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Abstract: This research investigates the optimal management of electric and heat energies in a hybrid
energy system (HES). In the studied HES, a pair of photovoltaic and battery storage devices is
used to supply the electricity demand, and a boiler system to supply the heat demand directly. In
addition, a modified cycle power plant acted as a combined heat and power (CHP) unit to increase
the generation capacity and supply reliability. The HES is also able to connect to the electric grid
to exchange power according to real-time energy prices. The uncertainty of renewable generation,
demand levels, and energy prices challenge the decision-making process. To deal with the uncertainty
of these overlapping parameters, a comprehensive information-gap decision theory (IGDT) approach
is proposed in this paper that, despite other works, considers the uncertainties in an integrated
framework and derives risk-averse and risk seeker strategies in different steps. The problem is
modeled as mixed-integer linear programming and solved using the GAMS optimization package.
Concerning simulation results, from the viewpoint of a risk-seeking decision maker, the increment of
the uncertainty degree by 10.906% results in a reduced operating cost of 8.6%. From the viewpoint of
a risk-averse decision maker, the increment of the uncertainty degree by 10.208% results in 8.6% more
operating cost.

Keywords: hybrid energy system; CHP; IGDT; multiple uncertainty management; decision-making

1. Introduction

Restrictions on the spread of carbon and policies in this respect have pushed the energy
section towards a more sustainable and efficient use of energy resources. By decomposing
a large power and energy system into several small controllable microgrids (MG) with
different energy carriers, it is possible to increase functionality and flexibility. The result
is higher functionality, ease of energy conversion, lowered energy losses, increment of
supply rate, and more eco-friendly design and operation. The MGs are mainly founded
on renewable energy sources (RES), energy storage devices, and co-generation facilities
such as combined heat and power technology to cover both electric and heat energy
demands sustainably [1]. The MG can be used in an isolated mode and connected to
the network depending on requirements. The isolated MGs are mainly used to electrify
remote areas, while the grid-connected modes can exchange energy with a local energy
market and have a higher reliability rate. The main challenging part of the operation for the
MGs is managing enormous sources of uncertainties caused by the intermittent nature of
RES output and loads’ behavior (and energy market conditions under the grid-connected
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operation). This issue is more drastic for small-scale MGs, due to sharp dynamics in power
and volatile energy markets. The mismatch of generation and consumption causes damages
and economic losses if it has not been addressed well. In addition, the interdependency
between electric and heat energy carriers in a combined heat and power MG must be
considered during the operation. From here, the hybrid energy system (HES) is used to
refer to an MG that covers both electric and heat energy carriers.

The CHP technology includes a wide range of technologies, including hydrogen-based
fuel cells, concentrated solar energy, and modified cycle power plants. Biofuels may be
offered to the modified cycle power generators to reduce environmental impacts too. The
task of making balance and management of electric and heat resources economically is
directed by energy management systems that can be designed through an optimization
model with risk-hedging approaches to investigate the uncertainties as well. In this paper,
a modified cycle power plant acts as a CHP unit, and the energy management system is
designed by introducing mixed-integer linear programming, where an information gap
decision theory approach is proposed to deal with uncertain values of renewable power
generation, load demand, and energy price of the market simultaneously and to schedule
different resources according to the decision-making strategy.

Literature Review

The CHP-based HES complicates the energy management problem, since any change
in the electric or heat side creates a mismatch on the other side [2]. The uncertainty of
RES, load behavior, and energy price cannot be foreseen exactly before the scheduling,
thus making the balancing a challenge. To address this issue, various uncertainty mod-
eling and management methods have been developed. These methods are categorized
as data-based approaches and mathematical programming tools. For instance, in [3], a
multi-objective optimization is proposed to reduce the total operation cost and carbon
emission. The uncertainty of electric load is addressed by using a deep-learning approach.
In general, for integrating uncertain parameters into an optimization problem, mathemat-
ical approaches are popular. In this subject, the known approaches are scenario-based
stochastic programming, interval optimization, robust optimization, and information gap
decision theory (IGDT).

Stochastic programming requires a historical data set with a known probability dis-
tribution function to develop a set of scenarios for an uncertain parameter. Reference [4]
propounds stochastic programming for CHP-based energy management in a HES, by con-
sidering the uncertainties of load, RES output, and energy price using scenarios. The fun-
damental drawback of this technique is its reliance on a large amount of data with known
probabilities, which increases computing time. Furthermore, stochastic programming
generates several solutions for the problem depending on the number of input scenarios.

On the other hand, the interval optimization approach, robust optimization technique,
and IGDT rely on defining a boundary for the uncertain parameters. The interval and
robust optimization approaches for energy-efficient scheduling of an HES with CHP units
are presented in [5,6], respectively. These two approaches require the solution of numerous
optimization problems in the bi-level form, which is difficult to solve and time-consuming in
general [7]. Furthermore, the accuracy of the selected interval for the uncertain parameter
affects the results. The solutions found by the robust optimization approach are very
conservative and cannot satisfy an optimistic decision maker.

Similarly, the IGDT is an interval-based approach it does not require precise infor-
mation about the uncertain parameter. For an electric-only DC MG scheduling problem,
the IGDT method is proposed in [8] to deal with the energy price uncertainty. It develops
different decision-making strategies in the presence of flexible demand response programs.
In [9], for an electric-only MG, the IGDT is proposed to schedule various resources to
reduce operating costs and to cope with different uncertainty parameters, including wind
and PV generation and load uncertainties. Indeed, it investigates different uncertainty
parameters separately, and the concurrent features are missed. Similarly, a risk-averse



Sustainability 2023, 15, 4825 3 of 16

IGDT-based optimal capacity configuration of an islanded electric MG is investigated
in [10]. The uncertainties of wind and PV generation are handled separately by the IGDT.
Reference [11] was one of the first studies that used the IGDT for uncertainty management
for a HES. The studied HES includes a fuel cell and PV to supply electric and heat demands
together. Moreover, an electrical demand response program is considered to fulfill the
energy gaps during peak times. In [12], the IGDT is proposed for scheduling problems of
HES with combined cooling, heating, and power (CCHP) units to deal with energy price
uncertainty. The RESs are included in the model; meanwhile, their uncertain output has not
been addressed. This paper derives both risk-averse (RA) and risk seeker (RS) strategies
for decision makers and employs a real-time pricing demand response program to reduce
the total operation cost. The authors of [13] assessed the optimal energy management
problem for a smart apartment in the presence of a CHP unit and boiler, battery, and solar
thermal storage to increase flexibility on a residential scale. The IGDT is used to counter
energy market price uncertainty, while the load uncertainty is disregarded. By presenting
reliability and opportunities functions, the authors provide both RA and RS strategies to
the decision makers. Reference [14] optimizes the operation of a CHP-based MG under
real-time and time-of-use pricing electricity tariffs. The IGDT is proposed to deal with load
uncertainty considering both RA and RS strategies. The study employs power-only and
heat-only resources besides the CHP, which obscures the interactions between electricity
and heat generation. Although a detailed model of the CHP unit and the heat-only system
is presented, the RESs are not involved to ensure sustainability. Reference [15] presents a
robust RA strategy for scheduling a CHP-based MG considering demand response program
availability, and in the presence of wind and PV power generation systems as the main
RESs, boiler systems, and electric/thermal energy storage technology. The uncertainty
of RES output is addressed by the IGDT, and the uncertainty of energy price and load
demands is not discussed. The studied MG can exchange power with an electric grid,
and a demand response program for electric and heat loads helps in holding the energy
equilibrium. Moreover, in a recent attempt by [16], the IGDT is used for load uncertainty
management in the scheduling problem of a CHP-based MG, which is constructed as
multi-objective optimization. The authors of [17] proposed a multi-objective optimization
framework coupled with the IGDT method to handle the renewable power uncertainty in
a combined heat, hydrogen, and power (CHHP)-based MG with power-to-X conversion
technology. Their methodology derives from the risk-averse strategy to reduce the overall
cost and environmental issues. For an islanded CHP-based MG, the IGDT method is used
to handle the uncertainty of load and renewable wind power to reduce the cost of operation.
Based on the robust scheduling of the IGDT, the authors of [18] proposed an optimization
framework to schedule a CHP-based MG. The uncertainty related to renewable generation
is handled by the IGDT with a risk-averse strategy. In [19], the authors proposed the IGDT
to model the uncertainties of wind power and electric load in a CHP-based MG scheduling
problem. However, similar to the previous works, they investigated the uncertainties
separately, and the overlapping effects of uncertainties are not seen. They presented both
risk-averse and risk seeker decision making strategies.

Till here, the reviewed works have used the IGDT to model just one of the existing
uncertain parameters, e.g., the energy price, demand variation, or RES output. In the fol-
lowing, certain hybrid approaches are introduced to model multiple uncertainty resources.

Numerous papers presented a hybrid of stochastic, robust, and IGDT approaches to
include several uncertain parameters in an integrated optimization. In this regard, the
authors of [20] investigated the scheduling problem of the CHP-based MGs with renewable
generation in the presence of electric network constraints. The IGDT method is in charge
of load behavior uncertainty management, while stochastic programming and robust
optimization approaches are used to model the uncertainty of RESs and energy prices,
respectively. For scenario-based stochastic programming and robust optimization, the
given hybrid technique requires a dataset for the uncertain parameters. With a different
perspective, a robust IGDT method is proposed by [21] to consider the uncertainty of
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component failures in an islanded MG, while conventional uncertainties are modeled by
scenario-based stochastic programming. The authors of [22] proposed a hybrid stochastic-
IGDT technique for optimal scheduling of CHP units in energy and reserve markets. The
feasible operating region for the CHP unit is imposed by mathematical modeling in a
network-constrained unit commitment problem in the presence of wind power generation.
The IGDT is used to deal with the wind power uncertainty. Scenario-based stochastic
programming is used to address the uncertainty of load demands. For different levels of
risk-acceptance, the expected operating cost is minimized over demand scenarios. The final
results are prepared for both RA and RS decision makers. Similarly, a hybrid stochastic-
IGDT optimization method is described in [23] for scheduling a multi-carrier MG with
CHP units, a battery, and thermal storage. The use of electric and thermal demand response
programs is also proposed to increase the flexibility of operation. The uncertainty associated
with wind and solar energy resources, as well as energy prices, is considered. The IGDT is
used to address the effects of renewable energy uncertainty. Stochastic programming is
also used to address the uncertainty of energy prices. The uncertainty of load is not seen.
Moreover, this work disregards the RS strategy while deriving the decisions. The authors
of [24] prescribed a hybrid robust-IGDT for energy management of a tri-generation energy
system with a CHP unit, gas boiler, power-to-gas facility, and wind turbine. The robust
optimization is used to handle the uncertainty of energy prices, while the IGDT is used to
control the uncertainty of wind power generation. The proposed hybrid approach considers
the worst realization of the wind energy production and energy market price, resulting in
a restricted RA strategy. Finally, in [25], a hybrid stochastic-IGDT approach is proposed
for scheduling an industrial energy park with various co-generation and energy storage
technologies. The proposed hybrid approach can encounter uncertainties of wind output
fluctuations, energy price, and electric/heat/cooling demands. From the above-mentioned
explanations, these approaches can capture the effects of several uncertain variables, but
they are computationally challenging and need precise data for scenario generation and
interval specification for robust optimization. Furthermore, these works examine the effects
of uncertainties separately, while in reality, the effects of uncertainties are overlapping and
should be investigated in an integrated form.

The focus of this research is to extend the IGDT model to link the impacts of several
uncertain parameters (i.e., energy price, PV output, and electric/heat load demands) to
obtain the best operating strategy in the absence of complete information on the mentioned
parameters. Reference [26] prescribed the IGDT for uncertainty modeling of load demand,
electricity price, and wind power output that is very similar to the purpose of this paper.
However, the authors of [26] neglect the beneficial features of uncertainty and optimistic
strategy. They also model the uncertainty margins separately and do not consider them
simultaneously during the optimization phase. Actually, the purpose of this study is to
reply to two key issues that have arisen:

I. How we can expand the IGDT method to account for multiple uncertainties with
conflicting effects in an integrated optimization model?

II. In comparison with a risk-neutral strategy, what is the difference between robust and
optimistic scheduling strategies?

Previous publications did not give an answer to these concerns. Table 1 compares
relevant works for a better clarification.

To sum up, the contributions of the paper are highlighted in the following:

• Providing a mixed-integer linear problem for scheduling a sustainable hybrid energy
system considering the CHP unit;

• Proposing a comprehensive IGDT method for addressing various uncertainty parame-
ters in an integrated form, without a need for a precise data set or known probability
distribution function;

• Providing a more flexible decision-making framework that is in favor of both risk-
averse and risk seeker decision makers despite the conservative decisions of the
robust approach;
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• Proposing envelope-bound IGDT with a tractable procedure and efficient solution time.

Table 1. Comparison of the related works.

Ref. Components Considered in MG Uncertainties Modeled by IGDT Decision-Making Strategy

[11] PV/battery/fuel cell/grid Electric load RA/RS

[12] CCHP/PV/wind/grid Energy price RA/RS

[13] CHP/energy storage/grid Energy price RA/RS

[14] CHP/grid Electric and heat load RA/RS

[15] CHP/fuel-cell/PV/wind/battery/grid Renewable generation RA only

[16] CHP/boiler/wind/energy storage Electric load/renewable generation RA/RS

[17] CHHP/PV/wind/energy storage/P2X Renewable power generation RA only

[18] CHP/boiler/grid/battery Renewable power generation RA only

[19] CHP/boiler/wind/ energy storage/grid Electric load/wind power generation RA/RS

[20] CHP/PV/wind/battery/grid Electric load RA/RS

[22] CHP/wind/grid Wind power generation RA/RS

[23] CHP/boiler/wind/PV/grid Renewable generation RA/RS

[24] CHP/wind/energy storage/grid Wind power generation RA/RS

[25] CCHP/wind/energy storage/grid Wind power generation RA only

[26] CCHP/wind/PV/energy storage/gird Electric and heat load/renewable
generation/energy price RA only

This
paper CHP/boiler/PV/battery/grid Electric and heat load/PV

generation/energy price RA/RS

2. Background Regarding Uncertainty Modeling Using IGDT

The IGDT is a powerful decision-making tool that considers not only the negative
effects of uncertainty, but also the probable positive aspects. It is furnished by two per-
formance functions, namely, robustness and opportunity functions. On one hand, the
robustness function shows the range of resistance of the system against harmful uncertainty
realizations. On the other hand, the opportunity function investigates the benefits that
might come through uncertainty reduction. For each function, a predefined criterion is
used to immunize the system against uncertainty. In the robustness function, the opti-
mization tries to find the maximum interval bounds for the uncertainty parameter so that
the result (i.e., operation cost) is equal to or lower than a predefined criterion. Vice versa,
in the opportunity function, the optimization finds the lowest interval bounds in which
the operation cost cannot exceed the predefined value. In the following, the robustness
function α̂ or the degree of resistance against undesired uncertainty realization, as well as
the opportunity function β̂, are expressed, respectively by (1) and (2).

α̂ = max
α
{α : maximumoperationcostwouldnotbehigherthanapredefinedcriterion} (1)

β̂ = min
α
{α : minimumoperationcostislessthanapredefinedcriterion} (2)

To sum up, the IGDT does not require a vast amount of data to model the uncertain
parameters’ behavior despite scenario-based approaches. In the absence of complete infor-
mation, the IGDT provides risk-averse strategies. The results are comprehensive despite
the robust optimization approach, which only models the worst-case condition leading to
a conservative strategy. Although similar to the robust optimization approach, the IGDT
utilizes an uncertainty interval instead of a data set and determines safe operational re-
gions. Furthermore, the IGDT allows making decisions according to specific strategies and
priorities. For more information, interested readers are consulted to study reference [27].
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3. Problem Statement

It is increasingly important to use sustainable energy systems to address the green-
house gas issue. The RES and CHP unit fed by sustainable biofuels are recommended as
viable alternatives. CHP units are programmable systems, and consideration should be
given to the relationship between generated electricity and heat. While the production of
RES is uncontrollable, that is the reason why energy storage devices are being used in MG.
In the HES, the integrated form of dispatchable and non-dispatchable generation creates
a flexible system to efficiently supply electricity and heat demands. Figure 1 depicts a
schematic of the studied HES, highlighting resource connections. Heating loads are served
by the CHP unit and a boiler system via a heat exchanger and recovery system, while
electric loads are supplied through the grid, PV, and CHP unit. A battery storage system is
employed to add flexibility to the operation. The model is based on technical information
presented in [28].
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The field of optimal energy management will be more interesting when the decision
maker is able to plan different reactions against the uncertainties. The IGDT provides
various decision-making strategies even with a lack of information. While the uncertainties
may have negative effects on the operation, such as the unpredicted rise of load demand,
an optimistic decision maker would like to consider the positive aspects, too. For example,
the unpredicted growth of renewable generation that can be sold to the grid brings more
benefits. The IGDT presented in this paper can cover both perspectives. One of the
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main attributes of the IGDT is its ability to be included in both positive and pessimistic
conditions [29]. In this regard, firstly, the deterministic operation is modeled at the first
stage. The results of this stage are used to introduce the predefined criterion for the
robustness and opportunity functions of the IGDT in the following.

a. Deterministic optimal scheduling of the HES The deterministic optimization presented
in this subsection corresponds to a risk-neutral decision-making problem. Similar
to any optimization problem, the HES scheduling problem consists of an objective
function stated in (3), subject to operational constraints in (4)–(18). Equation (3) defines
the objective function trying to minimize the total cost. Equation (4) calculates the
cost of power exchange between the HES and grid based on energy prices. According
to the amount of power generated by the CHP unit, the fuel cost is calculated as
(5). Similarly, the fuel cost of the boiler system is calculated in (6). The amount
of heat produced by the CHP and boiler units is delivered to the heat recovery
system calculated in (7). The thermal energy balance is assured in (8) considering
the efficiency of the heat recovery system. Constraints (9) and (10) limit the power
output of the CHP and thermal energy of the boiler, respectively. Constraints (11)–(16)
represent the model of the battery storage operation. Using (11) and (12), the stored
electrical power in the battery storage is determined based on the initial state of
charge and charged/discharged power. Equations (13) and (14) restrict the charged
and discharged powers. The simultaneous charging and discharging are forbidden by
(15). Finally, the capacity of the battery storage is limited by (16).

Min
24

∑
t=1

(Cgrid(t) + Cchp(t) + Cboiler(t)) (3)

Cgrid(t) = λen(t)× (Pb(t)− Ps(t)) (4)

Cchp(t) = λf × (
Pchp(t)
ηchp

) (5)

Cboiler(t) = λf ×
Hboiler(t)
ηboiler

(6)

Hhe(t) = (
Pchp(t)
ηchp

(1− ηchp − ηloss)) + Hboiler(t) (7)

ηhe ×Hhe(t) = Lh(t) (8)

0 ≤ Pchp(t) ≤ Pmax
chp (9)

0 ≤ Hboiler(t) ≤ Hmax
boiler (10)

EBS(t) = Einit
BS + (Pch

BS(t)× ηch
BS −

Pdis
BS (t)
ηdis

BS
), t = 1 (11)

EBS(t) = EBS(t− 1) + (Pch
BS(t)× ηch

BS −
Pdis

BS (t)
ηdis

BS
), ∀t > 1 (12)

Pmin
ch uch(t) ≤ Pch

BS(t) ≤ Pmax
ch uch(t) (13)

Pmin
dis udis(t) ≤ Pdis

BS (t) ≤ Pmax
dis udis(t) (14)

uch(t) + udis(t) ≤ 1 (15)

Emin
BS ≤ EBS(t) ≤ Emax

BS (16)

The electrical and thermal energy balances are held by (17) and (18), respectively.

Pb(t)− Ps(t) + Pchp(t) + PPV(t) + Pdis
BS (t)− Pch

BS(t) = LE(t) (17)
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Hboiler(t) + Hchp(t) =
Lh(t)
hhe

(18)

b. IGDT-based optimal scheduling of the HES The IGDT is applied to manage the uncer-
tainties of energy price, PV generation, and electric and heat loads simultaneously.
The fractional information gap model is presented in (19). If the uncertainty model
was represented by U(α, li), then li would represent the uncertain parameters’ actual
values (i.e., energy price, PV generation, electric load, and heat load demands), l̃i
is the forecasted amounts of the mentioned uncertain parameters, and α indicates
horizon of the uncertainty parameter. A greater value of α leads to a greater range of
deviation of the uncertain parameters.

U(α, li) =
{

li :
∣∣∣li − l̃i

∣∣∣ ≤ α̃li
}

,α ≥ 0 (19)

Based on the definition, the IGDT-based optimal scheduling of the HES can be for-
mulated as follows. For a risk-averse decision maker, the robustness function can be
expressed as (20).

α̂(Cr) = max
α
{α : max

l∈U(α,̃li)
(C(q, li) ≤ Cr = (1 + ε)Cb} (20)

where C(q, li) models the system cost, q includes decision variables, li contains uncer-
tain parameters, and Cr is the maximum or critical operational cost of the HES, which
the results should not exceed. In fact, the risk-averse decision maker tries to find the
maximum bound of the uncertainty in a way the operation cost is not more than a
predefined cost. Cb is the base cost of the system according to forecasted amounts of
uncertain parameters. The base cost is the optimal cost of the deterministic problem
presented in (3)–(18). ε is the cost deviation factor, which can adjust the target for the
robust problem. The optimization problem (21)–(27) schedules the system operation in
a robust condition. From the constraints, it can be deduced that when the maximized
degree of uncertainty, α, is lesser than the maximum level of uncertainties, α̂, the
operational cost will be lower than the critical cost, Cr. It should be noted that after
several numerical evolutions under the deterministic case, it was found that the total
cost is higher when the energy price is targeted to be maximized (i.e., robust cost); for
this reason, the effect of price is negative as shown in (23). While the PV generation
can reduce the operational cost, the risk-averse decision maker would like to consider
the PV output lower than its forecasting amount using robust optimization, as shown
in (24). For a robust operation, the decision maker would like to consider more load
demands as modeled in (25) and (26) for electrical and heat loads, respectively. Other
constraints are the same as the deterministic problem as mentioned in (27).

α̂(Cr) = maxα (21)

Subject to:
24

∑
t=1

(Cgrid(t) + Cchp(t) + Cboiler(t)) ≤ Cr (22)

λen(t) = λ̃en(t) + αλ̃en(t) (23)

PPV(t) = P̃PV(t)− αP̃PV(t) (24)

LE(t) = L̃E(t) + αL̃E(t) (25)

LH(t) = L̃H(t) + αL̃H(t) (26)

Constraints (5)–(18) (27)



Sustainability 2023, 15, 4825 9 of 16

On the contrary, for a risk-seeking decision maker, the mathematical model for the
opportunity function is expressed in (28).

β̂(C0) = min
α
{α : min

li∈U(α,̃li)
(C(q, li) ≤ C0 = (1− ε)Cb} (28)

where C0 is the minimum cost of the system, which the results should not exceed.
Thus, α̂(Cr) was the largest amount of α, and β̂(C0) is the smallest amount of α.
α̂(Cr) and β̂(C0), respectively, find the system cost with a high degree of robustness
and the smallest cost of the system by considering positive attributes. Obviously, Cr
is always greater than C0. Therefore, the opportunity function can be formulated
as follows. Despite the RA decision maker, the RS decision maker tries to find the
minimum deviation of the uncertainty parameters that push the system operation
toward a positive situation. For example, the risk seeker strategy anticipates that
uncertainty reduces the energy price, increases the PV generation, and decreases the
load consumptions in (31)–(34), respectively.

β̂(C0) = minα (29)

Subject to:
24

∑
t=1

(Cgrid(t) + Cchp(t) + Cboiler(t)) ≤ C0 (30)

λen(t) = λ̃en(t)− αλ̃en(t) (31)

PPV(t) = P̃PV(t) + αP̃PV(t) (32)

LE(t) = L̃E(t)− αL̃E(t) (33)

LH(t) = L̃H(t)− αL̃H(t) (34)

Constraints (5)–(18) (35)

4. Numerical Evolutions

In this section, the results of the proposed scheduling framework are verified on a
grid-connected HES including CHP, boiler, PV, and battery storage system, in which the
characteristics of them are set based on data of reference [28]. Figure 2 illustrates the electric
and heat load demands that all are based on data given by [28]. The problem is modeled
in the GAMS software and solved using CPLEX and DICOPT solver. Three optimization
problems are solved that are risk-neutral, risk-averse, and risk seeker problems.

Addressing parameter uncertainties will have an impact on the cost of MG operation.
The system cost is compared for risk-averse and risk seeker strategies in Figure 3. It
should be noted that the operation cost of the system under the risk-neutral strategy is
USD 11556.950. Under the risk-averse strategy, modeled by (21)–(27), the decision maker
is pessimistic regarding the effects of uncertainty. In other words, he/she thinks that
any deviation from uncertain parameters will be harmful. For this reason, he/she takes
conservative decisions to reduce the harmful effects, leading to further operating costs.
The greater the rate of deviation, the greater the harmful effects. For this reason, more
conservative decisions are made, which ultimately leads to higher costs. On the flip side, the
risk seeker decision maker, modeled by (29)–(35), anticipates pleasant effects of uncertainty,
for example, more PV generation or less load consumption, and for this reason, has different
scheduling compared with risk-neutral and risk-averse strategies. In fact, he/she thinks
about the optimistic aspects of the uncertain parameters, which ultimately leads to lower
costs. The cost steps for both strategies are USD 100 in this paper, and, according to
this change at each iteration, the margins for uncertainty deviation are optimized. As
an example, USD 1000 is charged for the risk-averse decision maker when the uncertain
parameters change by 10.906% from their forecasted values. For the risk-seeking decision



Sustainability 2023, 15, 4825 10 of 16

maker, USD 1000 decreased when the uncertain parameters changed by 10.208% from their
forecasted values. The selection between these strategies depends on the experience of the
decision maker and the level of risk acceptance. For various strategies, Figure 3 provides
the anticipated operating cost.
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The electric power generation of the CHP unit is shown in Figure 4. It should be noted
that the amount of heat produced corresponds linearly with the generation of electricity by
the CHP unit. From Figure 4, under the risk-averse strategy, the decision maker expects a
lower production by PV system, and more electric and heat load demands. Thus, under
this strategy, the CHP is committed to generating more power and heat compared to the
risk-neutral strategy. With a similar justification and in the opposite direction, the risk
seeker decision maker operates the CHP unit at a lower level to save fuel costs. At times
before 6 a.m., and after 9 p.m., the differences between risk seeker and risk-averse strategies
are remarkable. In these periods, the electric consumption is lesser than in the other periods
and PV generation is not available.
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Figure 4. Scheduled power generation by the CHP.

The risk seeker decision maker interprets the uncertainty of PV generation and load
consumption on the positive side and generates less power by the CHP. This justification
is more or less true for heat production and consumption. It should be noted that the
presented IGDT method is comprehensive and integrated. In other words, it is possible to
separately optimize the decisions with respect to a particular uncertainty parameter and
make a multi-objective problem. Thus, when the system operator would like to choose
a risk-averse strategy considering several uncertainties simultaneously, it is possible to
combine a fuzzy approach to choose the best solution among the Pareto front obtained by
the IGDT method. In this regard, by defining a membership function, the decision maker is
able to maximize the least satisfaction to achieve a risk-averse decision-making strategy. A
description of this approach is presented in [30].

The main source of heating energy is the CHP unit. Under the risk-neutral strategy,
the boiler system has not been involved at all. Under the risk-averse strategy, the boiler
is committed at hours 7 a.m., 7 p.m., and 8 p.m., with, respectively, total heating power
capacity of 124.268 kW, 617.185 kW, and 1.039 kW. For the risk seeker strategy, the boiler
system is committed during the hours from 1 a.m. to 5 a.m. and 9 p.m. to 12 p.m., with
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a full capacity of 2000 kW. In fact, under the risk-averse strategy, the worst realization of
PV generation and load consumption required more CHP operation, and consequently
the required heating energy from the boiler is reduced significantly. However, the risk
seeker strategy schedules the CHP plant with a lower capacity, and the required heating
capacity is provided by the boiler system. For the rest of the day, when the CHP has been
committed, the boiler is turned off.

The uncertainty of energy prices is very intense in comparison with the uncertainties
of PV production and load demand. The HES actively buys and sells power on the market.
Thus, the increase or decrease of the price level does not consistently affect the HES energy
management strategy. The investigations showed that the HES acts as an energy producer
the majority of the time, and Figure 5 shows the hourly sold powers. The purchasing power
from the grid is zero under the risk seeker strategy, while, for the risk-neutral strategy, the
amount of 260.274 kW is imported from the grid at hour 4 p.m. For the risk-averse strategy,
the power-purchasing contracts have been taken into account for hours 4 p.m. and 5 p.m. in
the amounts of 38.928 kW and 56.078 kW. From (23) and (31), the energy price is considered
higher for the robustness function and lesser for the opportunity function. For this reason,
the risk-averse decision maker commits CHP to generate more power to supply electric
and heat loads and sell it to the grid; however, the purchased power from the grid is not
zero. On the other hand, the risk-seeking decision maker prefers to consume the generated
power of the PV and CHP in the daily operation and sells only the surpassing power to the
grid. It should be noted that assuming that the price uncertainty effect is reversed in (23)
and (31), the overall schedule will change for both strategies.
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Figure 5. The electrical power sold to the grid.

Battery storage is generally used to offset intermittent renewable electricity generation.
However, in this paper, the HES is rich in terms of energy resources, hence, the battery is
used to add flexibility and increase the total revenue. The charged/discharged powers
by the battery storage are depicted in Figure 6. The positive powers indicate the charging
powers and vice versa. Three strategies demonstrate a similar dynamic. Before 6 p.m.
when the electric load is low, the battery is charged through power generated by the CHP
unit. The battery is discharged before the middle of the day to be ready for recharging by
the PV at noon, i.e., between 11 a.m. to 3 p.m. After charging up to maximum capacity, the
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battery is ready to be discharged for the afternoon. According to the scheduling plan of
other resources, the battery is discharged under three strategies.
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5. Conclusions

In this paper, an integrated IGDT model is proposed to tackle several uncertainty
effects in the optimal energy management problem of a grid-connected HES. The model
copes with the uncertainties of energy price, PV solar output, and electric and heat load
demands. For RA and RS decision makers, the orientation of the effects of PV output and
load uncertainties was expected. According to the results, an RS decision maker expects
higher PV generation and lower energy consumption, resulting in lower CHP dispatch. As
a result, he/she activates the boiler to meet the heat requirement. The RA decision makers,
on the other hand, have committed CHP with a large capacity to meet the amount of
pessimistic electric and heat demand and use the boiler at rare times. The underlying cause
of this phenomenon is the decision makers’ expectations regarding energy price volatility.
While the RS decision maker had an optimistic perspective regarding PV production and
load consumptions, the more deviation for the energy price means lesser prices in reality
that prevents him/her from generating more power with the CHP unit. On the other hand,
because of his or her gloomy assessment of PV and load uncertainty, the RA decision maker
has the incentive to use the CHP to generate more power. Furthermore, despite the RS
decision maker, the energy price divergence is perceived as higher amounts for the RA
decision maker, who can sell the excess power on the market to offset fuel expenses. From
the standpoint of a risk-averse decision maker, the system cost will increase by 8.6 percent
when the uncertainty increases by 10.906 percent pessimistic. From the standpoint of a risk
seeker decision maker, the system cost will reduce by 8.6% when the uncertainty grows by
10.208% optimistically. This shows that uncertainties favor the RS decision maker more than
the RA decision maker. Furthermore, it appeared that the RS decision maker scheduled
the resources more efficiently and was not reliant on power purchases from the grid. The
battery’s role as a flexible resource is also examined, which resulted in a similar scheduling
plan for all strategies. In general, the effectiveness of both decision-making approaches
should be thoroughly assessed utilizing a bi-level programming approach that takes into
account various operational scenarios. Furthermore, combining environmental impacts
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with multi-objective IGDT-based programming will result in significant improvements in
energy management strategy.

The authors are interested in extending the present work to consider a network-
constrained HES facing more uncertain resources using hybrid risk-hedging methods for
transactive energy management. Peer-to-peer trading within HES in the presence of uncer-
tainty will be another potential future work. Furthermore, the IGDT is a potentially strong
tool for decision-making, and, in combination with other decision-making approaches
such as the fuzzy method, can be beneficial for decision makers to choose the best solution
among a set of strategies provided by IGDT. The idea of optimal IGDT-fuzzy-based energy
management of hybrid energy systems is based in this paper, and the investigation of this
methodology is left for potential future works.
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Nomenclature

Set Definition Set Definition
t Time index i Uncertainty index

Parameters Definition Parameters Definition
Emin

BS ,Emax
BS Min/Max capacity of the battery (kWh) λen(t) Electric energy price (USD/kWh)

Hhe(t) Heat power of heat exchanger (kW) λf Fuel price (USD/kWh)
Hmax

boiler Heat capacity of boiler unit (kW) ηchp Electric operation efficiency of CHP
Lh(t) Heat load (kW) ηboiler Efficiency of boiler
LE(t) Electric load (kW) ηloss Heat loss constant
Pmax

chp Max. power capacity of CHP (kWh) ηhr The efficiency of the heat recovery system
Pmin

ch ,Pmax
ch Min/Max charge power of the battery (kW) ηhe The efficiency of the heat exchanger system

Pmin
dis ,Pmax

dis Min/Max discharge power of the battery (kW) ηch
BS,ηdis

BS Efficiency of battery
Variables Definition Variables Definition
Cgrid(t) Cost of exchanged energy (USD) Ps(t) Power sold to the grid (kW)
Cchp(t) Cost of CHP power generation (USD) Pchp(t) Electric power by CHP unit (kW)

Cboiler(t) Cost of boiler heat generation (USD) PPV(t) Electric power by PV system (kW)
EBS(t) State of energy of battery (kWh) Pch

BS(t) Charging power of the battery (kW)
Hboiler(t) The heat produced by the boiler (kW) Pdis

BS (t) Discharging power of the battery (kW)
Hchp(t) The heat produced by CHP (kW) uch(t) The binary variable of the charging state

Pb(t) Power bought from the grid (kW) udis(t) The binary variable of discharging state
Abbreviation Definition Abbreviation Definition

CHP Combined heat and power MG Microgrid
GAMS General algebraic modelling system PV photovoltaic

HES Hybrid energy system RA Risk-averse
IGDT Information gap decision theory RS Risk seeker
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