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Abstract: Solar PV and wind energy are the most important renewable energy sources after hydro-

electric energy with regard to installed capacity, research spending and attaining grid parity. These 

sources, including battery energy storage systems, and well-established load modeling have been 

pivotal to the success of the planning and operation of electric microgrids. One of the major chal-

lenges in modeling renewable-based DGs, battery storage, and loads in microgrids is the uncertainty 

of modeling their stochastic nature, as the accuracy of these models is significant in the planning 

and operation of microgrids. There are several models in the literature that model DG and battery 

storage resources for microgrid applications, and selecting the appropriate model is a challenging 

task. Hence, this paper examines the most common models of the aforementioned distributed en-

ergy resources and loads and delineates the mathematical rigor required for characterizing the mod-

els. Several simulations are conducted to demonstrate model performance using manufacturers’ 

datasheets and actual atmospheric data as inputs. 
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1. Introduction 

The importance of solar photovoltaic, wind energy and battery energy storage sys-

tems in modern power systems cannot be overemphasized. These are the driving forces 

behind the success of microgrids while attaining grid parity in several countries [1]. Solar 

and wind energy are of paramount importance for a sustainable energy supply in the 

future. Thus, it is necessary to garner their mathematical models in a single study for use 

by researchers and students. 

Models predicting the performance and characteristics of solar PV have been exten-

sively discussed in pertinent literature and have been subject to several improvements. 

Luft et al. used explicit I-V characteristics, referred to as the TRW equation, to predict the 

output of solar PV cells using the data provided in manufacturers’ datasheets [2,3]. How-

ever, this model overestimates solar PV outputs at several points [2]. King et al. used spec-

tral data, along with empirically and directly measured parameters and manufacturers’ 

datasheets, to predict the power output of solar PV cells [4]. This model, known as the 

Sandia Array Performance Model (SAPM), has a good degree of accuracy but requires 

many input parameters that are not easily obtainable. In addition, it can predict only five 

points on the I-V characteristic curve [3,4]. A commonly used solar PV model is the 5-

parameter model, which has been subject to several improvements. Hadj et al. used the 

standard data provided by manufacturers and slopes at the open and short-circuit points 

to plot the output curve of the model [5]. However, curves under conditions that differ 

from the reference conditions are obtained by translation. Barker and Norton manipu-

lated a combination of the SAPM, the 5-parameter model, and the TRW equation to de-

velop a model with the accuracy and consistency of the 5-parameter and SAPM models 

while retaining the explicitness of the TRW model [2]. Desoto et al. [3] related the temper-

ature and irradiance dependence of the required five parameters to the model. This 
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approach accounts for the temperature coefficient at the open-circuit voltage. The model 

requires only manufacturer-provided data and has higher accuracy [3]. Hongmei et al. 

expanded the work of Desoto et al. to model cell modules and arrays of modules con-

nected in series and/or parallel [6]. The proposed addition of a diode to the 5-parameter 

model increases complexity without providing commensurate benefits [7,8]. However, in 

2015, reference [9] proposed using generalized multidimensional diodes in solar PV mod-

els, where a number of diodes connected in series and in parallel may be configured for 

any type of PV cell technology via optimization. Jing et al. claimed that both single and 

double diode models perform poorly at lower temperatures. Recently, many papers in the 

literature have considered heuristic techniques to identify the parameters of PV models. 

For example, [10] used fireworks explosion optimization (FEO) to deal with the mathe-

matical model that will eventually yield the parameters of the PV cell. While in [11], par-

ticle swarm optimization (PSO) was used to acquire the parameters. Authors in [12] de-

rived the parameters using two different evolutionary techniques, which are PSO and the 

genetic algorithm (GA), and then went on to compare between the two techniques using 

experimental analysis. In [13], the shuffled frog leaping (SFL) algorithm was utilized to 

identify the parameters of the PV model. 

Wind turbines have also been subjected to design improvements for optimal perfor-

mance in terms of longer blades, higher towers, variable-pitch blades for efficiency, tur-

bine protection at high wind speed, and variable-speed over fixed-speed wind systems. 

To increase the accuracy of wind turbine models, Anderson and Bose studied the aerody-

namics of wind gusts, thus complementing the work of Wasynczuk et al. on the effects of 

wind fluctuations on the dynamic stability of a power system [14,15]. Wasynczuk et al. 

[14] obtained a non-linear relationship between the power coefficient and both the tip 

speed ratio and the pitch angle using a least squares best fit. However, the wind turbine 

modeling endeavor is hindered by manufacturers’ refusal to provide data to researchers 

and scientists so that they can better analyze and optimize wind turbine models [16]. 

Hence, few varieties of wind turbine models exist in the literature for fixed-speed systems 

[15,17,18] or variable-speed systems [17–20]. In DG models, the optimal location and siz-

ing of the DG depends on the wind turbine parameters. Majed et al. [21] addressed this 

issue by using a probabilistic optimization model to find the optimal location of a wind 

farm by minimizing the annual energy losses of the system at that location. The authors 

in [22] used reactive power loadability to acquire the optimal location of wind generation. 

Particle swarm was used as an optimization technique and the algorithm was tested on a 

14-bus Kumamoto system in Japan. 

Energy storage systems have gained more attention in recent years mainly due to 

technological breakthroughs in battery operation and design, the need to abate the effects 

of the intermittency of renewable energy sources, and the increasing number of electric 

vehicles in use [23]. To this end, several mathematical and circuit models have been pro-

posed for use in electrical research. Mathematical battery models, such as the Shepherd, 

Unnewehr Universal, and Nernst models, have been proven to be less accurate than the 

equivalent circuit models due to the high complexity involved in relating circuit parame-

ters to the physical states of a battery [24]. The Thevenin model has a capacitance—re-

sistance branch to model overvoltage and transient conditions and can account for the 

effects of state of charge (SOC) on internal resistance and open-circuit voltage [25]. A dy-

namic fourth-order model with branch elements representing ohmic effects, electrolytic 

reactions and leakages in lead-acid batteries has been extensively discussed in the litera-

ture [26]. While it is more accurate, it is also more complex and requires extensive data 

and longer computation times [26]. A less complex yet accurate model is the third-order 

model consisting of two parts: the main battery and the parasitic branch [27]. The main 

battery branch models charging and discharging dynamics, while the parasitic branch 

models the irreversible processes involved in power loss, such as during overcharge [27]. 

The circuit parameters vary with the electrolyte temperature, the state of charge and the 

charging current. The Peukerts equation for obtaining capacity in terms of discharging 
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current and relationships between internal resistance and discharge voltage to SOC are 

also popular [28]. 

Load modeling is a major component in microgrid design. The spiking increase and 

variations of DERs and the introduction of new demand forms such as electric vehicles 

(EVs) have elevated the necessity of load modeling. Load modeling is amongst the most 

influencing factors that affect the stability of a system’s voltage and frequency. Accurate 

load modeling is crucial for optimal scheduling and successful demand side management 

(DSM) in microgrids. The load profile of a load can vary dramatically depending on 

chronological, environmental, religious, and social factors. 

Based on the aforementioned discussion, a large number of DG technologies have 

been recently integrated into the distribution side. The integration of the DG and energy 

storage technologies enable the transformation of distribution networks from being pas-

sive networks to being active distribution networks. One of the major challenges in mod-

eling solar and wind resources is the uncertainty of modeling their stochastic nature. Sim-

ilarly, load modeling uncertainty is highly affected by several factors such as the technol-

ogy used, load behavior, and the addition of new electrification such as electric vehicles 

(EV). It is a challenging task to model the DG as the accuracy of the model is significant 

for the planning and operation of microgrids. Several studies have modeled and discussed 

the integration of renewable resources into smart grids and microgrids. However, ade-

quate and comprehensive models and techniques that include solar, wind, energy storage, 

and load demand are required to be reviewed and summarized for scientists working on mi-

crogrid-related studies and applications. This paper contributes to the area of modeling major 

microgrid components, such as solar, wind, energy storage, and load, for microgrid studies. 

The remainder of this paper is organized as follows. The modeling of solar and wind 

DGs is discussed in Sections 2 and 3, respectively. The modeling of energy storage is pre-

sented in Section 4 and the modeling of microgrid loads is discussed in Section 5. In Sec-

tion 6, the simulation of different models is presented, and the conclusions are provided 

in the last section. 

2. Solar DG Models 

Several models that can be applied to individual cells, modules of cells connected in 

series and in parallel, and arrays of interconnected modules have been developed. These 

models can predict the I-V characteristics, power outputs, and performance of PV solar 

generators. Most models utilize the standard test conditions (STC) to calibrate the param-

eters needed to utilize them in practice. STC pertains to an ambient temperature of 25 °C, 

irradiance of 1000 W/m2 and an air mass of 1.0 or 1.5, at which manufacturers usually 

provide solar PV model data. 

2.1. Sandia Array Performance Model (SAPM) 

Also referred to as King’s model, the SAPM method provides information for five 

different points on any solar PV predicted I-V characteristic curve. These points pertain 

to the short-circuit current (ISC), the maximum power point (MPP), the open-circuit volt-

age (VOC), the middle of the VOC, and midway between the MPP and the VOC. SAPM 

provides voltage and current values at these five points [4]. This model can translate the 

module data from STC to any other set of utility conditions. The SAPM model is presented 

in (1) through (14). 

𝐼𝑠𝑐 = 𝐼𝑠𝑐0 𝑓1(𝐴𝑀𝑎)[1 + 𝛼𝐼𝑠𝑐(𝑇𝑐 − 𝑇0)] [
𝐸𝑏𝑓2(𝐴𝑂𝐼) + 𝐹𝑑𝐸𝑑𝑖𝑓𝑓

𝐸0
] 

(1) 

𝐼𝑚𝑝 = 𝐼𝑚𝑝0[𝐶0𝐸𝑒 + 𝐶1𝐸𝑒
2][1 + 𝛼𝐼𝑚𝑝(𝑇𝑐 − 𝑇0)] (2) 

𝑉𝑚𝑝 = 𝑉𝑚𝑝0 + 𝐶2𝑁𝑠𝛿(𝑇𝑐) ln(𝐸𝑒) + 𝐶3𝑁𝑠[𝛿(𝑇𝑐) ln(𝐸𝑒)]2     +  𝛽𝑉𝑚𝑝(𝐸𝑒) ∙ (𝑇𝑐 − 𝑇0) (3) 
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𝑉𝑜𝑐 = 𝑉𝑜𝑐0 + 𝑁𝑠𝛿(𝑇𝑐) ln(𝐸𝑒) + 𝛽𝑉𝑜𝑐(𝐸𝑒) ∙ (𝑇𝑐 − 𝑇0) (4) 

𝐼𝑥 = 𝐼𝑥0[𝐶4𝐸𝑒 + 𝐶5𝐸𝑒
2][1 + 𝛼𝐼𝑠𝑐(𝑇𝑐 − 𝑇0)] (5) 

𝐼𝑥𝑥 = 𝐼𝑥𝑥0[𝐶6𝐸𝑒 + 𝐶7𝐸𝑒
2][1 + 𝛼𝐼𝑚𝑝(𝑇𝑐 − 𝑇0)] (6) 

𝑃𝑚𝑝 = 𝐼𝑚𝑝𝑉𝑚𝑝   (7) 

𝐹𝐹 =
𝑃𝑚𝑝

(𝑉𝑜𝑐 ∙ 𝐼𝑠𝑐)⁄    (8) 

where: 

𝐸𝑒 =
𝐼𝑠𝑐

𝐼𝑠𝑐0[1 + 𝛼𝐼𝑠𝑐(𝑇𝑐 − 𝑇0)]
   

(9) 

𝛿(𝑇𝑐) =
𝑛𝑘(𝑇𝑐 + 273.15)

𝑞
  

(10) 

𝑓1(𝐴𝑀𝑎) = 𝑎0 + 𝑎1𝐴𝑀𝑎 + 𝑎2(𝐴𝑀𝑎)2 + 𝑎3(𝐴𝑀𝑎)3 +  𝑎4(𝐴𝑀𝑎)4 (11) 

𝑓2(𝐴𝑂𝐼) = 𝑏0 + 𝑏1(𝐴𝑂𝐼) + 𝑏2(𝐴𝑂𝐼)2 + 𝑏3(𝐴𝑂𝐼)3 + 𝑏4(𝐴𝑂𝐼)4 + 𝑏5(𝐴𝑂𝐼)5 (12) 

𝛽𝑉𝑜𝑐(𝐸𝑒) =  𝛽𝑉𝑜𝑐0 + 𝑚𝛽𝑉𝑜𝑐(1 − 𝐸𝑒) (13) 

𝛽𝑉𝑚𝑝(𝐸𝑒) =  𝛽𝑉𝑚𝑝0 + 𝑚𝛽𝑉𝑚𝑝(1 − 𝐸𝑒) (14) 

where AOI is the solar angle of incidence; 𝐼𝑚𝑝 denotes the current at MPP; 𝐼𝑚𝑝0 is the 

MPP current at SRC; 𝑉𝑜𝑐0 is 𝑉𝑜𝑐  at SRC; 𝑉𝑚𝑝 is the voltage at MPP; 𝑉𝑚𝑝0 is the MPP 

voltage at SRC; 𝐼𝑥  is the current at 0.5𝑉𝑜𝑐 ; 𝐼𝑥0  is 𝐼𝑥 at SRC; 𝐼𝑥𝑥  is the current at 

0.5(𝑉𝑚𝑝 +  𝑉𝑜𝑐) ; 𝐼𝑥𝑥0  is 𝐼𝑥𝑥  at SRC; 𝑓1(𝐴𝑀𝑎)  is the polynomial-relating spectral influ-

ence, 𝐼𝑠𝑐 and  𝐴𝑀𝑎; 𝑓2(𝐴𝑂𝐼) is a polynomial describing the influence of AOI on 𝐼𝑠𝑐; 𝑇𝑐 

represents the cell temperature; 𝑇0 is the cell temperature at SRC (25 °C); 𝑇𝑎𝑚𝑏 is the 

ambient temperature; 𝐸𝑏 is the beam component of irradiance on the module; 𝐸𝑑𝑖𝑓𝑓 is 

the diffuse component of irradiance; 𝐸𝑒 denotes the dimensionless effective irradiance; 

and 𝐹𝑑 represents the fraction of diffuse irradiance used by the module. 

2.2. Luft Model 

Luft et al. proposed an equation to predict all the points in the I-V characteristics of 

any PV module [2,3]. This model is given in (15)–(17). This work was carried out with the 

sponsorship of TRW Systems Group, hence, the TRW subscript in (15). The main ad-

vantage of this model is its simplicity. However, inaccuracies such as over-estimation at 

several data points were noted by Hart and Raghuraman [2]. 

𝐼𝑇𝑅𝑊 =  𝐼𝑠𝑐 [1 − 𝑘2 (𝑒
𝑉

𝑉𝑜𝑐 𝑘1 − 1)] (15) 

𝑘1 =  

𝑉𝑚𝑝

𝑉𝑜𝑐
− 1

ln(1 −
𝐼𝑚𝑝

𝐼𝑠𝑐
)

  (16) 
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𝑘2 = [1 −
𝐼𝑚𝑝

𝐼𝑠𝑐
] 𝑒

−𝑉𝑚𝑝
𝑉𝑜𝑐 𝑘1 (17) 

where 𝐼𝑇𝑅𝑊 is the current predicted using the TRW incorporated equation, and V is the 

output voltage of the model. 

2.3. Improvement on the Luft Model 

Barker and Norton sought to capitalize on the strengths of three different models (5-

parameter, King’s and Luft models) to improve the solar PV performance model [2]. The 

original 5-parameter model is given in (17), and the improved model is represented by 

expressions (19)–(22) [2]. By using the points predicted by the King model, Barker and 

Norton manipulated the 5-parameter model to obtain a function for current output in 

terms of two parameters, 𝑅𝑠 and 𝑎, of the 5-parameter model, whereby solving for 𝐼𝐿 in 

(18) by using 𝑉𝑜𝑐 yields (19). Substituting (19) into (18) and solving for 𝐼𝑜, considering 𝐼𝑠𝑐 

data points, results in (20). Additionally, inserting (19) and (20) into (18) and solving for 

𝑅𝑝, considering the MPP data points, yields (21). The three equations given in (19)–(21) 

are then incorporated into (18) to obtain an implicit equation for 𝐼 in terms of 𝑅𝑠 and 𝑎, 

which is very cumbersome and is not shown here. As Barker and Norton realized that 

using the implicit function did not produce consistent results, they replaced the 𝐼 terms 

on the right-hand side of the equation with 𝐼𝑇𝑅𝑊  as shown in (22). 

𝐼 =  𝐼𝐿 − 𝐼𝑜 [𝑒
𝑉+𝐼𝑅𝑠

𝑎 − 1] −
𝑉 + 𝐼𝑅𝑠

𝑅𝑝
 (18) 

𝐼𝐿 =  
𝑉𝑜𝑐

𝑅𝑝
+ 𝐼𝑜 [𝑒

𝑉𝑜𝑐
𝑎 − 1] (19) 

𝐼𝑜 =  
𝐼𝑠𝑐𝑅𝑝 + 𝐼𝑠𝑐𝑅𝑠 − 𝑉𝑜𝑐

𝑅𝑝  (𝑒
𝑉𝑜𝑐
𝑎 − 𝑒

𝐼𝑠𝑐𝑅𝑠
𝑎 )

  
(20) 

𝑅𝑝 =  
(𝐼𝑠𝑐𝑅𝑠 − 𝑉𝑜𝑐) (𝑒

𝑉𝑜𝑐
𝑎 − 𝑒

𝑉𝑚𝑝 +𝐼𝑚𝑝𝑅𝑠
𝑎 ) + (𝑉𝑜𝑐 − 𝑉𝑚𝑝 − 𝐼𝑚𝑝𝑅𝑠) (𝑒

𝑉𝑜𝑐
𝑎 − 𝑒

𝐼𝑠𝑐𝑅𝑠
𝑎 )

𝐼𝑚𝑝  (𝑒
𝑉𝑜𝑐
𝑎 − 𝑒

𝐼𝑠𝑐𝑅𝑠
𝑎 ) + 𝐼𝑠𝑐  (𝑒

𝑉𝑚𝑝 + 𝐼𝑚𝑝𝑅𝑠
𝑎  − 𝑒

𝑉𝑜𝑐
𝑎 )

 (21) 

𝐼 =  𝐼𝐿 − 𝐼𝑜 [𝑒
𝑉+𝐼𝑇𝑅𝑊𝑅𝑠

𝑎 − 1] −
𝑉 + 𝐼𝑇𝑅𝑊𝑅𝑠

𝑅𝑝
  (22) 

where 𝐼 is the current output of the solar PV model, 𝑎 is the ideality factor parameter, 

𝐼𝐿 is the light current, 𝐼𝑜 is the diode reverse saturation current, 𝑅𝑠 is the series resistance 

of the solar PV model, and 𝑅𝑝 is the shunt resistance of the solar PV model. 

2.4. Hadj Arab et al. Model 

Hadj Arab et al. [5] proposed a formulation for predicting the I-V characteristics of 

PV modules based on the analytical 5-parameter model given in Figure 1. Once the five 

parameters (𝐼𝐿, 𝐼𝑜 , 𝑎, 𝑅𝑠 , 𝑅𝑝) are known and are input into the 5-parameter model given by 

(23), the I-V characteristics for a particular irradiance and cell temperature can be obtained 

graphically. 
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Figure 1. Equivalent circuit of the 5-parameter model. 

𝐼 =  𝐼𝐿 − 𝐼𝑜 [𝑒
𝑉+𝐼𝑅𝑠

𝑎𝑉𝑡 − 1] −
𝑉 + 𝐼𝑅𝑠

𝑅𝑝
   (23) 

where: 

𝑉𝑡 =
𝑘𝑇

𝑞
 (24) 

where 𝑉𝑡 is the thermal voltage, 𝑘 is Boltzmann’s constant, 𝑞 is the electron charge, and 

a is the ideality factor. 

The five parameters are calculated using the standard information associated with 

any PV module, namely (𝑉𝑜𝑐 , 𝐼𝑠𝑐 , 𝑉𝑚𝑝, 𝐼𝑚𝑝), while 𝑅𝑠0 and 𝑅𝑝0 are defined at STC in (25) 

and (26), respectively [5]. Equations (27)–(31) are used to calculate the five parameters at 

any particular irradiance and cell temperature. Presenting the I-V characteristics of the 

module at other ambient conditions graphically requires a translation of the (𝐼, 𝑉) points 

from STC to the new points using (32)–(35), proposed by Chenlo et al. [5]. The curve is 

translated without distortion of its shape. 

(
𝑑𝑉

𝑑𝐼
)

𝑉=𝑉𝑜𝑐

= −𝑅𝑠0 (25) 

(
𝑑𝑉

𝑑𝐼
)

𝐼=𝐼𝑠𝑐

= −𝑅𝑝0 (26) 

𝑅𝑝 = 𝑅𝑝0 (27) 

𝑚 =  
𝑉𝑚𝑝 + 𝐼𝑚𝑝𝑅𝑠0 − 𝑉𝑜𝑐

𝑉𝑡 [ln (𝐼𝑠𝑐 −
𝑉𝑚𝑝

𝑅𝑝
− 𝐼𝑚𝑝) − ln (𝐼𝑠𝑐 −

𝑉𝑜𝑐

𝑅𝑝
) + (

𝑅𝑝𝐼𝑚𝑝

𝐼𝑠𝑐𝑅𝑝
− 𝑉𝑜𝑐

)]

 
(28) 

𝐼𝑜 = (𝐼𝑠𝑐 −
𝑉𝑜𝑐

𝑅𝑝
) 𝑒

−𝑉𝑜𝑐
𝑎𝑉𝑡  (29) 

𝑅𝑠 = 𝑅𝑠0 − (
𝑎𝑉𝑡

𝐼𝑜
) 𝑒

−𝑉𝑜𝑐
𝑎𝑉𝑡  (30) 

𝐼𝐿 = 𝐼𝑠𝑐 (1 +
𝑅𝑠

𝑅𝑝
) + 𝐼𝑜 (𝑒

𝐼𝑠𝑐𝑅𝑠
𝑚𝑉𝑡 − 1) (31) 

𝐼𝑠𝑐2 = 𝐼𝑠𝑐1

𝐺2

𝐺1
+ 𝛼(𝑇2 − 𝑇1) (32) 

𝑉𝑜𝑐2 = 𝑉𝑜𝑐1 + 𝑚𝑉𝑡 ln (
𝐺2

𝐺1
) + 𝛽(𝑇2 − 𝑇1) (33) 

𝐼2 = 𝐼1 + (𝐼𝑠𝑐2 − 𝐼𝑠𝑐1) (34) 
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𝑉2 = 𝑉1 + (𝑉𝑜𝑐2 − 𝑉𝑜𝑐1) (35) 

where 𝑅𝑠0 is 𝑅𝑠 at SRC, 𝑅𝑝0 is 𝑅𝑝 at SRC, 𝛼 is the short-circuit current temperature co-

efficient, 𝛽 is the open-circuit voltage temperature coefficient, and 𝐺 is the total solar ir-

radiance. 

2.5. Improved 5-Parameter Model 

Desoto et al. [3] improved the 5-parameter model so that minimal information is re-

quired for its characterization. The improved model requires only the information pro-

vided in the solar PV panel manufacturer datasheets. The model I-V relationship is given 

in (36). Additionally, the equivalent circuit of the 5-parameter model depicting all the five 

parameters is shown in Figure 1, where the parameter 𝑎 is given as 𝑎 = 𝑛𝐾𝑇𝑁𝑠/𝑞. 

𝐼𝐴 = 𝐼𝐿 − 𝐼𝑜 [𝑒
(𝑉𝐴+𝐼𝐴𝑅𝑠)

𝑎 − 1] −
𝑉𝐴 + 𝐼𝐴𝑅𝑠

𝑅𝑝
    (36) 

where 𝑎 is the ideality factor and 𝑁𝑠 is the number of solar cells in series. 

Like other 5-parameter based models, once the five parameters (𝐼𝐿, 𝐼𝑜, 𝑎, 𝑅𝑠, 𝑅𝑝) are 

calculated at SRC, the I-V characteristics of the array at SRC can be obtained. To produce 

the I-V and P-V curves at any other temperature and irradiance, the parameters at the new 

ambient conditions must be obtained. Equations (37)–(42) show the relationships of the 

parameters at SRC to changes in operating conditions [29]. These equations are used to 

obtain the parameters at different temperatures and irradiance, while  𝑅𝑠  remains un-

changed. 

𝐼𝐿 = (
𝐺

𝐺0

) [𝐼𝐿0 + 𝛼𝐼,𝑠𝑐(𝑇𝑐 − 𝑇𝑐0)] (37) 

𝐼𝑜 = 𝐼𝑜0 (
𝑇𝑐

𝑇𝑐0
)

3

𝑒
[

𝐸𝑔0
𝐾𝑇𝑐0

−
𝐸𝑔

𝐾𝑇𝑐
]
 (38) 

𝐸𝑔 = 1.17 − 4.73 × 10−4 (
𝑇𝑐

2

𝑇𝑐 + 636
) (39) 

𝑅𝑝

𝑅𝑝0
=

𝐺0

𝐺
 (40) 

𝑅𝑠 = 𝑅𝑠0 (41) 

𝑎

𝑎0
=

𝑇𝑐

𝑇𝑐0
  (42) 

where 𝑅𝑠0 is 𝑅𝑠 at SRC, 𝑅𝑝0 is 𝑅𝑝 at SRC, 𝛼𝐼,𝑠𝑐 is the short-circuit current temperature 

coefficient, 𝐺 is the total solar irradiance, 𝐺0 is 𝐺 at SRC, 𝐼𝐿0 is 𝐼𝐿 at SRC, 𝐼𝑚𝑝0 is 𝐼𝑚𝑝 

at SRC, 𝐼𝑠𝑐0 is 𝐼𝑠𝑐 at SRC, 𝐼𝑜0 is 𝐼𝑜 at SRC, 𝐸𝑔 is the material band gap energy, and 𝐸𝑔0 

denotes 𝐸𝑔 at SRC. 

To calculate the five parameters of a solar PV module under reference conditions, 

(43)–(49) are used, along with the information provided by the manufacturer. Equations 

(43)–(45) are based on open circuit (𝐼𝐴 = 0, 𝑉𝐴 = 𝑉𝑜𝑐0), short circuit (𝐼𝐴 = 𝐼𝑠𝑐0, 𝑉𝐴 = 0), and 

MPP (𝐼𝐴 = 𝐼𝑚𝑝0, 𝑉𝐴 = 𝑉𝑚𝑝0) conditions, respectively, substituted into (36) at SRC. Equation 

(46) is based on the fact that the first derivative of power at MPP is zero, i.e., 
𝜕𝑃

𝜕𝑉𝑃=𝑃𝑚𝑎𝑥

=

0. To properly account for the temperature coefficient of the open-circuit voltage 𝛽𝑇, (47) 

is used. In (47), temperature is taken within the range 𝑇𝑐 = 𝑇𝑐0 ± 10. To evaluate 𝑉𝑜𝑐 at Tc, 

this open circuit condition is inserted into (36) to obtain (49). Then, (37)–(39) provide the 



Sustainability 2023, 15, 4831 8 of 21 
 

temperature dependencies of 𝐼𝐿and 𝐼𝑜, and (48) must be substituted into (49). Equations 

(43)–(46) and (49) are the five equations necessary to solve for the five parameters at SRC. 

0 = 𝐼𝐿0 − 𝐼𝑜0 [𝑒
𝑉𝑜𝑐0
𝑎0 − 1   ] −

𝑉𝑜𝑐0

𝑅𝑝0
 (43) 

𝐼𝑠𝑐0 = 𝐼𝐿0 − 𝐼𝑜0 [𝑒
𝐼𝑠𝑐0𝑅𝑠0

𝑎0 − 1   ] −
𝐼𝑠𝑐0𝑅𝑠0

𝑅𝑝0
 (44) 

𝐼𝑚𝑝0 = 𝐼𝐿0 − 𝐼𝑜0 [𝑒
(𝑉𝑚𝑝0+𝐼𝑚𝑝0𝑅𝑠0)

𝑎0 − 1   ] −
𝑉𝑚𝑝0 + 𝐼𝑚𝑝0𝑅𝑠0

𝑅𝑝0
 (45) 

𝐼𝑚𝑝0

𝑉𝑚𝑝0
=

𝐼𝑜0

𝑎0
𝑒

(𝑉𝑚𝑝0+𝐼𝑚𝑝0𝑅𝑠0)

𝑎0 +
1

𝑅𝑝0

1 +
𝐼𝑜0𝑅𝑠0

𝑎0
𝑒

(𝑉𝑚𝑝0+𝐼𝑚𝑝0𝑅𝑠0)

𝑎0 + 
𝑅𝑠0

𝑅𝑝0

 (46) 

𝛽𝑇 =
𝜕𝑉𝑜𝑐

𝜕𝑇
=

𝑉𝑜𝑐 − 𝑉𝑜𝑐0

𝑇𝑐 − 𝑇𝑐0
 (47) 

𝑉𝑜𝑐 =  𝑉𝑜𝑐0 + 𝛽𝑇(𝑇𝑐 − 𝑇𝑐0) (48) 

0 = 𝐼𝐿 − 𝐼𝑜 [𝑒
𝑉𝑜𝑐
𝑎 − 1   ] −

𝑉𝑜𝑐

𝑅𝑝
 (49) 

To obtain the MPP voltage and current at any ambient conditions, (50) and (51) must 

be simultaneously solved. Equation (52) gives the cell temperature based on the ambient 

temperature, irradiance level and NOCT. 

𝐼𝑚𝑝 = 𝐼𝐿 − 𝐼𝑜 [𝑒
(𝑉𝑚𝑝+𝐼𝑚𝑝𝑅𝑠)

𝑎 − 1   ] −
𝑉𝑚𝑝 + 𝐼𝑚𝑝𝑅𝑠

𝑅𝑝
  (50) 

𝐼𝑚𝑝

𝑉𝑚𝑝
=

𝐼𝑜

𝑎
𝑒

(𝑉𝑚𝑝+𝐼𝑚𝑝𝑅𝑠)

𝑎 +
1

𝑅𝑝

1 +
𝐼𝑜𝑅𝑠

𝑎
𝑒

(𝑉𝑚𝑝+𝐼𝑚𝑝𝑅𝑠)

𝑎 +  
𝑅𝑠

𝑅𝑝

   (51) 

𝑇𝑐 =  𝑇𝑎𝑚𝑏 + 𝐺 (
𝑁𝑂𝐶𝑇 − 20

0.8
) (52) 

where 𝑇𝑎𝑚𝑏 is the ambient temperature and NOCT is the nominal operating cell temper-

ature. 

2.6. 7-Parameter Model and Multidimensional Model 

This model is similar to the 5-parameter model (single diode model), but with the 

addition of another diode in parallel with the first one, as shown in Figure 2. Hence, the 

parameters now will be seven after the addition of saturation current and ideality factor 

to the five previously-mentioned parameters. The advantage of the second diode is to off-

set the recombination losses in the depletion region [30]. Multidimensional models, how-

ever, provides more accurate and flexible fitting of the current-voltage curves depending 

on the used PV cell specification [31]. The generalized model is depicted in the figure be-

low. Notice that now we have in parallel diodes and m-series diodes forming a matrix-

like topology. The computations presented in the 5-parameter model can be followed here 

with the addition of the introduced new parameters. 
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Figure 2. Equivalent circuit of the multidimensional model [31]. 

3. Wind DG Model 

Although the theory of wind energy conversion via wind turbine to electricity is well 

known, the refusal by manufacturers to make their proprietary information available to 

researchers has resulted in a lack of data needed to standardize wind turbine models 

[16,32]. The power output models of wind turbines are the characteristics of wind param-

eters, the wind turbine rotor and blade features, and the dynamics of the atmospheric con-

ditions. The total power available in the wind passing through an area A is given in (53): 

𝑃 = 0.5𝜌𝐴𝑉𝑤
3  (53) 

where 𝑃 is the power in the wind, 𝜌 denotes air density, and 𝑉𝑤 is wind velocity. 

However, not all this power can be extracted. Betz has proven that 59.3% is the maximum 

power extractable from wind by a rotor with an infinite number of blades [33]. This de-

rating is accounted for by the parameter 𝐶𝑝, the power coefficient, defined as the ratio of 

the extracted power to total available wind power. Wind turbines with 𝐶𝑝 of 0.5 have 

been reported in extant literature [33]. The turbine power is given in (54). The coefficient 

𝐶𝑝 is a function of the tip speed ratio λ and the pitch angle θ of the turbine rotor. 

𝑃𝑊 = 0.5𝜌𝐴𝑉𝑤
3𝐶𝑝(𝜆, 𝜃) (54) 

𝜆 =
𝜔𝑟𝑅

𝑉𝑤
  (55) 

where 𝑃𝑊 is the power extracted from the wind, 𝜆 is the tip speed ratio, 𝐶𝑝 is the power 

coefficient, 𝐴 is the area swept by a turbine blade, 𝑅 is the turbine blade length, and 𝜃 

is the pitch angle. 

Several attempts to define 𝐶𝑝(𝜆, 𝜃) using numerical techniques and regression anal-

ysis have yielded success. Separate 𝐶𝑝(𝜆, 𝜃) models are used for constant-speed and var-

iable-speed wind turbine systems. The most common models for the constant-speed tur-

bine type are given in (56) and (58) [15,17,19]. For variable-speed turbine types, the models 

proposed in the literature are given by (60) and (61) [17–19]. 
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𝐶𝑝(𝜆, 𝜃) = 0.5(𝜆𝑖 − 0.022𝜃2 − 5.6)𝑒−0.17𝜆𝑖   (56) 

𝐶𝑝(𝜆, 𝜃) = 0.44(
125

𝜆𝑘
− 6.94)𝑒

16.5
𝜆𝑘   (57) 

where: 

𝜆𝑖 =
3600𝑅

1609𝜆
 (58) 

𝜆𝑘 =
1

1
𝜆

+ 0.002
 (59) 

𝐶𝑝(𝜆, 𝜃) = 0.73 (
151

𝜆𝑖
− 0.58𝜃 − 0.002𝜃2.14 − 13.2) 𝑒

−18.4

𝜆𝑖  (60) 

𝐶𝑝(𝜆, 𝜃) = 𝐶1 (
𝐶2

𝜃
− 𝐶3𝛽𝜃 − 𝐶4𝜃𝑥 − 𝐶5) 𝑒

−𝐶6
𝛽  (61) 

where: 

1

𝜆𝑖
=

1

𝜆 − 0.02𝜃
+

0.003

1 + 𝜃3
 (62) 

1

𝛽
=

1

𝜆 + 0.08𝜃
−

0.035

1 + 𝜃3
 (63) 

A common set of values for the constants in (61) is 𝐶1 = 0.5, 𝐶2 = 116,  𝐶3 = 0.4,  𝐶4 =

0, 𝑎𝑛𝑑 𝐶5 = 5, 𝐶6 = 21; however, Manyonge et al. [19] suggest the use of  𝐶4 = −0.5. 

These models usually perform well for almost all types of wind turbines because only 

insignificant differences exist among wind turbine models. The given 𝐶𝑝(𝜆, 𝜃) relations 

are used to plot 𝐶𝑝 − 𝜆 curves to predict the best performance of a turbine under several 

operational conditions. Mostly, the 𝐶𝑝 − 𝜆 curves are drawn for different values of wind 

speed while keeping the pitch angle θ constant, as shown in Figure 3. Hence, at any wind 

speed, the best power performance coefficient 𝐶𝑝 and pitch angle, in the case of a varia-

ble-speed turbine, can be chosen along the locus of the MPPT as required. 

 

Figure 3. General curve of Cp − λ [34]. 
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4. Battery Energy Storage System Models 

In any battery energy storage system (BESS) model, knowledge of the following pa-

rameters is important to start the modeling: (a) voltage, (b) current, (c) state of charge 

(SoC), (d) impedance, (e) size, and (f) efficiency. In many battery modeling problems, sev-

eral parameters have to be estimated and forecasted [33,35] 

4.1. Third-Order Battery Model 

The third-order model is a highly comprehensive model that even accounts for the 

effects of changes in the electrolyte temperature, heat loss and non-thermal power losses 

such as the electrolysis of water in a battery [27]. The elements of the third-order model 

are not constant. For example, capacity is a function of discharging current, electrolyte 

temperature and SOC. The capacity of the battery system as proposed by Massimo [29] is 

given in (64), which can be used for both constant and varying current and temperature. 

In the latter case, 𝐼 is replaced with a filtered current value 𝐼𝑎𝑣𝑔 . Moreover, 𝐼𝑎𝑣𝑔 =  𝐼1 

performs well in the model, and 𝐼1 is defined in (65) and (66). The amount of charge ob-

tained from the battery is defined in (67), and the SOC and depth of charge (DOC) are 

given by (68) and (69) [27]. These formulae constitute the capacity model of the third-order 

model. 

𝐶(𝐼, 𝜃) =

𝐾𝐶𝐶𝑜∗ (1 +
𝜃

−𝜃𝑓
)

𝜖

1 + (𝐾𝐶 − 1) (
𝐼
𝐼∗)

𝛿
 (64) 

𝐼1 =
𝐼𝑚

1 + 𝜏1𝑠
 (65) 

𝑑𝐼1

𝑑𝑡
=

𝐼𝑚 − 𝐼1

𝜏1
 (66) 

𝑄𝑒(𝑡) = 𝑄𝑒(𝑡0) + ∫ −𝐼𝑚(𝜏)
𝑡

𝑡0

 𝑑𝜏 (67) 

𝑆𝑂𝐶 = 1 −
𝑄𝑒(𝑡)

𝐶(0, 𝜃)
 (68 

𝐷𝑂𝐶 = 1 −
𝑄𝑒(𝑡)

𝐶(𝐼𝑎𝑣𝑔, 𝜃)
  (69) 

where 𝐶 is the battery capacity, 𝐶𝑜∗ is the no-load capacity at 0 °C, 𝜃 is the electrolyte 

temperature, 𝐼 is the discharge current, 𝐼∗ is the nominal battery current, 𝐼𝑚 is the main 

branch current, 𝑄𝑒  is the battery charge, 𝐼𝑎𝑣𝑔  is the mean discharge current, 𝜏1 is the 

main-branch time constant, and 𝐾𝐶 , 𝛿 and 𝜀 are empirical constants. 

The electrolyte temperature change is represented as a thermal sub-model. Electro-

lyte temperature is assumed to be uniform, and the differential equation representing the 

thermal property is given in (70). The parasitic current equation, which is a function of the 

parasitic branch voltage and 𝜃, is given in (71). Other parameters of the third-order model 

are obtained from (72)–(76). 

𝑑𝜃

𝑑𝑡
=

1

𝐶𝜃
(𝑃𝑠 −

𝜃 − 𝜃𝑎

𝑅𝜃
) (70) 

𝐼𝑃 = 𝑉𝑃𝑁𝐺𝑝𝑜𝑒

𝑉𝑃𝑁

𝑉𝑝𝑜+𝐴𝑝(
1−𝜃
𝜃𝑓

)
 

(71) 
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𝐸𝑚 = 𝐸𝑚𝑜 − 𝐾𝐸(273 + 𝜃)(1 − 𝑆𝑂𝐶) (72) 

𝑅1 = −𝑅10 ln(𝐷𝑂𝐶) (73) 

𝜏1 = 𝐶1𝑅1 (74) 

𝑅0 = 𝑅00[1 + 𝐴𝑜(1 − 𝑆𝑂𝐶) ] (75) 

𝑅2 = 𝑅20

𝑒𝐴21(1−𝑆𝑂𝐶)

1 + 𝑒𝐴22
𝐼𝑚
𝐼∗

 (76) 

where 𝐶𝜃 is the battery thermal capacitance, 𝑅𝜃 is the battery thermal resistance, 𝜃𝑎 is 

the ambient temperature, 𝑃𝑠 is the source thermal power loss, 𝑉𝑃𝑁 is the voltage at the 

parasitic branch, 𝐼𝑃 is the parasitic branch current, 𝜃𝑓 denotes the freezing point of the 

electrolyte, 𝐸𝑚 is the open-circuit voltage, 𝐸𝑚𝑜 is 𝐸𝑚 at full charge, 𝑅1 and 𝑅2 are the 

main branch resistances, 𝑅0  represents the terminal resistance, and 𝐺𝑝𝑜 , 𝑉𝑝𝑜 , 𝐴𝑝 , 𝑅00 , 

𝑅10, 𝑅20, 𝐴21, 𝐴22, 𝐴0 and 𝐾𝐸 are constants. 

4.2. Simple Battery Model 

A battery model that is easily compatible with the long-term planning of hybrid re-

newable energy systems, including wind and solar DGs, has been previously considered 

[36]. This model consists of charge and discharge equations, given in (77) and (78), respec-

tively. The limits of the charging and discharging power rates are given in (79) and (80). 

The minimum and maximum levels of energy stored in the battery are represented by 

(81). The state of charge of the battery at any time is the ratio of the energy stored at the 

time and the battery capacity, as shown in (82). 

𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔: 𝐶(𝑡 + 1) = 𝐶(𝑡) − ∆𝑡 𝑃𝑡
𝐵,𝑐𝜂𝑐 (77) 

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔: 𝐶(𝑡 + 1) = 𝐶(𝑡) −
∆𝑡 𝑃𝑡

𝐵,𝑑

𝜂𝑑
 (78) 

0 ≤  𝑃𝑡
𝐵,𝑐 ≤ 𝑃𝑡

𝑐,𝑚𝑎𝑥 (79) 

0 ≤  𝑃𝑡
𝐵,𝑑 ≤ 𝑃𝑡

𝑑,𝑚𝑎𝑥 (80) 

𝐶(𝑡)𝑚𝑖𝑛 ≤  𝐶(𝑡) ≤ 𝐶(𝑡)𝑚𝑎𝑥 (81) 

𝑆𝑂𝐶(𝑡) =
𝐶(𝑡)

𝐶(𝑡)𝑚𝑎𝑥
 (82) 

where 𝐶(𝑡) is the battery capacity at time t, 𝑃𝑡
𝐵,𝑐 is the battery charging power, 𝑃𝑡

𝐵,𝑑 is 

the battery discharging power, 𝑃𝑡
𝑐,𝑚𝑎𝑥 is the maximum value of 𝑃𝑡

𝐵,𝑐, and 𝑃𝑡
𝑑,𝑚𝑎𝑥 denotes 

the maximum value of 𝑃𝑡
𝐵,𝑑. 

5. Microgrid Load Modeling 

Loads are categorized as static and dynamic loads to offer more accurate modeling. 

Static load models are ones that connect the complex power of a bus to the voltage on that 

bus. As their name indicates, they are represented in a time-invariant way. A detailed look 

at the modeling of static loads and the dynamic modeling approximation can be discov-

ered in [36,37]. Some popular static representation designs include the ZIP model, a pol-

ynomial equation of impedance (Z), present (I), and active power (P) in a bus. The 
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literature also discusses exponential and frequency-dependent models. In contrast, dy-

namic load modeling captures real and reactive instantaneous power as a function of the 

frequency and voltage in a bus in real- and past-time instants [38]. The frequently used 

models of dynamic load include the model of an induction motor (IM) and the model of 

exponential load regeneration (ERL). A dynamic and static model combination is called a 

composite model. Several field studies have highlighted the significance of load modeling 

in electrical networks and its effect on the precision of the dynamic performance simula-

tion of a system [39–43]. 

There are roughly three recognized approaches to load modeling: (1) component-

based, (2) measurement-based, and (3) a mixture of the two previous methods (hybrid 

model). A load modeling review is provided in [44]. Component-based load modeling is 

a bottom-up technique that aggregates load data based on the structure of each type of 

load and the characteristics of each component. In the literature [45–52], the component-

based technique has been widely researched. For example, in [45], component-based load 

modeling was used by the authors to reduce the error between reactive design and real 

value. Their model involves quantitative analysis and testing of a load cluster on a true 

substation setup. 

The measurement-based technique is used more commonly in MG since the infor-

mation can be obtained from the distributed units of phasor measurement (PMU). It relies 

on systems for data acquisition that are installed in the system at various places. The ben-

efit of this technique is correctly obtained real-time information which requires no estima-

tion or variation of variables and therefore works well in dynamic simulations. The static 

and dynamic load model was explored in [53] in the grid-connected and islanded low-

voltage (LV) microgrid. A laboratory-scale microgrid was used to implement and verify 

the model. In [54], Taiwan’s power system online measurement information was collected 

to obtain, test, and compare various dynamic load models. The numerical studies under-

taken in the paper found that linear dynamic load models exceeded nonlinear dynamic 

models when it came to modeling reactive power behavior during disturbances. [55] uses 

the measurement-based technique to develop a full distribution-level load model. The 

writers contrasted their model with a transmission-level composite load model and an-

other generation-level model. They showed that in transient conditions their model works 

better. References [56–58] implemented measurement-based dynamic load modeling us-

ing curve-fitting technique and vector-fitting methods, respectively. [59] describes resi-

dential microgrid scheduling by using smart meters to develop a temperature-dependent 

model of thermal load. Analysis of sensitivity was performed to represent the effect of the 

model’s uncertainties. In [60], a residential microgrid load profile was generated based on 

the aggregation of multiple data from single users. Eight major electricity consumption 

(MEC) events were combined to build the residential load profile. The model parameters for 

each event were acquired using the ant colony optimization (ACO) algorithm. The load mod-

eling method was then validated using a real microgrid in Ohio, USA. In [61], the authors 

studied and examined a model that allows for more penetration of unconventional energy for 

sources such as PV and wind in the distribution network. The model is known as the active 

distribution network cell (ADNC). The IEEE 9-bus system was used to study the system under 

different levels of disturbances. In [62], the support vector machine (SVM) technique was used. 

Low-voltage bus load compositions were used to create a high-voltage bus load model. A 246-

bus power system in India was used to implement and test the algorithm. 

Utilities have always focused on the generation side due to less complexity and direct 

intervention, but recently the load side has witnessed increasing research. State of the art re-

search focuses on revisiting older load models in order to address the effect of a rising number 

of DER and growing unconventional loads. 
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6. Simulating Power Output of DG Models 

6.1. Solar PV Power Output 

The PV panels that were used to simulate the PV power output were Panasonic HIT 

330W 96-cell solar panels [63]. The specifications of the solar panels are shown in Table 1. 

The temperature affects the PV power output due to the change in the efficiency of the 

cell. The V-I characteristics of the solar cell [63] is shown in Figure 4. The average hourly 

irradiance per month [64] is shown in Figure 5 and the temperature over the course of one 

year is also depicted in Figure 6. The total monthly energy on an hourly basis (720 h) is 

drawn using the following equation: 

𝐸𝑃𝑉(𝑡) = ∑ 𝑃𝑃𝑉(𝑡)

720

𝑡=1

 (83) 

From Figure 7, it is clear how the PV output strictly adheres to the irradiance and 

temperature characteristics. 

Table 1. Panasonic HIT n330 specifications [63]. 

Specification Parameters Data Value 

Cells per module 96 

Module watts (STC) 330 W 

Area Swept 3904 m2 

Max power voltage 58 V 

Max power current 5.7 A 

𝑉𝑜𝑐 , 𝐼𝑠𝑐 69.7 V, 6.07 A 

Module efficiency 19.7% 

Temperature coefficient −0.2580% for every 1 °C 

 

Figure 4. Dependence on irradiance [63]. 
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Figure 5. Daily average irradiance of each month. 

 

Figure 6. Daily average irradiance of each month. 

 

Figure 7. PV monthly energy sum. 
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6.2. Wind DG Power Output 

In order to simulate wind turbines output, wind speed data have to be accurately rec-

orded. A Vestas wind turbine [65] was used to simulate and extract the output (Table 2). 

The power curve of the wind generator is shown in Figure 8 and the wind speed of the 

chosen location at 50 m height is displayed in Figure 9. The wind turbine monthly energy 

sum is shown in Figure 10. 

Table 2. VESTAS V47-660 wind turbine specifications [65]. 

Specification Parameters Data Value 

Rated Power 660 KW 

Hub height 50 m 

Generator type Induction 

Survival wind speed 59.5 m/s 

Rated Wind Speed 15 m/s 

Cut-in Wind Speed 4.0 m/s 

Cut-out Wind Speed 25.0 m/s 

 

Figure 8. Power curve of the Vestas wind turbine [65]. 

 

Figure 9. Wind speed at 50 m height. 
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Figure 10. Wind generator monthly energy sum. 

6.3. Combined Wind Turbine and Solar PV Power Output 

The combined power output of a solar PV farm and wind turbine for a one-month 

period (October) was simulated and the results are shown in Figure 11. The summation 

of the maximum PV and wind power output sums up to 1.4 MW. On some rare occasions 

the output of the combined DG sources is zero. 

 

Figure 11. Combined power outputs of wind turbine and solar PV DGs. 

6.4. Combined Solar PV Power and Energy Storage Output 

A single panel output was considered with an energy storage system. The energy 

storage model given in (77)–(81) was used in a daytime charging session of a battery with 

the solar panel. Figure 12 shows the energy stored in the battery and the power output 

and net output of the solar PV panel as the battery charges for an arbitrary day. The bat-

tery possesses a 500 Wh capacity with 100 W charging and discharging power limits. 
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Figure 12. Power output of the solar PV panel for one day while charging a 500 Wh battery. 

7. Conclusions 

In this work, the most common models of several distributed energy resources were 

discussed and examined, including solar PV, wind turbines and battery energy storage 

systems. The parameters of each model were delineated, along with the steps and algo-

rithms used to calculate those parameters. Example simulations were performed showing 

the characterization of some models by applying actual atmospheric data and the infor-

mation obtained from solar PV and wind turbine datasheets. With the escalating need of 

microgrid implementation and the recent vigor and achievements in the field of renewa-

ble technologies, it is the hope of the authors that this study will serve as a quick reference 

for models of distributed energy resources. 

One of the major challenges in modeling solar and wind resources is the uncertainty 

of modeling their stochastic nature. Similarly, load modeling uncertainty is highly af-

fected by several factors such as the technology used, load behavior, and the addition of 

new electrification such as electric vehicles (EV). The accuracy of modeling solar, wind, 

and load demands can be improved by using high-quality data or forecasting models. 

Another challenge is the unavailability of technical specifications and accurate testing per-

formance data of some available solar, wind, and energy storage models in the market, 

which directly affects the modeling assumptions and parameters. Moreover, integrating 

the renewable energy, energy storage, and load models into the microgrid context is an-

other challenge as some models in the literature are proposed for a specific objective or 

study system, and this calls for a need to address the complexity of integrating the renew-

able resources and energy storage into microgrids in future research. Moreover, electrifi-

cation and utilization of renewable resources for some loads, such as EV and water desal-

ination, require more attention, as these loads can increase or decrease the efficiency of 

the system based on how they are modeled and integrated to the system. 
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