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Abstract: The prime objective of this study is to examine the impact of industrial output and financial
development on carbon dioxide emissions for a panel of 10 newly industrialized countries, namely
Brazil, China, India, Indonesia, Malaysia, Mexico, Philippines, South Africa, Thailand, and Turkey.
The empirical analysis was conducted between 1982 and 2019 by employing various estimation tests
and techniques. The different tests account for cross-sectional dependence in different series of the
model. Therefore, the relevant panel unit root was conducted, and we found that all series become
stationary after the first difference. The long run parameters were estimated, and we found that
there is a significant long-run relationship between the industrial output, the financial development,
and the carbon emissions. The carbon emissions are found to be significantly affected by both
domestic income and industrial output, while being negatively affected by financial development.
Industrial production coefficient estimates are highly elastic when compared to the other estimates.
The results also indicate unidirectional short-run causality from the domestic output and trade
openness to carbon emissions, urban population to domestic output, and financial development to
industrial output. However, there is no evidence of bidirectional causality. The study concludes
that sustainable economic growth can be achieved by using contemporary and efficient production
techniques, using environmentally friendly inputs in industries, and increasing vigilance of both the
public and private sectors. Both the public and private sectors should therefore be pushed to use
more modern, eco-friendly, and productive processing techniques. It is recommended that both the
public and commercial sectors be encouraged to embrace cutting-edge, environmentally friendly, and
productive processing methods.

Keywords: financial development; industrial output; carbon emissions; newly industrialized countries;
renewable energy; environmental degradation

1. Introduction

Global warming has become a challenge that the world is facing currently. The major
factor behind global warming is CO2 emissions that weaken the ecological state and lead
to environmental degradation. On the other hand, energy is a prerequisite for economic
activities today. In broad terms, a substantial amount of energy is used by four sectors: the
transport sector, commercial sector, residential sector, and industrial sector. It is assumed
that the industrial sector consumes 51% of the world’s energy. A sector’s success leads
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to further energy consumption, which contributes to a rise in fossil fuels that have an
adverse environmental impact, resulting in increased concern about the environmental
consequences of industrial production [1]. In recent times, increased global focus has been
presumed to curtail carbon emissions from energy production and industrial activities.
The Kyoto Protocol (1997) and the Paris Agreement (2015) are fundamental steps towards
reducing emissions of greenhouse gases (GHGs) to sustain a global temperature rise below
2 ◦C above pre-industrial levels and to explore the necessary steps further to restrict the
increase in temperature to 1.5 ◦C.

The newly industrialized countries (NIC) contributed 42% to total global CO2 emis-
sions due to acceleration in their economic growth [2]. As time passed, the structure of the
countries’ economies shifted from agricultural to industrial or service-based economies.
To attain high growth rates or compete with developed countries, new industrial coun-
tries are expanding their industrial sectors to produce more goods while disregarding
pollution standards [3]. As a result, air pollution and ecosystem degradation are worse
in newly industrialized countries (NIC) than in other countries [4]. CO2 is a part of the
atmosphere but has increased dramatically by one-third after the industrial revolution [2].
NASA data (2016) [5] show that atmospheric CO2 remained below 300 parts per million
(ppm) for 650,000 years but is now at 400 ppm. It depicted that CO2 emissions grew with
the industrial revolution. More energy use in industries is a key factor behind high CO2
emissions. More energy use in sectors of the economy could be a major factor behind high
CO2 emissions, although it is not the only factor. In addition, financial development is
an important determinant of CO2 emissions. Financial development can, in many ways,
impact CO2 emissions. First, financial development improves stock market conditions, and
listed companies can increase their monetary investment in new projects owing to financial
growth. This feat raises installations and services that need more energy and result in
high CO2 emissions. Second, financial development motivates foreign direct investment
in a country that promotes economic growth and aggravates CO2 emissions. Third, an
efficient financial development program positively affects purchasing expensive consumer
goods such as bigger houses, air conditioners, automobiles, and other products. All of
these considerations contribute to energy consumption and high CO2 emissions.

The spike in individual activities triggers an increase in carbon dioxide (CO2) emissions
due to the acceleration of conventional energy sources. By 2025, the primary energy use in
emerging economies is projected to reach an average of 3.2% per year [3,4]. In line with
these realities, the International Energy Outlook (IEO) foresees a rapid rise in global access
to low energy by 2025. This figure forecasts the terrifying situation of the contribution of
traditional global energy demand, primarily from fossil fuels, which is between 80 and
95% [6]. It is, therefore, essential to incorporate modern and sustainable sources of energy
to regulate pollution without harming economic development and the climate. For these
purposes, economies worldwide strive to use modern renewable energy sources, such as
biomass, tidal, wind, geothermal, solar, and hydroelectric power. Gielen et al. [7] pointed
out that by 2050, renewable energy resources will reach two-thirds of the world’s overall
energy demand. This will drastically reduce greenhouse gas emissions.

The major objective of this research work is to empirically analyze the causal nexus
between carbon emissions, GDP growth, industrial output, financial development, and
renewable and non-renewable energy consumption from 1982 to 2019 for 10 NICs. This
study contributes to the existing body of literature in many ways. First, this study analyzes
the impact of industrial output and financial development in NICs. To the best of our
knowledge, only a few studies have examined the causal nexus among carbon emissions
and variables like GDP, energy consumption, trade openness, and urbanization in the
case of NICs. However, industrial output and financial development have not garnered
much attention from researchers. The variables included in this study overcome the
omitted variable bias problem. Second, previous research has concentrated on the effects of
energy use while ignoring the structure of energy usage (i.e., renewable and conventional
energy). As a result, we include both types of energy use in this study, which can provide
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essential information for successful energy policies that contribute to achieving sustainable
development goals. Lastly, we applied advanced econometric techniques, i.e., cross-section
dependency statistics and panel cointegration tests, to make our analysis economically
appropriate. We used a panel data method for long-run regression, i.e., FMOLS and the
Granger causality test are used to know the nature of causality between the variables
of interest. From the standpoint of policy, these empirical procedures are essential for
developing alternatives for policies that might encourage cleaner and more sustainable
consumption and production patterns in NICs [8].

The rest of the paper unfolds as follows. Section 2 provides a review of the literature.
Section 3 describes the model specification, econometric technique, and data and descrip-
tion. Section 4 explains the empirical analysis and discussion, and Section 5 concludes the
study with policy implications.

2. Review of Literature

A brief overview of previous research on the relationships between financial de-
velopment, industrialization, green energy, and carbon emissions is provided in the
following section.

2.1. Financial Development–Pollution Nexus

A plethora of studies empirically analyzed the role of financial development in affecting car-
bon emissions. For instance, many researchers (Acheampong, [9]; Adams & Klobodu, [10];
Al-Mulali, Ozturk, & Lean, [11]; Ganda, [12]; Nasir, Duc Huynh, & Xuan Tram, [13];
Shahbaz et al., [14]; Shoaib et al., [15]) have confirmed a positive impact of financial de-
velopment on CO2 emissions. In a similar vein, Y.-J. Zhang [16] studied the impact of
financial development on carbon emissions for the Chinese economy over three decades.
Based on the cointegration test and the variance decomposition method, the study found
a positive and significant effect of financial development on carbon emissions. Likewise,
Sadorsky [17] used panel data from 22 developing countries to analyze the nexus of fi-
nancial development, energy consumption, and carbon emissions. The result shows that
for these countries, financial development leads to more energy use that produces more
carbon emissions. On the contrary, a growing body of literature has agreed that financial
development reduces environmental degradation via the promotion of economic growth
(e.g., Al-mulali, Tang, & Ozturk, [18]; Odhiambo, [19]; Shahbaz, Nasir, & Roubaud, [20];
Xing et al. [21]; Zafar, Saud, & Hou, [22]; Zaidi et al. [23], etc.). Besides, financial de-
velopment promotes investment in the energy sector that assists in mitigating energy
emissions [24]. Moreover, Nasreen and Anwar [25] reported a unidirectional causality from
financial development to CO2 emissions, whereas Shahbaz et al. [14] confirmed a bidirec-
tional causality between the two variables. Boutabba [26] studied the Indian economy to
identify the link between financial developments and carbon emissions. The results of
the Johansen cointegration test and Error Correction Model (ECM) advocate that financial
development contributes to environmental degradation. In addition, the Granger causality
test identified one-way causality from financial development to carbon emissions. Ozturk
and Acaravci [27] confirmed the long-run association between per capita carbon emissions,
per capita real income, the square of per capita real income, and financial development in
Turkey. The study revealed that a high level of per capita real income results in declining
carbon emissions per capita. However, no significant impact of financial development
on carbon emissions was found in the long term. The result further supported one-way
causality from financial development to energy consumption in the short term.

Table 1 below provides a Chronological summary of the literature on financial devel-
opment and CO2 emissions.
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Table 1. Chronological summary of the literature on financial development and CO2 emissions.

Authors Time Period Region/Countries Findings

Abid [28] 1996–2010 25 SSA countries FD does not affect carbon emission

Abbasi and Riaz [29] 1971–2011 Pakistan The effect of FD is insignificant on carbon emissions

Dogan and Turkekul [30] 1960–2010 USA FD exerts no effect on CO2 emissions

Saidi and Mbarek [24] 1990–2013 19 emerging countries FD reduces CO2 emissions

Shahbaz, Nasir, and Roubaud [20] 1955–2016 France FD has a declining effect on carbon emissions

Paramati, Mo, and Gupta [31] 1991–2012 G-20 countries FD increases environmental quality by reducing CO2
emissions

Adams and Klobodu [10] 1985–2011 26 African countries FD causes CO2 emissions

Ganda [12] 2001–2012 OECD countries FD increases CO2 emissions

Charfeddine and Kahia [32] 1990–2015 MENA region Inverted U-shaped relationship exit between FD and
CO2 emissions

Gokmenoglu and Sadeghieh [33] 1960–2011 Turkey FD enhances carbon emissions

Shahbaz, et al. [14] 1975–2014 UAE
FD increases CO2 emissions, and the relationship
between financial development and CO2 emissions is
U-shaped and inverted N-shaped

Odhiambo [19] 2004–2014 39 SSA countries FD unconditionally reduces CO2 emissions

Shoaib et al. [15] 1999–2013 G8 and D8 countries FD has a significant and positive impact on carbon
emission in both panels in the long-run

Ahmad et al. [34] 1990–2017 90 Belt and Road countries
FD deteriorates the environmental quality by increasing
the CO2 emissions, and bidirectional causality exists
between FD and CO2 emissions

Ling et al. [35] 1980–2017 China FD has important ramifications for carbon emissions

Shobande et al. [36] 1995–2018 OECD countries FD reduces carbon emissions but increases energy use

Khan et al. [37] 1984–2018 15 emerging and
growth-leading economies

FD development across all dimensions reduces
environmental quality (CO2 emissions)

Source: Authors’ compilation.

2.2. Industrialization–Pollution Nexus

Some of the studies explored the industrialization impact on carbon emissions.
Lin et al. [38] worked on data from 53 countries with different income levels, while Ma, Yan,
and Cai [39], in the case of China, confirmed a significant association among financial devel-
opment, industrialization, and CO2 emissions. Wang, Shackman, and Liu [40] confirmed
an association for Western developing countries; Abou-Ali, Abdelfattah, and Adams [41]
affirmed this for Arab regions; and Rafiq, Salim, and Apergis [42] affirmed a positive
impact of industrialization on CO2 emissions for 53 countries based on the STIRPAT model.
Likewise, Nejat et al. [43] and Tian et al. [44] in China, Salim and Shafiei [45] in 29 OECD
countries, and Cherniwchan [46] in 157 countries concluded that industrialization has
detrimental effects on CO2 emissions. Besides, Shahbaz et al. [47] found the presence of the
EKC hypothesis between industrialization and CO2 emissions in the case of Bangladesh.
Asumadu-Sarkodie and Owusu [48] studied the causal link between carbon emissions,
energy use, industrialization, and financial development in Sri Lanka from 1971 to 2012.
Based on the ARDL approach, the study established a long-run association among the
variables. Furthermore, a unidirectional causal link was affirmed between carbon emissions
to energy consumption, while a bidirectional causal link was found between industrial-
ization and energy use (a strong determinant of CO2 emissions). Asumadu-Sarkodie and
Owusu [48] worked on the causal nexus between CO2 emissions and industrialization
for the period 1965–2011 in Rwanda. Based on the ARDL model, the study concluded a
long-run association among the variables. Besides, the effect of industrialization on CO2
emissions was found to be positive, adversely affecting health, air quality, and the envi-
ronment. The study recommends environmentally friendly industrialization policies for
Rwanda to reduce CO2 emissions in the country. Zhao et al. [49] used the Log Mean Divisia
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Index and concluded that the major factor behind high carbon emissions was industrial
output in Shanghai. Appiah et al. [50] identified a causal link between industrialization
and CO2 emissions.

Concerning NICs countries, only a few studies (Ghazali & Ali, [51]; Sharif Hossain, [52];
S. Zhang, Liu, & Bae, [53]) have been carried out on the association of carbon emissions
with other macroeconomic variables (economic development, urbanization, free trade,
energy consumption), given the fact that NICs contribute 42% to global CO2 emissions due
to their rapid economic growth (IPCC, 2013) [2]. A summary of the more recent studies on
the nexus of financial development, industrialization, and CO2 emissions is provided in
Table 2.

Table 2. Chronological summary of the literature on industrialization and CO2 emissions.

Authors Time Period Region/Countries Finding

Zhao et al. [49] 1996–2007 Shanghai Industrial output positively contributes to CO2 emissions.

Zhongping et al. [54] 1978–2008 31 industries in China Heavy industrialization has a positive effect on CO2 emissions

Kivyiro and Arminen [55] 2000–2012 Sub-Saharan Africa Industrialization has a positive impact on CO2 emissions.

Al-Mulali and Ozturk [11] 1962–2012 14 MENA countries A causal link between industrialization, financial development,
and CO2 was revealed.

Gokmenoglu et al. [1] 1960–2010 Turkey
Cointegration exists between financial development,
industrialization, and CO2 emissions and unidirectional causality
from financial development to CO2 emissions.

Xu and Lin [56] 1990–2011 30 provinces in China Industrialization with CO2 emissions has an inverted U-shaped
nonlinear relationship in 3 regions.

Sarkodie and Owusu [48] 1971–2013 Sri Lanka
A long-run association between industrialization and CO2
emissions was affirmed, while a bidirectional causal link from
industrialization to energy consumption was asserted.

Sarkodie and Owusu [57] 1965–2011 Rwanda Industrialization accelerates CO2 emissions

Appiah et al., [50] 1990–2014 Uganda
Industrialization has a positive effect on CO2 emissions. A causal
correlation between industrialization and CO2 emissions was
also found.

Opoku and Aluko [58] 2000–2016 37 African Countries The industrialization has heterogeneous effects
(decrease/increase) for different data quantiles.

Rehman et al. [59] 1971–2019 Pakistan Industrialization has positive effects on carbon emissions

Authors’ compilation.

2.3. Renewable and Non-Renewable Energy–Pollution Nexus

Numerous studies have examined the impact of renewable and non-renewable en-
ergy consumption on environmental quality. For instance, Apergis and Payne [60] an-
alyzed the linkage between REC and CO2 emissions from 1984 to 2007 in the case of
19 developed and developing countries. The Granger causality test findings show that
REC does not lead to a short-term reduction in CO2 emissions. In addition, for a group
of 12 MENA countries, Farhani [61] explored the relationship between REC and CO2
emissions for the period 1975–2008. The empirical findings show that, in the short-run,
one-way causality ranges from REC to CO2 emissions, while the long-term unidirectional
causality ranges from CO2 emissions to REC. Bölük and Mert [62] concluded that REC
and NREC increase CO2 emissions in the case of 16 European Union (EC) countries.
Ben Jebli, Ben Youssef, and Ozturk [63] stated that, in 25 OECD countries, REC decreases
CO2 emissions while NREC increases environmental pollution. Bilgili, Koçak, and Bulut [64]
found that REC positively reduced carbon emissions for a group of 17 OECD countries
over the period 1977–2010. Zoundi [65] and Hu et al. [66] found that REC reduces carbon
emissions in the case of 25 sub-Saharan African and 25 developing countries, respectively.
Sharif et al. (2019) [67], in a sample of 74 countries, concluded that NREC increases while
REC reduces CO2 emissions. Danish, Ulucak, and Khan [68] affirmed the validity of the
EKC hypothesis in BRICS countries and found that REC reduces ecological footprints.
Similarly, Pham, Huynh, and Nasir [69] found that REC lowers CO2 emissions in 28 Eu-
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ropean countries. The overall evidence from past research related to renewable energy
and non-renewable energy usage and environmental degradation provides mixed or in-
conclusive results. This merits further investigation to arrive at a novel conclusion for
newly industrialized countries. Table 3 summarizes the recent literature that focuses on the
relationship between REC, NREC, and carbon emissions.

Table 3. Chronological summary of the literature on REC, NREC, and CO2 emissions.

Authors Time Period Region/Countries Finding

Shafiei and Salim [45] 1980–2011 OECD countries REC decreases while NREC increases carbon
emission.

Bilgili, Koçak, and Bulut [64] 1977–2010 OECD countries REC decreases carbon emission

Owusu and Asumadu-Sarkodie [48] 1971–2012 Sri Lanka Unidirectional causality found from carbon
emissions to NREC

Zoundi [65] 1980–2012 25 Sub-Saharan African countries REC decreases CO2

Bélaïd and Youssef [70] 1980–2012 Algeria NREC has adverse effects, while REC has a positive
effect on environmental quality

Hu et al. [66] 1996–2012 25 developing countries Share of REC improves environmental quality

Pata [71] 1974–2014 Turkey REC does not affect carbon emissions.

Chen et al. [72] 1980–2014 China An increase in NREC increases carbon emissions,
while a rise in REC reduces carbon emissions.

Danish, Ulucak, and Khan [68] 1992–2016 BRICS REC has a positive impact on environmental quality

Pham, Huynh, and Nasir [69] 1990–2014 28 European countries REC is found to reduce carbon dioxide emissions

Salahuddin, et al. [73] 1984–2016 33 Sub-Saharan African countries Green energy reduces carbon emissions

Authors’ compilation.

In brief, the extant literature shows numerous directions and impact strengths in
the relationship between financial development, industrialization, renewable and non-
renewable energy consumption, and CO2 emissions. The high variability in results reflects
the fact that the studies were performed for different regions, countries, development levels,
and variable econometric techniques. In summary, the findings of empirical investigations
remain mixed or uncertain, thereby investigating its impact on carbon emissions deserves
further deliberation.

3. The Theoretical Framework of the Model, Data, and Methodology
3.1. Theoretical Framework of the Model

The STIRPAT model propounded by Dietz and Rosa [74] provides this study’s theoreti-
cal and analytical reference framework. Based on the population, affluence, and technology,
the model advocates that population and economic activities are essential sources of CO2
emissions. The general form of the model can be written as follows:

I = f (P A T) (1)

The STIRPAT model in nonlinear form can be written as

Iit = βoPβ1
it Aβ2

it Tβ3
it µit (2)

where the subscript (i = 1, . . . , N) indicates the countries, and (t = 1, . . . , T) shows the time
span. βo and µit, reflect country-specific effects and error terms, respectively. While β1, β2,
and β3 are the elasticities showing the impact on the environment with respect to P, A, and
T (York, 2007) [75].

The STIRPAT model in Equation (2) is converted into a linear form by taking a natural log:

lnIit = β0 + β1lnPit + β2 lnAit + β3lnTit + µit (3)
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Additional to the mentioned variables in Equation (3), in this study, we investigated
the impact of economic variables (financial development and trade openness) and green
energy (non-renewable and renewable energy) on CO2 emissions. For this, we constructed
two models, and these are structures as follows:

lnCO2it = γot + γ1tlnYit + γ2tlnIOit + γ3tlnURit + γ4tlnFDit + γ5tlnTOit + eit (4)

lnCO2it = γot +γ1tlnYit + γ2tlnIOit

+γ3tlnURit + γ4tlnFDit + γ5tlnTOit + γ6tlnNREit + γitlnREit + eit
(5)

In the given models, CO2, Y, IO, and UR represent carbon dioxide emissions, total
output, industrial output, and urbanization, representing I, A, T, and P in the STIRPAT
model, respectively. The variables CO2, Y, IO, and UR employed for I, A, T, and P are simi-
lar to earlier studies Al-Mulali, U. et al. (2015) [11], Saidi and Mbareak (2017) [24], and
Appiah et al. (2019) [50]. In terms of additional variables, FD stands for financial development,
TO stands for trade openness, NRE stands for non-renewable energy, and RE stands for re-
newable energy. The impact of these additional variables on CO2 emissions have shown by
different studies, where some of them include Shafiei and Salim (2014) [45], Zoundi (2017) [65],
Ahmad et al. (2020) [34], Salahuddin et al. (2020) [73], and Khan et al. (2022) [37]. In the
specification of the STIRPAT model, carbon emissions are widely used as a dependent
variable. Following the studies of Saidi and Mbarek, 2017 [24]; Nasir et al. 2019 [13], and
Arshad et al., (2022) [76], we replaced CO2 emissions in metric tons per capita. The CO2
emissions metric tons per capita is used as a dependent variable and the remaining as
independent variables. In Equations (4) and (6), the last term eit is the model’s error term.
Furthermore, the acronym and data source of all variables of the models are described in
the Table 4. Data for all variables were retrieved from the World Development Indicators
(WDI) for the period 1982–2019. However, the WDI lacked last year’s data for renewable
and non-renewable energy, which were obtained from the Energy Information Agency
(EIA) and British Petroleum, respectively.

Table 4. Variables of the study.

Variables Description Source

Per capita carbon emissions (CO2) CO2 emissions metric tons per capita WDI

GDP growth (GDPPC) GDP per capita in USD $ WDI

Urbanization (UR) Urban population growth in annual % WDI

Financial Development (FD) Domestic credit to private sector % of GDP WDI

Trade Openness (TO) the ratio of exports and imports as % of GDP WDI

Industrialization (IO) Value added by industry (% of GDP) WDI

Renewable energy consumption (RE) kg of oil equivalent WDI and US Energy Information
Administration (EIA 2020) [77]

Non-renewable energy
Consumption (NRE) kg of oil equivalent WDI and British Petroleum Statistical

Review of World Energy (BP 2019) [78]

3.2. Econometric Methodology

Given the variables, including carbon dioxide emission, domestic output, indus-
trial output, urban population, financial development, and trade openness, we tried to
establish their cointegration and causal association with the help of the panel cointegra-
tion and Granger causality test. Since the various econometrics tests and techniques
used in this study are discussed in this section. Firstly, the independence test for cross-
section developed by Breusch and Pagan [79] and M. H. Pesaran [80] is briefly discussed.
Second, we describe the first- and second-generation panel unit root tests proposed by
Levin, Lin, and James Chu [81]; Maddala and Wu [82]; and H. Pesaran [83]. Third, the
panel cointegration tests suggested by Pedroni [84] and Kao [85] are introduced. Addition-
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ally, the fully modified ordinary least square (FMOLS) method developed by Pedroni [86]
is described to estimate the long-run relationship. Finally, the Granger causality tests
procedure is introduced to test for the detection of the causal relationship between the
study’s variables.

3.2.1. Cross-Section Dependence Test

Cross-sectional dependence (CD) is one of the most important diagnostics that could
be checked before panel cointegration analysis. Normally the problem arises in panel series
due to unobserved common factors. The literature proposes that it must be tested before
proceeding with the panel unit root to avoid bias and inconsistency in the results [79].
Therefore, first, we attempt to evaluate the CD among model variables by following the
Bruech-Pagan LM test (Bruesch-Pagen, [79]) and the Pesaran CD test. Both tests considered
the standard model of a panel given in an Equation (6) and tested for interdependence in
the model’s residuals.

yit = αi + βixit + µit (6)

Bruesch-Pagan LM test could be used to test cross-section dependence when the
time dimension is greater than the cross-section. This proposes an LM statistic, which is
significant for T > N and is given by the following equation:

CDLM = T
N−1

∑
i=1

N

∑
j=i+1

ρ̂2
ij (7)

where CD stands for cross-section dependence, T for time dimension, and N for panel
dimension, and ρ̂ij is the sample estimate of the pairwise correlation of the regression
residuals (µ̂ij), and associated with Equation (6). This ρ̂ij is calculated with the formula
given below:

ρ̂ ij =
∑T

t=1 µ̂it µ̂ji(
∑T

t=1 µ̂2
it

)1/2(
∑T

t=1 µ̂2
ji

)1/2 (8)

The stated CDLM test is asymptotically distributed as Chi-square with N(N − 1)/2 de-
gree of freedom under the null hypothesis, i.e., no relation exists between the cross-sections.

Pesaran [80] improved this test and considered when the time dimension is smaller
than the cross-section or panel dimension. Pesaran proposed alternative CD test statistics
as follows:

CDP =

√
2T

N(N − 1)

N−1

∑
i=1

N

∑
j=i+1

ρ̂ij (9)

This test is applicable even N > T, and the null hypothesis is similar to that of the
CDLM test.

3.2.2. Panel Unit Root Test

Next to the cross-section dependence test, the panel unit root must be tested to proceed
with the cointegration analysis. The literature has divided panel unit root tests into two
“first-generation” and “second-generation” tests. The first-generation tests could be used if
we find no evidence for cross-section dependence, while the second-generation tests could
be employed if we find evidence for cross-section dependence. The LLC and WU tests are
the most widely applicable tests of the first-generation tests. The LLC test was developed
by Levin, Lin, and Chu [81], while Maddala and Wu [82] introduced MW. Both tests are the
extensions of the augmented Dickey–Fuller (ADF) test, under the restrictive assumption of
“no relation between individual cross-section”. For a panel data set, the LLC test is used as
a modification of the ADF regression as follows:
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∆Yi,t = ρiYi,t−1 +
n

∑
k=1

∅ik∆Yi,t−k + X′itδ + µit (10)

In which, Yit (i= 1, 2, . . . , n; t = 1, 2, . . . , T) is a series for a country i over period t. The
residual µit is white noise~N(0; σ2) and is assumed to be cross-section independent. The
LLC test is conducted under the null hypothesis that “panels contain unit roots”, while
the alternative hypothesis indicates that “panels are stationary”. The hypothesis may be
written as follows:

H0 : ρi = ρ = 0

H1 : ρi = ρ < 0

Maddala and WU (MW, 1999) [82] is another panel unit root test of the “first gener-
ation”. It is a non-parametric test and proposes a Fisher-type test that combines the logs
of the p-values of each cross-section unit root test. The test statistics of MW have a χ2

distribution with 2n degrees of freedom, where n represents the total countries in the panel.
The following equation gives the MW test statistic:

λ = −2
n

∑
i=1

loge(ρi) ∼ χ22nd(d. f ) (11)

where pi stands for p-values from the test of ADF unit root for each unit i. Maddala and
Wu (1999) [82] found that the test has certain advantages over the IPS panel unit test. It
is superior to IPS because it does not depend on various lag lengths in the individual or
cross-section ADF regressions.

In addition, the unit root is tested using a cross-sectional ADF (CADF). This is a
notable test of the “second generation” of unit roots, which was proposed by Pesaran [83].
This test is popular to allow for the existence of cross-sectional dependence. Further, the
test could be applied with N > T and gives strong results when T > N, and the test is based
on the mean of individual ADF-test statistics of each unit in the panel. CADF test applies
unit root for every cross-section forming panel and for the panel itself. The extended ADF
regression of the test can be written as follows:

∆yit = ai + ρiyi,t−1 +

p

∑
k=1

bik∆yi,t−k + ciyt−1 +

p

∑
k=0

di,k∆yt−k + εi,t (12)

The null hypothesis assumes that all series contain a unit root, symbolically as, H0 : ρi = 0
for all i . However, in the alternative hypothesis assume that at least one of the cross-sections
in the panel is stationary, as symbolically, H1 : ρi < 0 for at least one i.

3.2.3. Panel Cointegration Test

Two alternative approaches to panel cointegration have been used to provide more
reliable estimates in cointegration testing. Panel cointegration tests show whether there
is a linear association between the dependent and independent variables of the model
in our panel or not. We employ two important panel cointegration tests, including the
Pedroni (1999) [84] and Kao (1999) [85] tests. Both are residual-based cointegration tests that
extend the Engle–Granger (EG) framework to test panel data. The Pedroni cointegration
approach proposes several tests, and one can calculate the Pedroni’s within the dimension
and between dimension ADF and PP test statistics. We would also estimate these two in
our study, as Pedroni [84] suggests that these two test statistics have the best properties
if the samples have a small time dimension. The test’s estimation method is an extension
of the traditional EG methodology. Therefore, in two steps, estimate the desired panel
cointegration. In the starting point, the dependent variable is regressed on explanatory
variables, such as in our case, the cointegration equation specified as:



Sustainability 2023, 15, 4742 10 of 21

lnyit = ai + βXi,t + εi,t (13)

In this panel regression, for t = 1, 2, . . . T, i = 1, 2, . . . , N; where αi is constant or
individual effects, y is the dependent variable (CO2), and X is a vector of explanatory
regressors includes domestic income (Y), industrial output (IO), urban population (UR),
financial development (FD), trade openness (TO), non-renewable energy (NRE), and re-
newable energy (RE). The last term εi,t is a white noise term. Since then, after estimating
Equation (8), the stationarity of �εi,t is examined with either the Dickey–Fuller test or the
Phillips–Perron test. For the hypothesis test, the structure of estimated residuals may be as
given, εi,t = ρεi,t−1 + εit. Pedroni describes the null hypothesis of no cointegration (ρi = 1);
however, the author proposes two alternative hypotheses, i.e., the homogenous alternative
as ρi = ρ < 1 for all i (for panel statistic test or within dimension), and the heterogeneous
alternative as ρi < 1 for all i (for the group statistic or between dimensions). Finally, the
decision of cointegration is made if the test statistic value rejects the null hypothesis and
accepts the alternative hypothesis.

Kao [85] also tests the Kao test of panel cointegration. Kao proposes different DF-type
and ADF-type tests to test the null hypothesis of no cointegration. This approach tests for
cointegration in homogenous panels. In Kao tests, it is assumed that all the cointegration
vectors in every cross-section are identical.

3.2.4. Fully Modified OLS

As a next step, we used a fully modified ordinary least square to determine the long-
run relationship between variables of the model in Equation (3). Phillips and Hansen [87]
first developed FMOLS to provide an optimal estimate of the cointegrating regression
model. However, we estimate long-run relationships using the FMOLS suggested by
Pedroni [86]. According to Ozcan [88], FMOLS has the advantage of correcting both the
serial correlation and endogeneity bias. The FMOLS is the most appropriate estimation
technique if the panel contains heterogeneous cointegration. Most importantly, using this
approach, more consistent and unbiased estimates are generated even in small samples
where the time dimension is not less than the cross-section (Pedroni, 2001) [86]. In this
respect, FMOLS assume a regression of the panel as given:

yi,t = ai + βxi,t + µi,t (14)

xi,t = xi,t−1 + ξi,t (15)

In which ai is country-specific fixed effects, and β is a cointegrating vector. Therefore,
the εi,t = (µi,t + ξi,t) vector error process is also a stationary process. Using relevant
notations, the FMOLS estimator for group means can be defined as:

β̂∗GFM = N−1
N

∑
i=1

 T

∑
t=1

(xi,t − xi,)
2

−1 T

∑
t=1

(xi,t − xi)y ∗i,t − T γ̂i

 (16)

where, y∗i,t = (yi,t − yi)−
Ω̂21i
Ω̂22i

∆yi,t; y∗i,t is the transform variable of yit; γ̂i = Γ̂21i + Ω̂o
21i −

Ω̂21i
Ω̂22i

(
Γ̂22i + Ω̂o

22i
)
; and γ̂i is the serial correlation correction term.

3.2.5. Panel Granger Causality Analysis

It is pertinent to mention that the purpose of the cointegration relationship is not
to indicate the direction of the causal relationship among variables of the model. The
causality tests could be used to identify the direct causal linkages, which are normally
carried out after the appearance of cointegration. In this research, we analyze causality
through the pairwise directions by the Granger causality tests for panel data introduced
by Engle and Granger [89]. Additionally, we employ the DH causality approach proposed
by Dumitrescu and Hurlin [90]. This DH approach offers more useful information and is
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suitable for analyzing the panel’s cross-sectional dependencies. The Granger equation for
the panel data model is considered as follows:

∆Yi,t = ai +
k

∑
i=1

ϕ
(k)
i Yi,t−k +

k

∑
i=1

β
(k)
i Xi,t−k + εit (17)

where, in Equation (15), k denotes optimum lags, Y and X are the variables in which
causality will be estimated, the intercept (α) represents fixed individual effects, ϕ

(k)
i and

β
(k)
i respectively denote autoregressive parameters and regression coefficients, and the last

term ε is the white noise error term. This test was used to detect whether or not pairwise
causality exists between X and Y. As stated above, it should be noted that the Granger test
coefficients are assumed to be the same across countries, while DH assumes differences
across the cross-sections [88,89]. Both approaches have the same null hypothesis, i.e., H0: X
does not cause Y.

4. Empirical Analysis

The empirical analyses were carried out for the balanced panel dataset, and all vari-
ables were transformed into a natural logarithm. The results are reported in the following
sub-sections accordingly.

4.1. Descriptive Statistics, Correlation Matrix, and Cross-Section Dependency Test

The study used descriptive statistics, a correlation matrix, and a cross-section depen-
dence test before applying the panel unit root. The descriptive statistics and correlation
matrix were conducted to describe the characteristics of the model’s variables and correla-
tion analysis, and their results are shown in Table 5.

Table 5. Descriptive statistics and correlation matrix results of study variables’ descriptive statistics.

Variables Mean Std. Dev. Skew Kurt J-B Obs.

lnCO2 3.554 2.660 0.928 2.769 51.207 * 351

lnY 7.788 1.054 −0.482 2.424 18.472 * 351

lnIO 3.495 0.212 −0.172 2.378 7.391 ** 351

lnUR 3.903 0.383 −0.492 2.119 25.528 * 351

lnFD 3.937 0.748 −0.160 1.772 23.561 * 351

lnTO 3.902 0.674 0.119 2.479 4.797 *** 351

lnNRE 4.289 0.242 −0.844 2.641 43.564 * 351

lnRE 3.095 0.692 −0.640 3.178 24.431 * 351

Correlation Matrix

Variables lnCO2 lnY lnIO lnUR lnFD lTO lRE lNRE

lnCO2 1

lnY 0.582 1.000

lnIO 0.413 0.844 1.000

lnUR 0.527 0.236 −0.072 1.000

lnFD 0.361 0.376 0.128 0.439 1.000

lnTO 0.186 −0.160 −0.253 0.457 0.432 1.000

lnRE −0.696 −0.668 −0.490 −0.315 −0.651 −0.324 1

lnNRE 0.719 0.553 0.312 0.345 0.476 0.271 −0.826 1

Note: Table 5 reports mean, standard deviation (Std. Dev.), skewness (Skew), kurtosis (Kurt), and Jarque–Bera
(J-B) test statistics for respective variables. The *, **, and *** represent 1%, 5%, and 10% levels of significance,
respectively. In the first column, ln stands a natural log, and in the last column, obs. stands for observation.
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In Table 5, it is obvious that the mean value of all variables, except the income level and
non-renewable energy, is less than 4. The CO2 variable, however, shows a wide dispersion
as its standard deviation is relatively greater and has a value of 2.66. The skewness value
is negative for all variables except CO2 and trade openness (TO). The negative values
show a skew towards the left while the positive skew towards the right. The positive and
greater skewness value for CO2 than zero indicates that the right tail is longer than the left.
Kurtosis is positive for all variables, indicating a fat-tailed phenomenon.

Additionally, the results of the J-B tests look significant, showing that the data for all
variables are not from the normal distribution. Furthermore, results show that all variables
positively correlate with carbon emissions except renewable energy. Renewable energy is
negatively correlated with carbon emissions. Notably, income level, renewable energy, and
non-renewable energy show a high correlation with carbon emissions, whereas industrial
output shows relatively less correlation.

Proceeding further, the model’s cross-sectional dependency is tested. Two tests were
used for this purpose, i.e., Breusch and Pagan (1980)’s [79] LM and M. H. Pesaran (2004)’s [80]
CD tests. The models’ results are based on a fixed effect estimator, derived from
Equations (4) and (5), in which CO2 is a dependent variable and Y, IO, UR, FD TO, NRE,
and RE are explanatory variables. The test results are shown in Table 6.

Table 6. Cross-sectional dependency test results.

Model-1 (Excludes Green Energy) Model 2 (Includes Green Energy)

Test Test-Statistic p-Value Test-Statistic p-Value

Bruesch-Pagen LM 245.82 0.000 388.76 0.000

Pesaran CD −3.46 0.000 −3.42 0.000
Note: HO: no cross-section dependence. Significance level; p < 0.001.

As we can see, the p-value is significant in the case of both LM and CD tests, indicating
a strong cross-sectional dependence. Pesaran’s test, however, could normally be used when
the cross-section is larger than time. In our case, therefore, the LM test should be taken
as T is > than N. This suggests that it is safe to reject the null and accept the alternative
hypothesis and concludes that our models contain cross-sectional dependence under a
fixed-effects assumption. We can also conclude that second-generation panel unit roots
would produce a more consistent result than first-generation panel unit roots.

4.2. Panel Unit Root Results

Table 5 reports the results of panel unit root tests at the level and first difference for all
study variables. In this paper, we applied unit root tests from both the “first-generation”
and “second-generation” viewpoints. As discussed in the Methodology Section, we tested
unit roots using LLC, MU, and CADF. Table 5 shows that the results of the panel unit
tests are mixed, especially in the case of LLC. In the case of first-generation unit roots
tests, the LLC test indicates that some of the variables are stationary at both levels and the
first difference.

Similarly, the MU test suggests that all panels are non-stationary at the level, except
the urbanization and non-renewable energy. However, all panels are stationary at the first
difference, even at a 1% significance level. In the second-generation test case, the CO2,
income level (Y), and urbanization (UR) are stationary at a 5% significance level, while the
other variables are non-stationary. In the first difference, except for the urban population
(UR), CADF suggests stationarity with a strong significance level at the first difference.
Consequently, all variables are first difference stationary. However, because of the clear
cross-sectional dependency reported in Table 6, we decided to give more importance to the
CADF test relative to the IPS and MU. Table 7 represents the panel unit root test statistics.
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4.3. Results of the Panel Cointegration Test

This was found in unit root results, that all panel series are stationary at first difference.
The panel cointegration is therefore tested to determine whether or not cointegration exists
between the model variables. First, we employed Pedroni’s panel cointegration [86]. The
model includes intercept only and intercept and trend, and no-cointegration is assumed
as the null hypothesis. The test results are reported in Table 8. The estimated results of
Pedroni’s test suggest rejecting the null hypothesis and accepting the alternative, supporting
the presence of cointegration in cases of “intercept only” and “intercept and trend”. In
the first case, only two tests, i.e., ADF and PP, confirm cointegration with a significance
level of 1%. However, in the second case, even modified PP test results conclude that the
cointegration relation between variables is significant at 5%. We have also tested Kao panel
cointegration, where Kao introduced parametric residual-based panel cointegration. Thus,
Kao’s test results also show that model variables are cointegrated and have a long-run
relationship, irrespective of the test statistics (see Table 9). There is enough evidence to
reject the null hypothesis of no cointegration at a 1% significance level since the results
show that cointegration exists between variables.

Table 7. Results of panel unit root test statistics.

Variables
LLC CADF Unit Root MW Unit Root

Level 1st-Diff. Level 1st-Diff. Level 1st-Diff.

lnCO2 0.77 (0.781) −7.55 * (0.000) −2.10 ** (0.018) −12.11 * (0.000) 11.11 (0.889) 320.99 * (0.000)

lnY 1.23 (0.891) −8.08 * (0.000) −1.79 ** (0.037) −11.42 (0.000) 2.21 (1.000) 187.06 * (0.000)

lnIO −2.05 (0.019) ** −7.19 * (0.000) 0.59 (0.725) −11.13 * (0.000) 24.580 (0.136) 250.66 * (0.000)

lnUR 0.65 (−0.743) −2.99 * (0.001) −4.52 * (0.000) 0.89 (0.812) 337.02 * (0.000) 16.72 (0.542)

lnFD −1.37 (0.085) *** −7.62 * (0.000) 0.15 (0.561) −9.97 * (0.000) 18.49 (0.417) 216.92 * (0.000)

lnTO −1.66 (0.048) ** −8.61 * (0.000) −1.99 (0.139) −8.54 * (0.000) 19.81 (0.343) 203.38 * (0.000)

lnNRE −3.66 (0.000) −7.61 (0.000) −1.58 (0.057) −11.11 * (0.000) 29.71 (0.040) ** 297.61 * (0.000)

lnRE 2.64 (0.996) −7.46 (0.000) −1.47 (0.071) −10.09 * (0.000) 4.38 (0.999) 255.13 * (0.000)

Note: A model with a constant for all variables was selected as a test model. The bracket values are p-values.
The *, ** and *** indicate significance levels at 1% 5% and 10%, respectively. The MU test results are based on
Chi-square test statistics. In the CADF test suggested by Pesaran, H0 for all tests is that the variables are I(1), and
used the STATA routine pescadf. In Maddala and Wu (MW) [82], H0 is the unit root and we used the STATA
routine xtfisher.

Table 8. Pedroni test results for cointegration (Pedroni, 1999 and 2001) [84,86].

Test Statistic Included Intercept Included Intercept and Trend

Modified Phillips-Perron t −1.173 (0.120) 2.168 ** (0.015)

ADF t Statistics −3.371 * (0.000) −4.379 * (0.000)

PP t Statistics −3.309 * (0.000) −3.774 * (0.000)
Note: the null hypothesis is that the variables are not cointegrated, while the alternative assumes ‘that all panels
are cointegrated. The * and ** indicate the rejection of the null hypothesis at 1% and 5%, respectively.

Table 9. Kao test results for panel cointegration (Kao, 1999). [85].

Test Statistic Statistic p-Value

Modified Dickey-Fuller −2.366 * 0.009

Dickey-Fuller t 1.740 ** 0.041

Augmented Dickey-Fuller t −1.953 ** 0.025

Unadjusted modified Dickey-Fuller t −2.200 ** 0.014

Unadjusted Dickey-Fuller t −1.672 ** 0.047
Note: The model includes constant only. The null hypothesis is that the variables are not cointegrated, while the
alternative. The * and ** indicate the rejection of the null hypothesis at 1% and 5%, respectively.



Sustainability 2023, 15, 4742 14 of 21

4.4. Fully Modified OLS Results

Given that the selected model variables are cointegrated, next to that we estimated the
long-run relationship. For this, we employed Pedroni’s FMOLS estimator and included
the only constant in the cointegration relationship using FMOLS. The study variables are
stationary in a different order of integration. Therefore, FMOLS is used as a robust test.
The FMOLS test results are reported for both pooled and weighted estimation in Table 10.

Table 10. Panel of fully modified OLS results.

Dependent Variable = LN_CO2

Method FMOLS (Pooled) FMOLS (Weighted)

Variable Coefficient Coefficient Coefficient Coefficient

lnY 0.603 *( 3.25) 0.061 (0.34) 0.519 * (35.47) 0.076 * (3.47)

lnIO 1.901 * (4.16) 1.257 * (3.14) 1.728 * (77.75) 1.408 * (57.31)

lnUR 5.746 * (7.74) 4.912 * (7.13) 5.747 * (1744.70) 4.739 * (729.02)

lnFD −0.292 (−1.42) −0.368 ** (−2.06) −0.197 * (−25.16) −0.307 * (−30.91)

lnTO −0.884 (−3.67) −0.845 * (−3.63) −0.634 * (−29.94) −0.778 * (−83.18)

lnNRE 0.885 (1.38) 0.687 * (41.09)

ln RE −1.599 * (−5.58) −1.560 * (−111.72)

R2 0.958 0.968 0.958 0.967

Adj. R2 0.956 0.966 0.957 0.966

Note: the * and ** indicate 1% and 5% significance levels, respectively. The bracket values are t-test values. Only
intercept is included in the model. Bartlett kernel with Newey–West fixed bandwidth is used.

To estimate the specified regression given in Equations (4) and (5), we ran FMOLS,
and the results are reported in Table 10. Almost all coefficient estimates are statistically
significant, regardless of the panel method. It should be noted that Pedroni (2001) [86] pro-
posed pooled weighted FMOLS estimates. When the models are estimated with a weighted
panel method, the elasticity coefficient varies from −01.59 to 4.91 and from −1.56 to 4.73,
respectively. Irrespective of the models, the main results confirm the significant positive
relationship between domestic income level and CO2, industrial output and CO2, and
urban population and CO2. The results show that the Y, IO, and UR coefficient values are
in the ranges 0.06–0.60, 1.25–1.90, and 4.73–5.75, respectively. These positive results are con-
sistent with the findings of various previous studies, see for instance (Al-mulali et al. [11];
Salahuddin & Gow, [91]; Yang et al. [16]). Instead, Yao et al. [92] and Shuai et al. [93]
found a negative association between urbanization and emissions of CO2. In contrast,
there is a negative relationship between financial development and CO2 and trade open-
ness and CO2, and the coefficient values in pooled estimation are −0.36 and −0.84 for
financial development and trade openness, respectively. These negative effects of the FD
are consistent with studies conducted by Khan et al. [37], and our results corroborated
with Sinha and Shahbaz [94], Afridi et al. [95], Syed [96], and Syed et al. [97] for trade
openness. Furthermore, the results from FMOLS (pooled) indicated that NRE is positive but
insignificant in explaining the CO2 of the panel. If we consider this in FMOLS (weighted),
then non-renewable energy is positive and significant in explaining the CO2 of the panel.
This implies that non-renewable energy is insufficient in reducing CO2 in selected nine new
industrialized countries. Instead, the coefficient of renewable energy (RE) is negative and
significant in both cases. The coefficient of RE is around 1.59 and significant at the 1% level,
indicating that a 1% increase in RE contributes to reducing CO2 emissions by 1.59% in the
long run for nine NICs.

Proceeding further, it is observed that a strong positive relationship runs from GDP per
capita, industrial output, and urbanization to CO2 emissions, and a negative relationship
runs from financial development and trade openness to CO2 emissions. The coefficient
estimates are highly elastic for urbanization in the models. It is also elastic for industrial
output and renewable energy, whereas it is less elastic for financial development. Hence,
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by applying the method of FMOLS, we investigated the long-run relationship between
variables of the model. Our methodology is in line with the study by Neagu [98] on Euro-
pean countries that used FMOLS (see also, Mitić et al. [99]). However, for the robustness
and validity of the results, we extracted the residuals and tested them for white noise to
ensure that our long-run model results are not spurious (see Table 11). The results indicate
that in both cases, the residuals are stationary at that level, indicating that our results are
consistent and unbiased and that the long-run regression model is not spurious.

Table 11. Test for residuals of regression model.

Model Method Statistic Prob.

FMOLS (Pooled) LLC test −4.212 0.000
FMOLS (Weighted) LLC test −4.304 0.000

4.5. Panel Causality Tests Results

The directions of causality are tested using the Engle–Granger approach and DH
approach. Table 12 represents the results of Equation (5) causality tests, including all the
variables that have causality with CO2 emissions. The full test pairwise significant results
are given in Appendix A. If the p-values of the respective test statistic are significant at
1% and 5%, then reject the null hypothesis of non-causality and accept the alternative. In
Granger causality, industrial output, urbanization, financial development, trade openness,
non-renewable energy, and renewable energy are significant at 1%, while GDP per capita is
significant at 10%, so we reject H0, which indicates unidirectional causality.

Table 12. Panel causality test results (Granger causality and Dumitrescu–Hurlin).

Statement of Null Hypothesis
Granger Causality Dumitrescu–Hurlin

F-Stat Prob. W-Stat Zbar Stat Prob.

Y does not Granger cause CO2 2.628 *** 0.073 4.634 * 3.288 * 0.001

CO2 does not Granger cause Y 0.097 0.907 1.893 0.315 0.752

IO does not Granger cause CO2 5.143 * 0.006 5.801 * 4.824 * 0.000

CO2 does not Granger cause IO 0.959 0.384 2.697 9.741 0.458

UR does not grange cause CO2 4.679 * 0.009 4.494 * 3.106 * 0.002

CO2 does not Granger cause UR 1.329 0.266 5.462 * 4.379 * 0.000

FD does not Granger cause CO2 6.930 * 0.008 2.900 1.009 0.313

CO2 does not Granger cause FD 0.775 0.379 3.275 1.503 0.133

TO does not Granger cause CO2 5.642 * 0.004 4.421 2.974 * 0.003

CO2 does not Granger cause TO 0.907 0.405 3.254 *** 1.578 *** 0.094

NRE does not Granger cause CO2 4.749 * 0.009 4.409 * 2.994 * 0.0003

CO2 does not Granger cause NRE 0.738 0.478 2.602 0.617 0.537

RE does not Granger cause CO2 4.988 * 0.007 4.426 * 3.016 * 0.002

CO2 does not Granger cause RE 0.607 0.512 3.301 1.536 0.124

Note: the * and *** denote that the null is rejected at 1%, and 10%, respectively.

Similarly, the DH causality test results show that GDP per capita (Y), industrial
output (IO), non-renewable energy (NRE), and renewable energy (RE) are significant at 1%,
indicating unidirectional causality from GDP per capita, industrial output, non-renewable
energy, and renewable energy to CO2 emissions. Urbanization (UR) has significant values
of 1%, so we reject the null hypothesis, and the results indicate a bidirectional causality
relationship between urbanization and CO2 emissions. The CO2 and trade openness (TO)
are significant at 10%, indicating weak bidirectional causality. The DH test results are
insignificant for financial development (FD) and CO2, so accept the null hypothesis of
non-causality. Consequently, unidirectional causality was found between domestic output,
industrial output, non-renewable energy, and CO2 emissions, while bidirectional causality
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runs from urbanization and renewable energy to CO2 emissions. The causality between
CO2 emissions and financial development is not significant. For complete significant results
of the panel causality tests see Appendix A.

5. Conclusions and Policy Implications

The prime objective of the study is to find the long-run estimates of CO2 emissions and
the causal relationship between industrial output, financial development, gross domestic
product, trade openness, non-renewable energy, renewable energy, and CO2 emissions for
the panel of NIC countries using data for the period from 1980 to 2019. To the best of our
knowledge, only a few studies have investigated the causal relationship between carbon
emissions and variables like GDP, energy consumption, trade openness, and urbanization
in the case of new industrialized countries. In this research, the omitted variable bias is
addressed by focusing on variables like industrial production and financial development,
which have attained little attention in previous research work. Furthermore, previous
research has concentrated on the energy use effects without considering the energy con-
sumption structure (i.e., renewable and conventional energy). Thus, our study covers
both forms of energy usage, which can provide essential information for successful energy
policies that contribute to attaining long-term development goals.

We tested the model’s variables for cross-sectional dependence, unit root, and long-run
relationship before estimating for the long-term effects of GDP, energy consumption, trade
openness, and urbanization on carbon emissions. The findings show that all variables
become stationary after the first difference and that the model variables in the panel of
newly industrialized countries have a long-run relationship. Economic growth, industrial
output, urbanization, and non-renewable energy have long-term positive effects on CO2
emissions, while financial development, trade openness, and renewable energy have
negative effects on CO2 emissions during the period of analysis. Furthermore, industrial
output, urbanization, and renewable energy strongly influence CO2 emissions in the
countries analyzed.

Additionally, a significant bidirectional causality was found between CO2 emissions
and urbanization. Instead, significant pairwise unidirectional causality was found between
domestic output and CO2, industrial output and CO2, non-renewable energy and CO2,
and renewable energy and CO2 emissions, while insignificant unidirectional causality
between CO2 emissions and financial development. The results indicate that increasing
effects of industrial output and urbanization rises CO2 emissions, while the increase in
trade openness and renewable energy leads to reducing CO2 emissions.

The study results propose some policy implications as follows. The industrial out-
put has a positive relationship with carbon emissions. Therefore, governments of newly
industrialized nations can set emission standards to control carbon dioxide and other pol-
lutants during production. Furthermore, it is suggested that governmental and commercial
sectors focus on ecologically friendly, contemporary processing, and efficient production
methods. Likewise, the newly industrialized countries must use environmentally friendly
resources as their inputs to achieve economic growth without degrading the environment.
Financial development has a negative association with emissions of CO2. The study rec-
ommended that newly industrialized countries extend their financial resources to achieve
high economic output.

Future research on the theme should focus on the variables, such as democracy and
population, as well as the relationship between industrial production, financial develop-
ment, and the environment, using disaggregated data from other developing/emerging
blocs. Finally, circumstances in different developing countries may differ significantly. As a
result, future research should examine broadening the analysis to include the cases of other
emerging areas, such as South Asia, East Asia, and the Pacific; the Middle East and North
Africa; and Latin America and the Caribbean. Such extensive evaluations can significantly
contribute to reaching a broad conclusion about the influence of industrial activity and
financial development on CO2 emissions.
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Appendix A Complete Significant Results of the Panel Causality Tests

Table A1. Panel Granger causality and DH causality test results for all variables.

Null Hypothesis Test
Granger Causality Test Dumitrescu–Hurlin Causality Tests

F-Stat p-Value W-Stat. Zbar-Stat. p-Value

Y does not Granger cause CO2 2.628 *** 0.074 4.633 * 3.288 * 0.001

IO does not Granger cause CO2 5.1423 * 0.006 5.801 * 4.824 * 0.000

UR does not Granger cause CO2 4.679 * 0.009 4.494 * 3.106 * 0.002

CO2 does not Granger cause UR 1.329 0.266 5.463 * 4.379 * 0.000

TO does not Granger cause CO2 5.642 * 0.004 4.421 * 2.974 * 0.003

NRE does not Granger cause CO2 4.749 * 0.009 4.409 * 2.994 * 0.003

RE does not Granger cause CO2 4.987 * 0.007 4.426 * 3.016 * 0.002

Y does not Granger cause IO 4.802 * 0.008 3.739 ** 2.112 ** 0.035

UR does not Granger cause Y 1.984 0.139 9.500 * 9.691 * 0.000

Y does not Granger cause UR 3.681 ** 0.026 5.606 * 4.568 * 0.000

Y does not Granger cause FD 3.789 ** 0.024 5.568 * 4.518 * 0.000

TO does not Granger cause Y 2.409 0.091 8.016 * 7.739 * 0.000

Y does not Granger cause TO 0.331 0.718 5.691 * 4.679 * 0.000

NRE does not Granger cause Y 1.022 0.3609 3.678 ** 2.033 ** 0.042

RE does not Granger cause Y 1.241 0.290 3.859 ** 2.269 ** 0.023

Y does not Granger cause RE 0.435 0.647 3.706 ** 2.069 ** 0.039

UR does not Granger cause IO 3.554 ** 0.029 5.639 * 4.612 0.000

FD does not Granger cause IO 9.340 * 0.000 5.788 * 4.808 * 0.000

IO does not Granger cause FD 0.179 0.836 4.143 * 2.644 * 0.008

IO does not Granger cause TO 0.312 0.732 4.169 * 2.678 * 0.007

IO does not Granger cause NRE 0.172 0.842 5.622 * 4.589 * 0.000

IO does not Granger cause RE 1.217 0.297 4.288 * 2.834 * 0.005

FD does not Granger cause UR 4.055 ** 0.018 5.229 * 4.073 * 0.000
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Table A1. Cont.

Null Hypothesis Test
Granger Causality Test Dumitrescu–Hurlin Causality Tests

F-Stat p-Value W-Stat. Zbar-Stat. p-Value

UR does not Granger cause FD 0.206 0.814 4.284 * 2.829 * 0.005

TO does not Granger cause UR 1.518 0.221 4.768 * 3.466 * 0.000

UR does not Granger cause TO 0.740 0.478 7.317 * 6.819 * 0.000

NRE does not Granger cause UR 5.659 * 0.004 4.851 * 3.574 * 0.000

UR does not Granger cause NRE 4.764 * 0.009 8.113 * 7.866 * 0.000

RE does not Granger cause UR 2.010 0.135 9.311 * 9.442 * 0.000

UR does not Granger cause RE 0.782 0.45 4.604 * 3.249 * 0.001

TO does not Granger cause FD 0.936 0.39 4.084 ** 2.566 ** 0.010

FD does not Granger cause TO 1.035 0.356 4.094 * 2.579 * 0.009

FD does not Granger cause NRE 1.208 0.299 3.675 ** 2.029 ** 0.042

RE does not Granger cause FD 0.197 0.821 3.965 ** 2.410 ** 0.016

NRE does not Granger cause TO 2.514 *** 0.082 4.934 * 3.685 * 0.000

RE does not Granger cause TO 2.346 *** 0.097 5.006 * 3.779 * 0.000

Note: the */**/*** represent 1%, 5%, and 10% significance levels, respectively. The lag length specified is 2.
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