaster are listed by
(d ∈ D)

E Set of evacuation routes listed by (e ∈ E)
J Set of DCs listed by (j ∈ J)
K Set of distribution centers’ capacity category listed by (k ∈ K)
S Set of potential discrete events listed by (s ∈ S)
T Time horizon as indicated by (t ∈ T)
V Set of vehicle categories listed by (v ∈ V)

(b)

Parameter Definition Unit of Measurement

DCmaxk

The established maximum
capacity of DCs of size j Number of people

Vcap
Vehicle v’s capacity to

transport evacuees Number of people

dij
The distance between DC i

and EC j Kilometer

CDCk

The cost associated with
building a DC in site j with

capacity category k
PHP

CECi

Cost for establishing an EC in
location i PHP

vcv
Variable cost per kilometer for

vehicle use PHP

eij
The path length between EC

and the affected area d Kilometer

Ns
d

Number of homeless
individuals who required

evacuation from the affected
area in scenario s

Number of people

ECcaps

The capacity of EC in scenario
s Number of people

ps Probability of scenario s

ps
di

Probability of successful flow
between two points, d and i in

scenario s

ps
ij

Probability of successful flow
between two points, i and j in

scenario s

ps
dj

Probability of successful flow
between two points, d and j in

scenario s

tdi
Travel time between two

points, d and i Minutes

tij
Travel time between two

points, i and j Minutes

tdj
Travel time between two

points, d and j Minutes

Tmax
The maximum response time

allowed Minutes

V−speed Vehicle speed Kilometer/hour

VLU
Vehicle loading and unloading

times Minutes
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Table 1. Cont.

(c)

Decision Variable Definition

xs
i =


1 if, in scenario s, EC is situated at candidate EC i

0, otherwise

ys
j =


1 if, in scenario s, DC is situated at candidate DC j

0, otherwise

zs
di =


1 if, in scenario s chooses path e from affected area d to EC i

0, otherwise

ns
di

Number of people who were relocated from the damaged area d
to the EC i in scenario s

vs
di

Number of vehicles v transporting evacuees in scenario s from
the affected area d to the EC i

RTotal
The overall number of round-trips made to transport the

homeless from the affected area to EC i

The following are the mathematical derivation of the postulated multi-objective evac-
uation location model:

Minimize : f1 =
{

∑I
i=1 ∑S

s=1 CECi × xs
i

}
+
{

∑L
l=1 ∑J

j=1 ∑S
s=1 CDCk × ys

j

}
+{

∑S
s=1 ∑V

v=1 vcv × ps

[
∑S

s=1 ∑I
i=1 ∑J

j=1 eij ∑S
s=1 ∑I

i=1 vs
di

]} (3)

Minimize : f2 = ps
di

(
∑S

s=1 ∑D
d=1 ∑I

i=1 tdixs
i

)
+ ps

ij

(
∑S

s=1 ∑J
j=1 ∑K

k=1 tijys
j

)
+

ps
dj

(
∑S

s=1 ∑J
j=1 ∑D

d=1 tdjys
j

) (4)

Minimize : f3 = ∑I
i=1 ∑D

d=1 vs
di (5)

Subject to:
ns

dk ≤∑E
e=1 zs

edi
× ps

e ∀ d, i, s (6)

∑E
e=1 zs

edi
≤ 1 ∀ d, i, s (7)

∑D
d=1 ns

di ≤ ECcaps ∀ i, s (8)

∑I
i=1 ns

di = Ns
d ∀ d, s (9)

∑J
j=1 ys

jk ≤ 1 ∀j, s (10)

E

∑
e=1

zs
edi
≤ xs

i∀ i, s (11)

ECcaps ≤ xs
i ∀ i, s (12)

Tmax ≥tdixs
i ∀ d, i, s (13)

ns
di ≤

(
∑V

v=1 vs
di ×Vcap

)
∀ d, i, s (14)

∑D
d=1 Rtotal

s
d ≥

Ns
d

Vcap
∀ d, s (15)

∑D
d=1 ∑1

i=1 xs
di = 1 ∀ i, j, s (16)

∑D
d=1 ∑1

i=1 xs
di ≤ 1 ∀ i, j, s (17)
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all var ∈ R+ (18)

ys
kj, xs

i , zs
edi
∈ {0, 1} (19)

The objective function aims to minimize the expected value of the total expenditures
associated with the network for humanitarian evacuation. It comprises the total cost
(3) of pre-disaster actions, such as the infrastructure expenditures related to setting up
distribution and evacuation centers and the expenses associated with transporting im-
pacted individuals to the evacuation centers. The second objective function (4) reduces
the network’s overall travel time, which includes the time it takes to transport evacuees
from the afflicted area to the evacuation centers and to deliver aid from distribution centers
to evacuation centers. The number of vehicles involved in the evacuation operation is
minimized by the third objective function (5).

The use of non-existent pathways between two nodes is prohibited by constraint (6).
Only a single evacuation path is picked between two nodes, as defined by constraint (7).
Transportation in this scenario is only feasible between two sites, for example, between
EC and the impacted area, or EC and DC given constraint (7) and the model’s structure.
Therefore, it is unnecessary to include the restriction (sub-tour) separately in the problem.
It is because the distribution of these places to vehicles is one-to-one, and at least three
nodes are needed to create a sub-tour. Therefore, no loop construction in the route of the
vehicles is feasible, given the nature of the problem, and it is evident in the findings. The
capacity restriction for ECs is shown in constraint (8). The evacuation of all evacuees from
the affected areas is guaranteed by constraint (9). More than one DC cannot be established
at any node due to constraint (10). The development of a new EC is required according to
constraint (11) before evacuees are transferred. Requirement (12) states that an EC must be
opened before usage. According to constraint, the response time from demand location
d to the facility assigned to it will always be shorter than the maximum response times
allowed (13). Constraint (14) takes vehicle volume capacity into account. The total number
of round trips in each affected area is guaranteed by constraints (15) for each scenario.
Throughout the whole evacuation duration, each vehicle will only be used once, according
to constraint (16). To put it another way, every vehicle involved in the evacuation operation
has to decide how to get to the pick-up location. According to constraint, each affected
place can be reached by vehicle for evacuation (17). The types of decision variables are
indicated by the constraints (18) and (19).

3.2.3. Stochastic Chance Constraint Programming

In this study, stochastic models were transformed into deterministic models using the
stochastic chance constraint programming approach. There have been several documented
instances of this strategy being applied successfully [17].

Assume that k is the number of objective functions and that ~ is the symbol for an
ambiguous parameter. Assume that at least one of the aij, hi, or cjk parameters is defined as
a stochastic parameter. As a result, the uncertain model is taken into account as follows:

min fk = E
(
∑n

j=1 c∼kjzj ≥ h∼i
)

k = 1, . . . , K; i = 1, 2, . . . , m (20)

i = 1, 2, . . . , m p
(
∑n

j=1 a∼ij zj ≥ h∼i
)
≥ αi (21)

z = (z1, . . . , zn) (22)

z ∈ S (23)

z ≥ 0 (24)

where the benefit ratio of the jth decision variable in the kth objective function is represented
by ckj. The technology coefficients of the jth choice variable are shown by aij, hi, and yj,
respectively.
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The generic model’s deterministic outcome for the maximum and least states is as
follows:

E

(
n

∑
j=1

d∗kjz
−
j f−k

)
− ϕ−1(αk)

√√√√Var

(
n

∑
j=1

d∗kjz
−
j f−k

)
≥ 0 k = 1, . . . , K (25)

(Therefore,)
f−k = min ∑n

j=1 d∗kjzj

E
(
∑n

j=1 d∗kjz
−
j f+k

)
+ ϕ−1(αk)

√
Var

(
∑n

j=1 d∗kjz
−
j f+k

)
≤ 0 k = 1, . . . , K (26)

(Moreover,)
f+k = min ∑n

j=1 d∗kjzj

E

(
n

∑
j=1

a∼ij z−j h∼i

)
− ϕ−1(1− αi)

√
Var

(
∑n

j=1 a∼ij z−j h∼i
)
≥ 0 i = 1, . . . , m (27)

As constraint (26), the multi-objective chance constraint model can be transformed
into a deterministic model at α% level:(

∑D
d=1 nhldks

)
E
(

ñdits

)
+ ϕ−1(1− αi)

√
varñdits = dmrikts ∀ k, t, i, s (28)

where E
(

ñdits

)
and varñdits are the mean and variance of normal distribution function

estimated by simulation model, α shows normal distribution at confidence level (1 − α)%,
and ϕ indicates standard normal distribution with zero mean and a unit variance.

3.3. Model Solution

Particle swarm optimization aims to find a single, global optimal solution. Compara-
tively, multi-objective particle swarm optimization seeks solutions that constitute the Pareto
front. The non-dominated solutions from each iteration are archived for this purpose. A set
of criteria that ensures diversity and coverage on the Pareto front must be used to select
stored non-dominated solutions [38].

3.3.1. MOPSO
Algorithm Parameters

Before using the procedure, the initial parameters need to be set. From Liu and
Kachitvichyanukul [31], who also addressed the same-scale multi-objective location routing
problem, the initial settings for the MOPSO method were derived. The study also used
Coello et al.’s [39] parameter’s values.

This study utilized the Taguchi approach to adjust several algorithmic parameters.
The signal-to-noise ratio (S/N) of the experiment is investigated. The S/N value, or amount
of scatter around a given value, demonstrates how our conclusions have changed due to
numerous studies. The Taguchi method mechanism also focuses on the solution. The result
of this technique was grouped into three categories: lower is better, higher is better, and
insignificant is better. The recommended mathematical model employed the first category
to control the algorithm’s parameters because minimization is the objective function. The
following equation shows the S/N ratio value used in this study:

S
N

= −10× log

(
∑n

i=1 Y2
i

n

)
(29)

where n is the orthogonal array and y represents the solution’s value.
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Since the objective function scale for each example varies, they could not be used
interchangeably. Each model uses the relative percent deviation to address this issue (RPD).
The RPD value for the data is calculated using the following equation:

RPD =
Algsol −Minsol

Minsol
× 100 (30)

The MOPSO algorithm’s optimal set of parameter values are summarized in Table 2.

Table 2. MOPSO parameter settings.

Parameter Candidate Parameter Selected Parameter

Number of particles (NoP) [100, 150, 200] 150
Inertial weight (ω) [0.9, 0.8, 0.7, 0.6, 0.5, 0.4] 0.8

Personal learning (c1) [1.0, 1.5, 2.0] 1.0
Global learning (c2) [1.0, 1.5, 2.0] 1.0

Mutation rate 0.5 0.5

MOPSO Algorithm

By incorporating Pareto dominance and using the external archive to store non-
dominated solutions, Coello et al. [39] created the MOPSO to handle MOOPs. This model’s
complexity necessitates the use of an efficient algorithm that is capable of solving MOOPs.
Algorithm 1 displays the algorithm’s pseudocode. This is implemented by Wang et al. [40].

Algorithm 1: MOPSO

Input: Number of particles (NoP), the external archive’s capacity (Acap), inertial weight (ω),
Personal learning (c1), global learning (c2), mutation rate (γ), maximum number of iteration (imax)
Output: Particles that are non-dominated in the external archive

Steps: (1) Set the swarm’s particles to their initial states P0
(
vp,0, xp,0

)
(2) Each particle should be evaluated in P0 and nondominated sorting (P0)
(3) Create the external archive A0 using a non-dominant solution
(4) Initialize pbestp, 0 and gbest0

(5) While i < imax do
(6) For each particle p = 1: NoP
(7) Using Equations (29) and (30), adjust the velocity and position
(8) Analyze the new particle
(9) Revise pbestp, i

(10) End for
(11) Ai ← External archive updating (Ai−1)
(12) Choose gbesti based on the crowding distance.
(13) If rand() < γ
(14) Using ELS, update Ai
(15) End If
(16) While DCD d appears d0
(17) For each particle p in Ai
(18) xp, i ← DIS (d, xp, i) and update Ai

(19) End for
(20) End while
(21) i = i + 1
(22) End while
(23) Results are stored in the external archive.

Particle Updating

Each particle in the MOPSO algorithm denotes a potential solution and is described
by its present position and velocity. Based on their personal best (pbest) and the global best
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(gbest) of the entire swarm, the particles seek the solution space. Equations (29) and (30)
update the particle p’s velocity vp,i and position xp,i at iteration i.

vp,i = w× vp,i−1 + c1 × r1 ×
(

pbestp,i − xp,i−1
)
+ c2 × r2 ×

(
gbesti − xp,i−1

)
(31)

xp,i = xp,i−1 + vp,i (32)

where the best positions of particle p and the entire swarm at ith iteration are represented by
the variables pbestp,i and gbestp,i, respectively. The constants c1 and c2 are used to describe
the particle’s acceleration toward xpbest,i and xgbest,i. The random numbers r1 and r2 range
from 0 to 1. The trade-off between the global and local search capabilities is adjusted by
the inertial weight, orω. Following are the calculations for the decreasing linear inertial
weight:

ω = ωmax −
ωmax −ωmin

imax
× i (33)

where i and imax stand for the algorithm’s current iteration and its maximum number
of iterations, respectively. The lower and upper bounds of inertial weight are ωmin and
ωmax. The MOPSO algorithm has several critical challenges that must be solved, including
identifying the leadership throughout the search process, retaining the non-dominated
solution to acquire the optimal Pareto front, and maintaining the diversity of the particle
swarm to jump out a local optimal [40].

Selection of pbest and Nondominated Sorting

Because the pbest and gbest have a significant impact on the search, the selection of
leaders is an essential step in MOPSO. The particle with the best position in the swarm is
the leader in a single objective optimization problem. The best solutions to problems with
multiple objectives, however, are a collection of nondominated Pareto front solutions. If
u = [u1, u2] and v = [v1, v2] are supposed to be two particles in a bi-objective minimization
problem, the objective values in function f (x) = [ f1(x), f2(x)] are u1, u2, v1, v2. If u1 < v1
and u2 < v2, then u dominates v and vice versa. The particle u is a nondominated solution
if there are no other particles in the swarm that dominate it.

The decision is best summed up as follows. If xpbest,i outperforms xpbest,i−1, then
xpbest,i−1 will take its position, and vice versa. If there is no dominance relationship be-
tween them, then the pbest is randomly selected from among them. From among the
nondominated solutions found by nondominated sorting, the gbest is chosen.

The jth particle uses two vectors [f 1, f 2] to organize the swarm into categories and
focus the search on Pareto optimum solutions. Pareto optimum solutions constitute a
Pareto front, and the Pareto optimal solutions shown in blue circles (p1, p2, p3) in the
entire swarm are not dominated by any other solutions. The feasible solutions, which
dominated Pareto optimum solutions in the first front, make up the solutions in the
second front (p4, p5, p6). Similar to the blue circles, the green circles represent solu-
tions (p7, p8, p9) that predominate in the second front. Algorithm 2, which is imple-
mented by Wang et al. [40], presents the specific phases of nondominated sorting in detail.
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Algorithm 2: Nondominated sorting

Input: Particle swarm P = { p1, p2, p3, . . . , pj}, rank counter r
Output: R and a collection of particles with various rankings

Steps: (1) Set the value of the rank counter r to 0.
(2) Repeat

(i) r← r +1
(ii) Analyze the particles
(iii) Based on the dominance relationship, identify the nondominated particles

from P.
(iv) Give these particles a rank of r.
(v) Take these particles out of P.

(3) Until the P← ∅
(4) Display the results of the nondominated sorting

External Archive Updating and Gbest Selection

The MOPSO method produces nondominated particles, which are frequently stored in
an external archive. The choice of gbest involves choosing a nondominated particle from the
archive to serve as xgbest,i. By computing the relative density j of nondominated particles
in the external archive, MOPSO employs crowding distance for archive update and xgbest,I
selection [41]. Equation (32) gives the definition of the particle j’s crowding distance.

CD(j) = ∑n
m=1

(
Fj+1

m − Fj−1
m

)
Fmax

m − Fmin
m

(34)

where Fj+1
m and Fj−1

m are the mth objective function of particle j + 1 and j − 1, and Fmax
m and

Fmin
m represent maximum and minimum values of mth objective function, respectively. Algo-

rithm 3, implemented by Wang et al. [40], presents the external archive updating algorithm.

Algorithm 3: External archive updating

Input: New particle swarm P = { p1, p2, p3, . . . , pj}, External archive Ai−1, Acap.
Output: Ai external archive that has been updated.

Steps: (1) Ai ← Ai−1
(2) For j = 1: |j|
(3) Assess the new particle pj

(4) If any particles in Ai dominate the new particle pj.
(5) Ai cannot add a new particle with pj

(6) Else
(7) Ai ← Ai ∪ pj

(8) End if
(9) End for
(10) If |Ai| > Acap
(11) Nondominated sorting (Ai)
(12) For j = 1: |Ai|
(13) Using Equation (33), estimate the CD(j)
(14) End for
(15) Eliminate from Ai the particle with the lowest CD.
(16) End if
(17) Output Ai

In Algorithm 3, each new particle is individually compared to each particle already
present in the external archive. The archive needs to be updated with the new particle; how-
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ever, if any particle in the archive dominates the new particle, then the new particle cannot
be saved in the archive. The archive capacity inevitably increases as more nondominated
particles are added, decreasing the search efficacy and raising the algorithm’s computing
cost. In order to prevent archive capacity from exceeding the set value, crowding distance
is introduced. To keep the swarm’s diversity, particles in a region with a high density have
a tendency to be removed. The nondominated particle in the archive with the highest
CD value is identified as the gbest.

Elitist Learning Strategy (ELS)

An ELS is used to assist particles in escaping the local optima, enhancing the MOPSO’s
ability to perform a global search in order to prevent the particles from converging to the
local optima during optimization [42,43]. The ELS modifies the gbest and directs it to a
more advantageous area. The remaining particles in the archive go to the new region after
xgbest,i. The particles in the external archive have changed as a result.

The same probability is used by the ELS to choose one dimension from the gbest at
random. Using Gaussian perturbation, the ELS is carried out as follows:

gbestd = gbestd +
(

xmax
d − xmin

d

)
·Gaussian

(
µ, γ2

)
(35)

where gbestd is the dth dimension of gbest, and xmin
d and xmax

d are the lower and upper
bounds of the optimized problem in the dth dimension. Gaussian

(
µ, γ2) is a Gaussian

distribution random number with a mean µ = 0 and standard deviation γ, shown as
Equation (34).

γ = γmax − (γmax − γmin)×
i

imax
(36)

where the elitist learning rate, denoted by the symbol γ, declines linearly with iterations;
γmax = 1 and γmin = 0.1 are the learning rate’s lower and upper boundaries, respectively;
i is the number of iterations currently being used; and imax is the maximum number of
iterations.

3.3.2. MOSA

Numerous multi objective simulated annealing (MOSA) frameworks have been put
out in the literature, all of which recommend that an adaptation of a particular composite
energy be thought of as a linear arrangement of the considered objective functions. An
iterative approach to the Pareto solutions set has been demonstrated for a particular
selection of acceptance probability [44].

Any solution that is not dominated by the existing solution can be accepted un-
der the Pareto Simulated Annealing (PSA) method that Czyzak and Jaszkiewicz [45]
have proposed. PSA is a population-based metaheuristic that borrows ideas from ge-
netic algorithms and considers a group of created solutions to be potentially progressed
at each temperature. Each answer from the sample is modified so that the new, ac-
ceptable solution should be far from the one that is most similar to the old one. In
this method, the weights of the objectives that the nearest solution is better than the
recent solution are increased while the weights of the objectives that the nearest solu-
tion is better than the recent solution are decreased. The next iteration’s evaluations
phase and probabilistic acceptance will both employ the updated weights combination.
The PSA technique is presented in Algorithm 4, which is implemented by Amine [35].
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Algorithm 4: PSA

Input:
An initial memory M← S, a cooling schedule τ, a starting sample of the developed
solutions S, and a starting temperature T← T0

Output: The set of approximate Pareto solutions is archived in this repository M.
Steps:

(1) Repeat
(2) For each Sc ε S do
(3) Repeat
(4) Create a neighboring solution Snew
(5) If Snew is not dominated by Sc then
(6) Update M with Snew
(7) Choose Scl, the nearest solution to Sc, if it exists
(8) Adjust objective weights to reflect partial dominance of Sc and Snew
(9) Else
(10) Adopt Snew with particular probability
(11) End if
(12) Until Equilibrium condition
(13) End for
(14) Reduce temperature T
(15) Until Cooling condition
(16) Return M

When enhancing the sample of developed solutions, PSA makes an effort to maintain
some homogeneity. In other words, every cycle of improving solutions connected to
a particular solution from the initial sample should be separated from other series of
improving solutions connected to the other initial sample elements. This should indicate
sample clustering reduction and allow for a limit on the quantity of efficient solutions that
are returned. Parallelization is also feasible because PSA deals with a sample of probable
solutions at each temperature. When PSA is parallel, sample elements are all updated
simultaneously trying to get better results every parallel annealing process.

4. Computational Results and Analysis

This section analyzes and evaluates the implementation of the proposed model. The
model was executed in a case in Quezon province. The following subsections detail the
results of the proposed model.

4.1. Case Developed

Quezon Province is located in the CALABARZON region. With an area of
8706.60 square kilometers, Quezon is the sixth-biggest province in the Philippines and the
largest in the region (53.21%). The part comprises 39 municipalities, including Tayabas (a
component city) and Lucena (a highly urbanized city). Four (4) congressional districts are
further subdivided into 1242 small localities (barangays).

Because of its position and diverse topography, Quezon is vulnerable to geological
and hydro-meteorological hazards such as storm surges, flooding, tsunami, volcanic risks,
and earthquake- and earthquake-triggered landslides. From 2014 to 2017, the province
is expected to have suffered losses and damages of PHP 10.16 billion due to typhoons.
Typhoon Glenda in 2014 caused the most damages and losses among the typhoons that
impacted the region over the same period, amounting to PHP 8.88 billion. Disasters affected
several industries at the micro-level, even if the losses and damages they caused were
insufficient to stop the province’s economy from growing. The enormous crop and fishery
production losses caused by Typhoon Glenda are evidence of how much it affected the
agriculture industry.

Just recently, two super typhoons devastated the province. On 25 September 2022,
Super Typhoon Karding (international name: Noru), which caused damage in Quezon
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province, cost PHP 186.5 million. The wrath of the extreme weather event resulted in the
displacement of a total of 50,435 people, or 13,973 families, according to the Provincial
Disaster Risk Reduction and Management Office (PDRRMO). The province’s first district,
which includes the five island communities of Polillo, Burdeos, Panukulan, Jomalig, and
Patnanungan, is home to at least 8619 families, or 31,701 people. After almost a month, on
29 October 2022, Typhoon Paeng cost the province a total of PHP 281,390,091.83 in damages
to farming and fishing. It was estimated that about 23,902 families, or 82,385 people,
were affected.

4.2. Test Instances

All necessary primary and secondary data were collected, analyzed, and summarized,
including information from the interview with the Provincial Disaster Risk Reduction and
Management Council’s head, staff, and employees (PDRRMC). Data on municipalities
and barangays (small communities) were obtained. Each barangay is considered the
network node, and each road connecting these barangays is the link. Since there is a
total of 1242 barangays in Quezon Province, the network has 1242 nodes and 11,868 links.
The island group (Panukulan, Burdeos, Patnanungan, Polillo, and Jomalig) is considered
another network since there is no road connecting any barangay to other barangays in the
nearby municipality.

The initial 1242 × 1242 matrix of transit times between all barangays was generated
using Google Maps’ API matrix tool. A matrix entry denotes the travel time between the
cluster centers of each pair of barangays in minutes.

The scenarios used in this investigation and their likelihood of occurring are displayed
in Table 3. The frequency and intensity of typhoons that have hit Quezon during the past
20 years are used to calculate the probability that each scenario would occur.

Based on the typhoon’s strength and the time it occurred, eight scenarios were con-
sidered in this study. Disasters in the evening typically result in more severe states than
disasters that occur during the day since it is easier to move during the day than at night.
In the Philippines, a typhoon’s intensity is defined by the typhoon signal.

Table 4 describes the meteorological condition and the response of DRRMC in each ty-
phoon classification. As explained in the table, disaster preparedness agencies/organizations
alert their communities during typhoon signal no. 2; hence signal no. 1 is not included in
the scenarios.

Table 3. Scenarios used in the case study.

Scenario Probability of Occurrence Time of Occurrence Typhoon Signal

1 0.23 Day No. 2
2 0.26 Night
3 0.10 Day

No. 34 0.17 Night
5 0.07 Day

No. 46 0.09 Night
7 0.05 Day

No. 58 0.03 Night

4.3. Selection of Candidate Points

The risk categorization of the barangay serves as the qualifying criterion for selecting
the candidate barangay to acquire the facility. It was developed using Project NOAH’s Risk
Map (National Operational Assessment of Hazards). The red-colored barangays depict
locations considered highly hazardous to landslides, floods, subsurface faults, and storm
surges. These locations were assigned M (a vast number) as the travel time, so these areas
will not be selected as candidate locations for the facility. Only barangays classified as
green or yellow were considered candidate barangays for a facility (see Appendix A).
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Table 4. Typhoon classification in the Philippines.

Typhoon Signal Meteorological Condition Disaster Response

No. 1
• Within the next 36 h, winds of 30 to 60

kph and sporadic showers are possible.
• The alert status of the disaster

preparedness units is activated.

No. 2

• Within at least 24 h, winds of at least 60
kph and as much as 100 kph may be
anticipated.

• Disaster preparedness organizations
and agencies are working to inform
their local communities.

No. 3

• In at least 18 h, winds of greater than
100 kph and up to 185 kph may be
anticipated.

• Disaster preparedness and response
agencies and groups are working to
respond to emergencies in the right
direction.

No. 4
• Over 185 kph of extremely severe winds

may be anticipated in at least 12 h.

• Emergency responses are now being
made in full by the concerned disaster
coordinating councils and other disaster
response agencies.

No. 5(Super Typhoon)
• Over 220 kph or extreme winds could

emerge in at least 12 h.

• The relevant disaster coordinating
councils and other disaster response
agencies are now dealing with
emergencies to the fullest extent
possible and are fully prepared to act
quickly in case of an emergency.

Source: kidlat.pagasa.dost.gov.ph (accessed on 10 January 2023).

Among the 1242 barangays in Quezon, only 618 barangays became the possible
locations for the facilities. The rest were considered highly susceptible to flood, landslide
hazards, storm surge advisory level 4, and underground faults.

4.4. Computational Experiments

The MOPSO algorithm is used to determine the Pareto front of the model after its ef-
fectiveness has been demonstrated. Both the metaheuristics’ algorithm and the ε-constraint
method are coded and implemented using Python 3.11.2. It runs on a desktop computer
with CPU: 3.60 GHz, with an AMD Ryzen 5 3600 6-Core processor and 16 GB of installed
RAM.

4.4.1. Comparison of MOPSO, MOSA, and ε-Constraint Method

The findings were contrasted with the results obtained using the MOSA and
ε-constraint approach in order to confirm the proposed model and the effectiveness of the
proposed algorithm. The first objective function is regarded as the major objective function
and the second as the secondary objective function in the ε-constraint approach. For each
problem, a total of sixteen (16) Pareto points are produced. The problems are resolved
independently in order to establish the Pareto points depending on each objective function.

The Pareto boundaries for the MOPSO, MOSA, and ε-constraint methods are con-
trasted in Figure 3. The graph clearly shows that the Pareto boundaries generated by the
MOPSO algorithm are comparable to those generated by the MOSA and exact ε-constraint
approach. Large-scale problems, however, are now inaccessible to the ε-constraint ap-
proach. Due to the need to take into account more facilities, Scenarios 5 to 8 no longer
generate solutions. The outcome is similar to that of Ghasemi et al. [17], who remarked
that the ε-constraint approach is only capable of handling small-scale and medium-scale
problems, whereas metaheuristics algorithms can solve even large-scale problems.

kidlat.pagasa.dost.gov.ph
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Figure 3. Comparison of Pareto fronts for (a) objective function 1, f 1, (b) objective function 2, f 2, and
(c) objective function 3, f 3 between MOPSO, MOSA, and ε-constraint method.

Table 5 presents further comparison and analysis. Columns 2 through 4 compare the
Pareto fronts of the overall costs (f 1) for each of the three solution approaches, whereas
columns 5 through 7 display the Pareto fronts of the travel times (f 2), and the number of
vehicles (f 3) are shown in columns 8 through 10. The relative error is displayed in the
subsequent columns after comparing the values of the e-constraint to those of MOPSO and
MOSA, respectively.

The relative errors of MOPSO and MOSA for the three objective functions are−0.18824,
−0.08363, 0.03555,−0.03831, 0.07123, and 0.14332, respectively. Therefore, MOPSO displays
smaller relative error than MOSA for the second and third objective functions. MOPSO
only performs not as good as that of MOSA in the first objective function.

Other metrics, such as the mean of ideal distance (MID), spacing metric (SM), diversi-
fication metric (DM), and algorithm running time (CPU T), which are presented in Figure 4,
are intended be used to compare the solutions of MOPSO with MOSA and ε-constraint.
However, since Scenarios 5 through 8 no longer give solutions using the ε-constraint, only
Scenarios 1 through 4 can be compared.
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The graphs reflect the same investigation, showing that MOPSO performs satisfactorily
across all metrics and is quite near to the exact solution approach. Thus, it is confirmed
that MOPSO is a suitable approach for dealing with large-scale problems. It is crucial
to take note of how long it takes to solve each complex problem. The epsilon-constraint
technique is unable to keep up with the MOPSO as a result of the exact solution method’s
drastically increasing time requirement as the problem’s size grows. The problem can
be solved significantly faster using the metaheuristic approach. As a result, the MOPSO
algorithm has excellent performance and is capable of handling complex problems.
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Table 5. The comparison of errors for MOPSO, MOSA, and ε-constraint.

NDS

Pareto Solutions % Error

Objective Function 1 (f 1) Objective Function 2 (f 2) Objective Function 3 (f 3) f 1 f 2 f 3

MOPSO MOSA ε-const. MOPSO MOSA ε-const. MOPSO MOSA ε-const. MOPSO MOSA MOPSO MOSA MOPSO MOSA

1 2,365,486,125 2,254,927,080 2,303,880,346 8,185,618 7,959,194 8,033,087 20 19 20 −0.02674 0.02125 −0.01899 0.00920 0.00000 0.05000
2 2,359,785,256 2,077,650,809 2,165,931,525 8,183,620 7,918,743 8,007,035 20 19 19 −0.08950 0.04076 −0.02205 0.01103 −0.05263 0.00000
3 2,159,263,025 2,031,304,701 1,944,531,755 8,146,739 7,667,229 7,740,167 18 18 19 −0.11043 −0.04462 −0.05253 0.00942 0.05263 0.05263
4 2,129,864,235 1,867,124,906 1,630,641,152 7,472,639 7,634,911 7,634,957 17 16 18 −0.30615 −0.14503 0.02126 0.00001 0.05556 0.11111
5 2,069,149,536 1,736,893,741 1,564,907,612 7,395,028 7,609,975 7,493,258 15 16 17 −0.32222 −0.10990 0.01311 −0.01558 0.11765 0.05882
6 1,985,643,468 1,576,218,985 1,470,394,440 7,292,106 7,608,176 6,994,900 14 16 17 −0.35042 −0.07197 −0.04249 −0.08767 0.17647 0.05882
7 1,894,356,146 1,505,313,246 1,226,734,974 6,900,266 7,582,970 6,962,347 14 14 17 −0.54423 −0.22709 0.00892 −0.08914 0.17647 0.17647
8 1,864,521,484 1,434,955,286 1,218,175,017 6,626,195 7,574,332 6,951,853 13 14 16 −0.53059 −0.17795 0.04684 −0.08954 0.18750 0.12500
9 1,686,458,324 1,243,969,145 1,134,264,794 6,494,436 7,411,132 6,771,373 13 13 16 −0.48683 −0.09672 0.04090 −0.09448 0.18750 0.18750
10 1,685,128,356 1,214,696,245 1,119,220,851 6,069,356 7,316,895 6,644,895 13 11 15 −0.50563 −0.08531 0.08661 −0.10113 0.13333 0.26667
11 1035125483 1,174,088,311 1,098,729,274 5,954,159 7,305,082 6,504,767 13 11 15 0.05789 −0.06859 0.08465 −0.12304 0.13333 0.26667
12 986,715,296 1,067,125,384 1,066,816,073 5,930,571 6,606,862 6,450,013 11 8 12 0.07508 −0.00029 0.08053 −0.02432 0.08333 0.33333
13 934,568,468 1,042,438,613 929,561,478 5,492,977 6,285,551 6,188,452 11 8 12 −0.00539 −0.12143 0.11238 −0.01569 0.08333 0.33333
14 854,812,562 1,027,345,887 827,353,552 5,450,218 6,100,547 6,054,271 10 8 11 −0.03319 −0.24173 0.09977 −0.00764 0.09091 0.27273
15 746,254,967 880,001,213 818,346,766 5,270,052 5,685,110 5,701,373 9 7 7 0.08809 −0.07534 0.07565 0.00285 −0.28571 0.00000
16 664,329,536 673,434,914 720,895,970 5,232,962 5,402,854 5,418,007 6 6 6 0.07847 0.06584 0.03415 0.00280 0.00000 0.00000

MEAN −0.18824 −0.08363 0.03555 −0.03831 0.07123 0.14332
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4.4.2. Results of Case Study

Table 6 shows the minimum number of distribution centers, evacuation centers, and
service vehicles needed to serve the needs of the homeless people if a disaster strikes in
the province. As expected, the number of facilities increases, respectively, as the situation
aggravates. Mainly, as the typhoon signal escalates, more people are being affected and
need to be evacuated; hence, more facilities must be provided. However, the result shows
that there is only a small effect on the number of facilities when a typhoon happens.
Regardless of whether the typhoon occurs during the day or night, the facilities needed are
almost the same.

Table 6. Minimum number of facilities.

Scenarios
Facility

Distribution Hub Evacuation Center Service Vehicle

1 3 7 4
2 3 10 6
3 4 11 6
4 5 12 6
5 8 20 11
6 8 20 12
7 10 21 13
8 10 25 16
0 22 43 27

It was also determined how many vehicles would be needed to shuttle affected
individuals from the disaster zone to the safest evacuation centers. Because the algorithm
always allows the vehicle to select the shortest path between the facilities, it has led to
faster evacuation times and more trips, reducing the number of vehicles needed.

Table 6 also shows an interesting contrast that can be noted. Consideration is given to
Scenario 0, which takes no likelihood into account. If the typhoon’s time and intensity are
not considered in the model, the number of facilities will almost be doubled. It is notable
that this is caused by evaluating the probability that a typhoon will hit the particular area
at a given time in a particular scenario.

Table 7 summarizes the distribution of evacuees in the evacuation centers for each
scenario. As discussed previously, as the typhoon intensifies (as defined by the scenarios),
more people get affected. They need to be evacuated to be safe. More ECs need to be
provided. The number of evacuees in each EC for each scenario must be maximized to 600
persons. Furthermore, ECs nos. 4, 5, 6, and 7 are the most utilized ECs since these areas are
usually struck by a typhoon and are more populated than the other areas.

Finally, Figure 5 illustrates the areas covered by each facility. For illustrative con-
venience, we only displayed the figure for Scenario 1. Scenario 1 resulted in having a
minimum of seven evacuation centers (red square) and three distribution hubs (yellow
triangle). As seen in the figure, the model consolidated almost entirely in the demand
groups and distributed facilities consistently throughout the study region. The circles in
Figure 5 indicate the covered region of each facility. The yellow circles identifies the covered
regions for the distribution centers. It minimizes the time in distributing the relief items to
the evacuation centers and affected areas.

These regions were also noted as being outside the Quezon hazard map areas des-
ignated particularly vulnerable to flooding, landslide risk, storm surge alert level 4, and
subterranean faults. As a result, these areas are suitable for constructing DM facilities.
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Table 7. Number of homeless people allocated to each evacuation center under each scenario.

SCENARIO

0 1 2 3 4 5 6 7 8

Number
of

Homeless
People

22,391 3687 4986 5439 6032 8845 10,346 10,614 12,637

EC 1 462 424 453 478 466 419 553 497 510
EC 2 494 520 445 485 440 423 495 502 545
EC 3 451 455 489 452 562 473 520 493 500
EC 4 478 581 533 474 534 417 545 522 490
EC 5 536 581 537 486 466 484 504 539 502
EC 6 431 528 500 499 537 486 516 475 538
EC 7 494 598 485 597 449 475 518 490 511
EC 8 452 - 481 532 518 478 552 547 498
EC 9 508 - 500 487 451 438 492 501 499

EC 10 503 - 563 508 536 489 498 492 515
EC 11 510 - - 441 508 457 507 515 490
EC 12 531 - - - 565 470 503 529 513
EC 13 598 - - - - 449 512 542 506
EC 14 508 - - - - 481 510 485 508
EC 15 377 - - - - 447 549 493 485
EC 16 503 - - - - 489 511 548 489
EC 17 565 - - - - 417 495 497 502
EC 18 491 - - - - 448 524 508 518
EC 19 498 - - - - 410 504 477 484
EC 20 535 - - - - 495 538 464 541
EC 21 530 - - - - - - 498 485
EC 22 534 - - - - - - - 528
EC 23 451 - - - - - - - 500
EC 24 489 - - - - - - - 482
EC 25 529 - - - - - - - 498
EC 26 495 - - - - - - - -
EC 27 625 - - - - - - - -
EC 28 601 - - - - - - - -
EC 29 519 - - - - - - - -
EC 30 560 - - - - - - - -
EC 31 501 - - - - - - - -
EC 32 679 - - - - - - - -
EC 33 668 - - - - - - - -
EC 34 644 - - - - - - - -
EC 35 419 - - - - - - - -
EC 36 489 - - - - - - - -
EC 37 633 - - - - - - - -
EC 38 463 - - - - - - - -
EC 39 501 - - - - - - - -
EC 40 489 - - - - - - - -
EC 41 476 - - - - - - - -
EC 42 378 - - - - - - - -
EC 43 495 - - - - - - - -

Number
of ECs 43 7 10 11 12 20 20 21 25

Table 8 shows the specific location of each facility.
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Table 8. Location of facilities (Scenario 1).

Distribution Centers Evacuation Centers

DC Municipality Barangay EC Municipality Barangay

1 Gumaca Burgos 1 San Andres Tala
2 Catanauan Milagrosa
3 Calauag Mabini
4 Atimonan Kalawit

2 Mauban San Miguel 5 Candelaria Kinatihan I
6 Real Maunlad

3 Burdeos Bonifacio 7 Panukulan Balungay
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4.4.3. Sensitivity Analysis

A sensitivity analysis is carried out to determine how sensitive the infrastructure cost
is to EC capacity. The capacity affects the number of ECs that must be built, as can be
drawn from Table 6. The capacity expansion of one EC prevents the creation of a new EC.
Consequently, the construction’s fixed costs will decrease.

Figure 6 illustrates the relationship between the EC’s capacity and its construction
cost. Generally, the highest cost appears in Scenario 8. It is more cost-effective to install
ECs with higher capacity that will be spread out across the network. The establishment
of fewer evacuation centers, however, might lengthen the evacuation process. However,
the cost lines of all the scenarios converge somewhere in the middle, suggesting that the
infrastructure costs are slightly different between scenarios at a given capacity.

Sustainability 2023, 15, x FOR PEER REVIEW 26 of 34 
 

These regions were also noted as being outside the Quezon hazard map areas desig-
nated particularly vulnerable to flooding, landslide risk, storm surge alert level 4, and 
subterranean faults. As a result, these areas are suitable for constructing DM facilities. 

4.4.3. Sensitivity Analysis 
A sensitivity analysis is carried out to determine how sensitive the infrastructure cost 

is to EC capacity. The capacity affects the number of ECs that must be built, as can be 
drawn from Table 6. The capacity expansion of one EC prevents the creation of a new EC. 
Consequently, the construction’s fixed costs will decrease.  

Figure 6 illustrates the relationship between the EC’s capacity and its construction 
cost. Generally, the highest cost appears in Scenario 8. It is more cost-effective to install 
ECs with higher capacity that will be spread out across the network. The establishment of 
fewer evacuation centers, however, might lengthen the evacuation process. However, the 
cost lines of all the scenarios converge somewhere in the middle, suggesting that the in-
frastructure costs are slightly different between scenarios at a given capacity. 

Figure 7 shows the sensitivity analysis of the network’s overall travel time EC capac-
ity. Because there will be fewer ECs dispersed throughout the network, as was already 
mentioned, the travel time increases as the number of ECs increase. 

 
Figure 6. Relationship between EC capacity and construction cost. 

 
Figure 7. Relationship of EC capacity and total travel time. 

Figure 6. Relationship between EC capacity and construction cost.

Figure 7 shows the sensitivity analysis of the network’s overall travel time EC capac-
ity. Because there will be fewer ECs dispersed throughout the network, as was already
mentioned, the travel time increases as the number of ECs increase.

Sustainability 2023, 15, x FOR PEER REVIEW 26 of 34 
 

These regions were also noted as being outside the Quezon hazard map areas desig-
nated particularly vulnerable to flooding, landslide risk, storm surge alert level 4, and 
subterranean faults. As a result, these areas are suitable for constructing DM facilities. 

4.4.3. Sensitivity Analysis 
A sensitivity analysis is carried out to determine how sensitive the infrastructure cost 

is to EC capacity. The capacity affects the number of ECs that must be built, as can be 
drawn from Table 6. The capacity expansion of one EC prevents the creation of a new EC. 
Consequently, the construction’s fixed costs will decrease.  

Figure 6 illustrates the relationship between the EC’s capacity and its construction 
cost. Generally, the highest cost appears in Scenario 8. It is more cost-effective to install 
ECs with higher capacity that will be spread out across the network. The establishment of 
fewer evacuation centers, however, might lengthen the evacuation process. However, the 
cost lines of all the scenarios converge somewhere in the middle, suggesting that the in-
frastructure costs are slightly different between scenarios at a given capacity. 

Figure 7 shows the sensitivity analysis of the network’s overall travel time EC capac-
ity. Because there will be fewer ECs dispersed throughout the network, as was already 
mentioned, the travel time increases as the number of ECs increase. 

 
Figure 6. Relationship between EC capacity and construction cost. 

 
Figure 7. Relationship of EC capacity and total travel time. Figure 7. Relationship of EC capacity and total travel time.

The number of the vehicle (objective function 3) is not particularly sensitive to EC
capacity. As we increase EC capacity, the impact is relatively minimal. The reason for this
is that, in other scenarios, idle time might still be employed to move the homeless people
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from the afflicted locations to the EC. As the EC’s capacity rises, the number of trips each
vehicle can make effectively rises.

4.5. Practical Implications

Even though the idea of sustainability is not new, it has only lately been discovered
how to apply it to humanitarian supply chains. Generally, the foundation of a sustainable
system is a constant understanding that sustainability goals are being achieved. Building
long-term capacity from a holistic standpoint is essential to enhancing response and the
efficacy of humanitarian interventions. The development of long-term capacity is key to
the effectiveness of temporary relief efforts. As a result, long-term capacity building is
essential for creating sustainable humanitarian supply chains (HSCs). Sustainability has
been a controversial issue and is the most crucial factor in the current situation.

As part of the long-term capacity building in the Philippines, this study helps by
determining the number of distribution hubs and evacuation centers and their locations
that optimize the total construction cost for the facilities and maximize the coverage of
these facilities to adjacent residential zones. The model ensures that evacuees are evacuated
within the required response time during the evacuation process.

5. Conclusions and Future Research

This paper proposed a stochastic multi-objective location-routing mathematical model
for creating a humanitarian network for disaster response. The proposed model was applied
to a case study in Quezon Province, which comprises 1242 barangays and is regularly hit by
typhoons. This also considers the strategic and tactical strata of decision-making in crisis
response. The selection of the quantity and location of ECs and DCs and the distribution of
available capacity are referred to as strategic decisions. Operations considerations include
choices regarding the number of vehicles to be used, the route to take, and the transfer of
impacted individuals to ECs.

The proposed model had three objectives: minimizing the network’s infrastructure’s
total cost, the amount of time spent traveling through it, and the number of vehicles. The
Multi-objective Particle Swarm Optimization (MOPSO) technique was used to resolve the
model. A sensitivity analysis was used to compare the suggested model’s efficiency to
the EC’s capacity. The findings implied that constructing more ECs with less capacity is
preferable when a typhoon becomes more severe. The province’s ECs are significantly
dispersed throughout the network. On the other hand, less powerful storms call for the
construction of fewer ECs with more capacity.

This study will aid policymakers and government officials in strategic and tactical
decision-making before and after a disaster. Government decision-makers can address
potential shortages and issues during the crisis as the optimum number of DC and EC,
their location, and capacity are defined in advance. During typhoons, there is also a chance
that roads could be destroyed or blocked. Therefore, it is advised that decision-makers
strengthen the primary pathways. The strength of the routes leading to probable locations
for ECs and DCs should also be considered, as well as the absence of barriers. It can
significantly lower the possibility of a failed evacuation.

The following issues of interest can still be investigated in future work: (1) it is
recommended to generate more accurate evacuation plans combined with the congestion of
roads, since the road uncertainty covered in this study is only related to roads being blocked
or damaged, while road traffic was not considered; (2) the evacuee arrival distribution can
be taken into account to make the model more dynamic (i.e., the use of queuing analysis to
make the probability distribution more accurate); (3) only one vehicle type was considered
in the evacuation; it is a vital topic to extend the model to heterogeneous fleet cases; and
lastly, (4) a cooperative game and simulation can be utilized to consider the behavior aspect
of evacuees during evacuation.
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